/*++ Copyright (c) 2005 - 2010, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: PeCoffLoader.c Abstract: Tiano PE/COFF loader Revision History --*/ #include "Tiano.h" #include "Pei.h" #include "PeiLib.h" #include "PeCoffLoaderEx.h" #ifdef EFI_NT_EMULATOR #include "peilib.h" #include "EfiHobLib.h" #include EFI_PPI_DEFINITION (NtLoadAsDll) #endif STATIC EFI_STATUS PeCoffLoaderGetPeHeader ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, OUT EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr ); STATIC VOID* PeCoffLoaderImageAddress ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, IN UINTN Address ); EFI_STATUS EFIAPI PeCoffLoaderGetImageInfo ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ); EFI_STATUS EFIAPI PeCoffLoaderRelocateImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ); EFI_STATUS EFIAPI PeCoffLoaderLoadImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ); EFI_STATUS EFIAPI PeCoffLoaderUnloadImage ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ); #if defined (EFI_DEBUG_ITP_BREAK) && !defined (_CONSOLE) VOID AsmEfiSetBreakSupport ( IN UINTN LoadAddr ); #endif EFI_PEI_PE_COFF_LOADER_PROTOCOL mPeCoffLoader = { PeCoffLoaderGetImageInfo, PeCoffLoaderLoadImage, PeCoffLoaderRelocateImage, PeCoffLoaderUnloadImage }; #ifdef EFI_NT_EMULATOR EFI_NT_LOAD_AS_DLL_PPI *mPeCoffLoaderWinNtLoadAsDll = NULL; #endif EFI_STATUS InstallEfiPeiPeCoffLoader ( IN EFI_PEI_SERVICES **PeiServices, IN OUT EFI_PEI_PE_COFF_LOADER_PROTOCOL **This, IN EFI_PEI_PPI_DESCRIPTOR *ThisPpi ) /*++ Routine Description: Install PE/COFF loader PPI Arguments: PeiServices - General purpose services available to every PEIM This - Pointer to get Pei PE coff loader protocol as output ThisPpi - Passed in as EFI_NT_LOAD_AS_DLL_PPI on NT_EMULATOR platform Returns: EFI_SUCCESS --*/ { EFI_STATUS Status; Status = EFI_SUCCESS; #ifdef EFI_NT_EMULATOR // // For use by PEI Core and Modules // if (NULL != PeiServices) { Status = (**PeiServices).LocatePpi ( PeiServices, &gEfiNtLoadAsDllPpiGuid, 0, NULL, &mPeCoffLoaderWinNtLoadAsDll ); } else { // // Now in SecMain or ERM usage, bind appropriately // PEI_ASSERT (PeiServices, (NULL != ThisPpi)); mPeCoffLoaderWinNtLoadAsDll = (EFI_NT_LOAD_AS_DLL_PPI *) ThisPpi; PEI_ASSERT (PeiServices, (NULL != mPeCoffLoaderWinNtLoadAsDll)); } #endif if (NULL != This) { *This = &mPeCoffLoader; } return Status; } STATIC EFI_STATUS PeCoffLoaderGetPeHeader ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, OUT EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr ) /*++ Routine Description: Retrieves the PE or TE Header from a PE/COFF or TE image Arguments: ImageContext - The context of the image being loaded PeHdr - The buffer in which to return the PE32, PE32+, or TE header Returns: EFI_SUCCESS if the PE or TE Header is read, Otherwise, the error status from reading the PE/COFF or TE image using the ImageRead function. --*/ { EFI_STATUS Status; EFI_IMAGE_DOS_HEADER DosHdr; UINTN Size; UINT16 Magic; // // Read the DOS image header to check for it's existance // Size = sizeof (EFI_IMAGE_DOS_HEADER); Status = ImageContext->ImageRead ( ImageContext->Handle, 0, &Size, &DosHdr ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } ImageContext->PeCoffHeaderOffset = 0; if (DosHdr.e_magic == EFI_IMAGE_DOS_SIGNATURE) { // // DOS image header is present, so read the PE header after the DOS image // header // ImageContext->PeCoffHeaderOffset = DosHdr.e_lfanew; } // // Read the PE/COFF Header. For PE32 (32-bit) this will read in too much // data, but that should not hurt anythine. Hdr.Pe32->OptionalHeader.Magic // determins if this is a PE32 or PE32+ image. The magic is in the same // location in both images. // Size = sizeof (EFI_IMAGE_OPTIONAL_HEADER_UNION); Status = ImageContext->ImageRead ( ImageContext->Handle, ImageContext->PeCoffHeaderOffset, &Size, Hdr.Pe32 ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } // // Use Signature to figure out if we understand the image format // if (Hdr.Te->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) { ImageContext->IsTeImage = TRUE; ImageContext->Machine = Hdr.Te->Machine; ImageContext->ImageType = (UINT16)(Hdr.Te->Subsystem); ImageContext->ImageSize = 0; ImageContext->SectionAlignment = 4096; ImageContext->SizeOfHeaders = sizeof (EFI_TE_IMAGE_HEADER) + (UINTN)Hdr.Te->BaseOfCode - (UINTN)Hdr.Te->StrippedSize; } else if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) { ImageContext->IsTeImage = FALSE; ImageContext->Machine = Hdr.Pe32->FileHeader.Machine; // // NOTE: We use Machine to identify PE32/PE32+, instead of Magic. // It is for backward-compatibility consideration, because // some system will generate PE32+ image with PE32 Magic. // if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else { Magic = Hdr.Pe32->OptionalHeader.Magic; } if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC || Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) { // // PE32 and PE32+ have the same offset for these fields. // We use PE32 for both PE32 and PE32+ headers here. // ImageContext->ImageType = Hdr.Pe32->OptionalHeader.Subsystem; ImageContext->ImageSize = (UINT64)Hdr.Pe32->OptionalHeader.SizeOfImage; ImageContext->SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment; ImageContext->SizeOfHeaders = Hdr.Pe32->OptionalHeader.SizeOfHeaders; } else { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_MACHINE_TYPE; return EFI_UNSUPPORTED; } } else { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_MACHINE_TYPE; return EFI_UNSUPPORTED; } if (!PeCoffLoaderImageFormatSupported (ImageContext->Machine)) { // // If the PE/COFF loader does not support the image type return // unsupported. This library can suport lots of types of images // this does not mean the user of this library can call the entry // point of the image. // return EFI_UNSUPPORTED; } return EFI_SUCCESS; } STATIC EFI_STATUS PeCoffLoaderCheckImageType ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Checks the PE or TE header of a PE/COFF or TE image to determine if it supported Arguments: ImageContext - The context of the image being loaded Returns: EFI_SUCCESS if the PE/COFF or TE image is supported EFI_UNSUPPORTED of the PE/COFF or TE image is not supported. --*/ { switch (ImageContext->ImageType) { case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION: ImageContext->ImageCodeMemoryType = EfiLoaderCode; ImageContext->ImageDataMemoryType = EfiLoaderData; break; case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER: ImageContext->ImageCodeMemoryType = EfiBootServicesCode; ImageContext->ImageDataMemoryType = EfiBootServicesData; break; case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER: case EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER: ImageContext->ImageCodeMemoryType = EfiRuntimeServicesCode; ImageContext->ImageDataMemoryType = EfiRuntimeServicesData; break; default: ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_SUBSYSTEM; return EFI_UNSUPPORTED; } return EFI_SUCCESS; } EFI_STATUS EFIAPI PeCoffLoaderGetImageInfo ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Retrieves information on a PE/COFF image Arguments: This - Calling context ImageContext - The context of the image being loaded Returns: EFI_SUCCESS if the information on the PE/COFF image was collected. EFI_UNSUPPORTED of the PE/COFF image is not supported. Otherwise, the error status from reading the PE/COFF image using the ImageContext->ImageRead() function EFI_INVALID_PARAMETER - ImageContext is NULL. --*/ { EFI_STATUS Status; EFI_IMAGE_OPTIONAL_HEADER_UNION HdrData; EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; EFI_IMAGE_DATA_DIRECTORY *DebugDirectoryEntry; UINTN Size; UINTN Index; UINTN DebugDirectoryEntryRva; UINTN DebugDirectoryEntryFileOffset; UINTN SectionHeaderOffset; EFI_IMAGE_SECTION_HEADER SectionHeader; EFI_IMAGE_DEBUG_DIRECTORY_ENTRY DebugEntry; UINT32 NumberOfRvaAndSizes; UINT16 Magic; if (NULL == ImageContext) { return EFI_INVALID_PARAMETER; } // // Assume success // ImageContext->ImageError = EFI_IMAGE_ERROR_SUCCESS; Hdr.Union = &HdrData; Status = PeCoffLoaderGetPeHeader (ImageContext, Hdr); if (EFI_ERROR (Status)) { return Status; } // // Verify machine type // Status = PeCoffLoaderCheckImageType (ImageContext); if (EFI_ERROR (Status)) { return Status; } Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; // // Retrieve the base address of the image // if (!(ImageContext->IsTeImage)) { // // NOTE: We use Machine to identify PE32/PE32+, instead of Magic. // It is for backward-compatibility consideration, because // some system will generate PE32+ image with PE32 Magic. // if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else { Magic = Hdr.Pe32->OptionalHeader.Magic; } if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { // // Use PE32 offset // ImageContext->ImageAddress = Hdr.Pe32->OptionalHeader.ImageBase; } else { // // Use PE32+ offset // ImageContext->ImageAddress = Hdr.Pe32Plus->OptionalHeader.ImageBase; } } else { ImageContext->ImageAddress = (EFI_PHYSICAL_ADDRESS)(Hdr.Te->ImageBase + Hdr.Te->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER)); } // // Initialize the alternate destination address to 0 indicating that it // should not be used. // ImageContext->DestinationAddress = 0; // // Initialize the codeview pointer. // ImageContext->CodeView = NULL; ImageContext->PdbPointer = NULL; // // Three cases with regards to relocations: // - Image has base relocs, RELOCS_STRIPPED==0 => image is relocatable // - Image has no base relocs, RELOCS_STRIPPED==1 => Image is not relocatable // - Image has no base relocs, RELOCS_STRIPPED==0 => Image is relocatable but // has no base relocs to apply // Obviously having base relocations with RELOCS_STRIPPED==1 is invalid. // // Look at the file header to determine if relocations have been stripped, and // save this info in the image context for later use. // if ((!(ImageContext->IsTeImage)) && ((Hdr.Pe32->FileHeader.Characteristics & EFI_IMAGE_FILE_RELOCS_STRIPPED) != 0)) { ImageContext->RelocationsStripped = TRUE; } else { ImageContext->RelocationsStripped = FALSE; } if (!(ImageContext->IsTeImage)) { // // Use PE32 to access fields that have same offset in PE32 and PE32+ // ImageContext->ImageSize = (UINT64) Hdr.Pe32->OptionalHeader.SizeOfImage; ImageContext->SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment; ImageContext->SizeOfHeaders = Hdr.Pe32->OptionalHeader.SizeOfHeaders; if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { // // Use PE32 offset // NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; DebugDirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG]); } else { // // Use PE32+ offset // NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; DebugDirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG]); } if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG) { DebugDirectoryEntryRva = DebugDirectoryEntry->VirtualAddress; // // Determine the file offset of the debug directory... This means we walk // the sections to find which section contains the RVA of the debug // directory // DebugDirectoryEntryFileOffset = 0; SectionHeaderOffset = (UINTN)( ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + Hdr.Pe32->FileHeader.SizeOfOptionalHeader ); for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) { // // Read section header from file // Size = sizeof (EFI_IMAGE_SECTION_HEADER); Status = ImageContext->ImageRead ( ImageContext->Handle, SectionHeaderOffset, &Size, &SectionHeader ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } if (DebugDirectoryEntryRva >= SectionHeader.VirtualAddress && DebugDirectoryEntryRva < SectionHeader.VirtualAddress + SectionHeader.Misc.VirtualSize) { DebugDirectoryEntryFileOffset = DebugDirectoryEntryRva - SectionHeader.VirtualAddress + SectionHeader.PointerToRawData; break; } SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); } if (DebugDirectoryEntryFileOffset != 0) { for (Index = 0; Index < DebugDirectoryEntry->Size; Index++) { // // Read next debug directory entry // Size = sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); Status = ImageContext->ImageRead ( ImageContext->Handle, DebugDirectoryEntryFileOffset, &Size, &DebugEntry ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } if (DebugEntry.Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW) { ImageContext->DebugDirectoryEntryRva = (UINT32) (DebugDirectoryEntryRva + Index * sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY)); if (DebugEntry.RVA == 0 && DebugEntry.FileOffset != 0) { ImageContext->ImageSize += DebugEntry.SizeOfData; } return EFI_SUCCESS; } } } } } else { // // Because Te image only extracts base relocations and debug directory entries from // Pe image and in Te image header there is not a field to describe the imagesize, // we use the largest VirtualAddress plus Size in each directory entry to describe the imagesize // ImageContext->ImageSize = (UINT64) (Hdr.Te->DataDirectory[0].VirtualAddress + Hdr.Te->DataDirectory[0].Size); ImageContext->SectionAlignment = 4096; ImageContext->SizeOfHeaders = sizeof (EFI_TE_IMAGE_HEADER) + (UINTN) Hdr.Te->BaseOfCode - (UINTN) Hdr.Te->StrippedSize; DebugDirectoryEntry = &Hdr.Te->DataDirectory[1]; DebugDirectoryEntryRva = DebugDirectoryEntry->VirtualAddress; SectionHeaderOffset = (UINTN)(sizeof (EFI_TE_IMAGE_HEADER)); DebugDirectoryEntryFileOffset = 0; for (Index = 0; Index < Hdr.Te->NumberOfSections; Index++) { // // Read section header from file // Size = sizeof (EFI_IMAGE_SECTION_HEADER); Status = ImageContext->ImageRead ( ImageContext->Handle, SectionHeaderOffset, &Size, &SectionHeader ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } if (DebugDirectoryEntryRva >= SectionHeader.VirtualAddress && DebugDirectoryEntryRva < SectionHeader.VirtualAddress + SectionHeader.Misc.VirtualSize) { DebugDirectoryEntryFileOffset = DebugDirectoryEntryRva - SectionHeader.VirtualAddress + SectionHeader.PointerToRawData + sizeof (EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize; break; } SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); } if (DebugDirectoryEntryFileOffset != 0) { for (Index = 0; Index < DebugDirectoryEntry->Size; Index++) { // // Read next debug directory entry // Size = sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); Status = ImageContext->ImageRead ( ImageContext->Handle, DebugDirectoryEntryFileOffset, &Size, &DebugEntry ); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } if (DebugEntry.Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW) { ImageContext->DebugDirectoryEntryRva = (UINT32) (DebugDirectoryEntryRva + Index * sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY)); return EFI_SUCCESS; } } } } return EFI_SUCCESS; } STATIC VOID * PeCoffLoaderImageAddress ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, IN UINTN Address ) /*++ Routine Description: Converts an image address to the loaded address Arguments: ImageContext - The context of the image being loaded Address - The address to be converted to the loaded address Returns: NULL if the address can not be converted, otherwise, the converted address --*/ { if (Address >= ImageContext->ImageSize) { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_IMAGE_ADDRESS; return NULL; } return (CHAR8 *) ((UINTN) ImageContext->ImageAddress + Address); } EFI_STATUS EFIAPI PeCoffLoaderRelocateImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Relocates a PE/COFF image in memory Arguments: This - Calling context ImageContext - Contains information on the loaded image to relocate Returns: EFI_SUCCESS if the PE/COFF image was relocated EFI_LOAD_ERROR if the image is not a valid PE/COFF image EFI_UNSUPPORTED not support --*/ { EFI_STATUS Status; EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; EFI_IMAGE_DATA_DIRECTORY *RelocDir; UINT64 Adjust; EFI_IMAGE_BASE_RELOCATION *RelocBase; EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd; UINT16 *Reloc; UINT16 *RelocEnd; CHAR8 *Fixup; CHAR8 *FixupBase; UINT16 *F16; UINT32 *F32; UINT64 *F64; CHAR8 *FixupData; EFI_PHYSICAL_ADDRESS BaseAddress; UINT32 NumberOfRvaAndSizes; UINT16 Magic; #ifdef EFI_NT_EMULATOR VOID *DllEntryPoint; VOID *ModHandle; ModHandle = NULL; #endif if (NULL == ImageContext) { return EFI_INVALID_PARAMETER; } // // Assume success // ImageContext->ImageError = EFI_IMAGE_ERROR_SUCCESS; // // If there are no relocation entries, then we are done // if (ImageContext->RelocationsStripped) { return EFI_SUCCESS; } // // If the destination address is not 0, use that rather than the // image address as the relocation target. // if (ImageContext->DestinationAddress != 0) { BaseAddress = ImageContext->DestinationAddress; } else { BaseAddress = ImageContext->ImageAddress; } if (!(ImageContext->IsTeImage)) { Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset); // // NOTE: We use Machine to identify PE32/PE32+, instead of Magic. // It is for backward-compatibility consideration, because // some system will generate PE32+ image with PE32 Magic. // if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else { Magic = Hdr.Pe32->OptionalHeader.Magic; } if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { // // Use PE32 offset // Adjust = (UINT64)BaseAddress - Hdr.Pe32->OptionalHeader.ImageBase; Hdr.Pe32->OptionalHeader.ImageBase = (UINT32)BaseAddress; NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; RelocDir = &Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; } else { // // Use PE32+ offset // Adjust = (UINT64) BaseAddress - Hdr.Pe32Plus->OptionalHeader.ImageBase; Hdr.Pe32Plus->OptionalHeader.ImageBase = (UINT64)BaseAddress; NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; RelocDir = &Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; } // // Find the relocation block // Per the PE/COFF spec, you can't assume that a given data directory // is present in the image. You have to check the NumberOfRvaAndSizes in // the optional header to verify a desired directory entry is there. // if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC && RelocDir->Size > 0) { RelocBase = PeCoffLoaderImageAddress (ImageContext, RelocDir->VirtualAddress); RelocBaseEnd = PeCoffLoaderImageAddress ( ImageContext, RelocDir->VirtualAddress + RelocDir->Size - 1 ); if ((RelocBase == NULL) || (RelocBaseEnd == NULL)) { // // If the base start or end address resolved to 0, then fail. // return EFI_LOAD_ERROR; } } else { // // Set base and end to bypass processing below. // RelocBase = RelocBaseEnd = 0; } } else { Hdr.Te = (EFI_TE_IMAGE_HEADER *)(UINTN)(ImageContext->ImageAddress); Adjust = (UINT64) (BaseAddress - Hdr.Te->StrippedSize + sizeof (EFI_TE_IMAGE_HEADER) - Hdr.Te->ImageBase); Hdr.Te->ImageBase = (UINT64) (BaseAddress - Hdr.Te->StrippedSize + sizeof (EFI_TE_IMAGE_HEADER)); // // Find the relocation block // RelocDir = &Hdr.Te->DataDirectory[0]; if (RelocDir->Size > 0) { RelocBase = (EFI_IMAGE_BASE_RELOCATION *)(UINTN)( ImageContext->ImageAddress + RelocDir->VirtualAddress + sizeof(EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize ); RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION *) ((UINTN) RelocBase + (UINTN) RelocDir->Size - 1); } else { // // Set base and end to bypass processing below. // RelocBase = NULL; RelocBaseEnd = NULL; } } // // Run the relocation information and apply the fixups // FixupData = ImageContext->FixupData; while (RelocBase < RelocBaseEnd) { Reloc = (UINT16 *) ((CHAR8 *) RelocBase + sizeof (EFI_IMAGE_BASE_RELOCATION)); RelocEnd = (UINT16 *) ((CHAR8 *) RelocBase + RelocBase->SizeOfBlock); if (!(ImageContext->IsTeImage)) { FixupBase = PeCoffLoaderImageAddress (ImageContext, RelocBase->VirtualAddress); if (FixupBase == NULL) { // // If the FixupBase address resolved to 0, then fail. // return EFI_LOAD_ERROR; } } else { FixupBase = (CHAR8 *)(UINTN)(ImageContext->ImageAddress + RelocBase->VirtualAddress + sizeof(EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize ); } if ((CHAR8 *) RelocEnd < (CHAR8 *) ((UINTN) ImageContext->ImageAddress) || (CHAR8 *) RelocEnd > (CHAR8 *)((UINTN)ImageContext->ImageAddress + (UINTN)ImageContext->ImageSize)) { ImageContext->ImageError = EFI_IMAGE_ERROR_FAILED_RELOCATION; return EFI_LOAD_ERROR; } // // Run this relocation record // while (Reloc < RelocEnd) { Fixup = FixupBase + (*Reloc & 0xFFF); switch ((*Reloc) >> 12) { case EFI_IMAGE_REL_BASED_ABSOLUTE: break; case EFI_IMAGE_REL_BASED_HIGH: F16 = (UINT16 *) Fixup; *F16 = (UINT16) (*F16 + (UINT16)(((UINT32)Adjust) >> 16)); if (FixupData != NULL) { *(UINT16 *) FixupData = *F16; FixupData = FixupData + sizeof (UINT16); } break; case EFI_IMAGE_REL_BASED_LOW: F16 = (UINT16 *) Fixup; *F16 = (UINT16) (*F16 + (UINT16) Adjust); if (FixupData != NULL) { *(UINT16 *) FixupData = *F16; FixupData = FixupData + sizeof (UINT16); } break; case EFI_IMAGE_REL_BASED_HIGHLOW: F32 = (UINT32 *) Fixup; *F32 = *F32 + (UINT32) Adjust; if (FixupData != NULL) { FixupData = ALIGN_POINTER (FixupData, sizeof (UINT32)); *(UINT32 *) FixupData = *F32; FixupData = FixupData + sizeof (UINT32); } break; case EFI_IMAGE_REL_BASED_DIR64: // // For X64 and IPF // F64 = (UINT64 *) Fixup; *F64 = *F64 + (UINT64) Adjust; if (FixupData != NULL) { FixupData = ALIGN_POINTER (FixupData, sizeof(UINT64)); *(UINT64 *)(FixupData) = *F64; FixupData = FixupData + sizeof(UINT64); } break; case EFI_IMAGE_REL_BASED_HIGHADJ: // // Return the same EFI_UNSUPPORTED return code as // PeCoffLoaderRelocateImageEx() returns if it does not recognize // the relocation type. // ImageContext->ImageError = EFI_IMAGE_ERROR_FAILED_RELOCATION; return EFI_UNSUPPORTED; default: // // The common code does not handle some of the stranger IPF relocations // PeCoffLoaderRelocateImageEx () addes support for these complex fixups // on IPF and is a No-Op on other archtiectures. // Status = PeCoffLoaderRelocateImageEx (Reloc, Fixup, &FixupData, Adjust); if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_FAILED_RELOCATION; return Status; } } // // Next relocation record // Reloc += 1; } // // Next reloc block // RelocBase = (EFI_IMAGE_BASE_RELOCATION *) RelocEnd; } #ifdef EFI_NT_EMULATOR DllEntryPoint = NULL; ImageContext->ModHandle = NULL; // // Load the DLL if it's not an EBC image. // if ((ImageContext->PdbPointer != NULL) && (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) { Status = mPeCoffLoaderWinNtLoadAsDll->Entry ( ImageContext->PdbPointer, &DllEntryPoint, &ModHandle ); if (!EFI_ERROR (Status) && DllEntryPoint != NULL) { ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint; ImageContext->ModHandle = ModHandle; } } #endif return EFI_SUCCESS; } EFI_STATUS EFIAPI PeCoffLoaderLoadImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Loads a PE/COFF image into memory Arguments: This - Calling context ImageContext - Contains information on image to load into memory Returns: EFI_SUCCESS if the PE/COFF image was loaded EFI_BUFFER_TOO_SMALL if the caller did not provide a large enough buffer EFI_LOAD_ERROR if the image is a runtime driver with no relocations EFI_INVALID_PARAMETER if the image address is invalid --*/ { EFI_STATUS Status; EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT CheckContext; EFI_IMAGE_SECTION_HEADER *FirstSection; EFI_IMAGE_SECTION_HEADER *Section; UINTN NumberOfSections; UINTN Index; CHAR8 *Base; CHAR8 *End; CHAR8 *MaxEnd; EFI_IMAGE_DATA_DIRECTORY *DirectoryEntry; EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *DebugEntry; UINTN Size; UINT32 TempDebugEntryRva; UINT32 NumberOfRvaAndSizes; UINT16 Magic; if (NULL == ImageContext) { return EFI_INVALID_PARAMETER; } // // Assume success // ImageContext->ImageError = EFI_IMAGE_ERROR_SUCCESS; // // Copy the provided context info into our local version, get what we // can from the original image, and then use that to make sure everything // is legit. // CopyMem (&CheckContext, ImageContext, sizeof (EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT)); Status = PeCoffLoaderGetImageInfo (This, &CheckContext); if (EFI_ERROR (Status)) { return Status; } // // Make sure there is enough allocated space for the image being loaded // if (ImageContext->ImageSize < CheckContext.ImageSize) { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_IMAGE_SIZE; return EFI_BUFFER_TOO_SMALL; } if (ImageContext->ImageAddress == 0) { // // Image cannot be loaded into 0 address. // ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_IMAGE_ADDRESS; return EFI_INVALID_PARAMETER; } // // If there's no relocations, then make sure it's not a runtime driver, // and that it's being loaded at the linked address. // if (CheckContext.RelocationsStripped) { // // If the image does not contain relocations and it is a runtime driver // then return an error. // if (CheckContext.ImageType == EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER) { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_SUBSYSTEM; return EFI_LOAD_ERROR; } // // If the image does not contain relocations, and the requested load address // is not the linked address, then return an error. // if (CheckContext.ImageAddress != ImageContext->ImageAddress) { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_IMAGE_ADDRESS; return EFI_INVALID_PARAMETER; } } // // Make sure the allocated space has the proper section alignment // if (!(ImageContext->IsTeImage)) { if ((ImageContext->ImageAddress & (CheckContext.SectionAlignment - 1)) != 0) { ImageContext->ImageError = EFI_IMAGE_ERROR_INVALID_SECTION_ALIGNMENT; return EFI_INVALID_PARAMETER; } } // // Read the entire PE/COFF or TE header into memory // if (!(ImageContext->IsTeImage)) { Status = ImageContext->ImageRead ( ImageContext->Handle, 0, &ImageContext->SizeOfHeaders, (VOID *) (UINTN) ImageContext->ImageAddress ); Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset); FirstSection = (EFI_IMAGE_SECTION_HEADER *) ( (UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset + sizeof(UINT32) + sizeof(EFI_IMAGE_FILE_HEADER) + Hdr.Pe32->FileHeader.SizeOfOptionalHeader ); NumberOfSections = (UINTN) (Hdr.Pe32->FileHeader.NumberOfSections); } else { Status = ImageContext->ImageRead ( ImageContext->Handle, 0, &ImageContext->SizeOfHeaders, (VOID *)(UINTN)ImageContext->ImageAddress ); Hdr.Te = (EFI_TE_IMAGE_HEADER *)(UINTN)(ImageContext->ImageAddress); FirstSection = (EFI_IMAGE_SECTION_HEADER *) ( (UINTN)ImageContext->ImageAddress + sizeof(EFI_TE_IMAGE_HEADER) ); NumberOfSections = (UINTN) (Hdr.Te->NumberOfSections); } if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return EFI_LOAD_ERROR; } // // Load each section of the image // Section = FirstSection; for (Index = 0, MaxEnd = NULL; Index < NumberOfSections; Index++) { // // Compute sections address // Base = PeCoffLoaderImageAddress (ImageContext, Section->VirtualAddress); End = PeCoffLoaderImageAddress ( ImageContext, Section->VirtualAddress + Section->Misc.VirtualSize - 1 ); if (ImageContext->IsTeImage) { Base = (CHAR8 *)((UINTN) Base + sizeof (EFI_TE_IMAGE_HEADER) - (UINTN)Hdr.Te->StrippedSize); End = (CHAR8 *)((UINTN) End + sizeof (EFI_TE_IMAGE_HEADER) - (UINTN)Hdr.Te->StrippedSize); } if (End > MaxEnd) { MaxEnd = End; } // // If the base start or end address resolved to 0, then fail. // if ((Base == NULL) || (End == NULL)) { ImageContext->ImageError = EFI_IMAGE_ERROR_SECTION_NOT_LOADED; return EFI_LOAD_ERROR; } // // Read the section // Size = (UINTN) Section->Misc.VirtualSize; if ((Size == 0) || (Size > Section->SizeOfRawData)) { Size = (UINTN) Section->SizeOfRawData; } if (Section->SizeOfRawData) { if (!(ImageContext->IsTeImage)) { Status = ImageContext->ImageRead ( ImageContext->Handle, Section->PointerToRawData, &Size, Base ); } else { Status = ImageContext->ImageRead ( ImageContext->Handle, Section->PointerToRawData + sizeof (EFI_TE_IMAGE_HEADER) - (UINTN)Hdr.Te->StrippedSize, &Size, Base ); } if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return Status; } } // // If raw size is less then virt size, zero fill the remaining // if (Size < Section->Misc.VirtualSize) { ZeroMem (Base + Size, Section->Misc.VirtualSize - Size); } // // Next Section // Section += 1; } Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; // // Get image's entry point // if (!(ImageContext->IsTeImage)) { // // NOTE: We use Machine to identify PE32/PE32+, instead of Magic. // It is for backward-compatibility consideration, because // some system will generate PE32+ image with PE32 Magic. // if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else if (Hdr.Pe32->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) { Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; } else { Magic = Hdr.Pe32->OptionalHeader.Magic; } // // Sizes of AddressOfEntryPoint are different so we need to do this safely // ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)PeCoffLoaderImageAddress ( ImageContext, (UINTN)Hdr.Pe32->OptionalHeader.AddressOfEntryPoint ); } else { ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) ( (UINTN)ImageContext->ImageAddress + (UINTN)Hdr.Te->AddressOfEntryPoint + (UINTN)sizeof(EFI_TE_IMAGE_HEADER) - (UINTN)Hdr.Te->StrippedSize ); } // // Determine the size of the fixup data // // Per the PE/COFF spec, you can't assume that a given data directory // is present in the image. You have to check the NumberOfRvaAndSizes in // the optional header to verify a desired directory entry is there. // if (!(ImageContext->IsTeImage)) { if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { // // Use PE32 offset // NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; } else { // // Use PE32+ offset // NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; } if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) { ImageContext->FixupDataSize = DirectoryEntry->Size / sizeof (UINT16) * sizeof (UINTN); } else { ImageContext->FixupDataSize = 0; } } else { DirectoryEntry = &Hdr.Te->DataDirectory[0]; ImageContext->FixupDataSize = DirectoryEntry->Size / sizeof (UINT16) * sizeof (UINTN); } // // Consumer must allocate a buffer for the relocation fixup log. // Only used for runtime drivers. // ImageContext->FixupData = NULL; // // Load the Codeview info if present // if (ImageContext->DebugDirectoryEntryRva != 0) { if (!(ImageContext->IsTeImage)) { DebugEntry = PeCoffLoaderImageAddress ( ImageContext, ImageContext->DebugDirectoryEntryRva ); } else { DebugEntry = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *)(UINTN)( ImageContext->ImageAddress + ImageContext->DebugDirectoryEntryRva + sizeof(EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize ); } if (DebugEntry != NULL) { TempDebugEntryRva = DebugEntry->RVA; if (DebugEntry->RVA == 0 && DebugEntry->FileOffset != 0) { Section--; if ((UINTN)Section->SizeOfRawData < Section->Misc.VirtualSize) { TempDebugEntryRva = Section->VirtualAddress + Section->Misc.VirtualSize; } else { TempDebugEntryRva = Section->VirtualAddress + Section->SizeOfRawData; } } if (TempDebugEntryRva != 0) { if (!(ImageContext->IsTeImage)) { ImageContext->CodeView = PeCoffLoaderImageAddress (ImageContext, TempDebugEntryRva); } else { ImageContext->CodeView = (VOID *)( (UINTN)ImageContext->ImageAddress + (UINTN)TempDebugEntryRva + (UINTN)sizeof (EFI_TE_IMAGE_HEADER) - (UINTN) Hdr.Te->StrippedSize ); } if (ImageContext->CodeView == NULL) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return EFI_LOAD_ERROR; } if (DebugEntry->RVA == 0) { Size = DebugEntry->SizeOfData; if (!(ImageContext->IsTeImage)) { Status = ImageContext->ImageRead ( ImageContext->Handle, DebugEntry->FileOffset, &Size, ImageContext->CodeView ); } else { Status = ImageContext->ImageRead ( ImageContext->Handle, DebugEntry->FileOffset + sizeof (EFI_TE_IMAGE_HEADER) - Hdr.Te->StrippedSize, &Size, ImageContext->CodeView ); // // Should we apply fix up to this field according to the size difference between PE and TE? // Because now we maintain TE header fields unfixed, this field will also remain as they are // in original PE image. // } if (EFI_ERROR (Status)) { ImageContext->ImageError = EFI_IMAGE_ERROR_IMAGE_READ; return EFI_LOAD_ERROR; } DebugEntry->RVA = TempDebugEntryRva; } switch (*(UINT32 *) ImageContext->CodeView) { case CODEVIEW_SIGNATURE_NB10: ImageContext->PdbPointer = (CHAR8 *)ImageContext->CodeView + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY); break; case CODEVIEW_SIGNATURE_RSDS: ImageContext->PdbPointer = (CHAR8 *)ImageContext->CodeView + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY); break; default: break; } } } } #if defined (EFI_DEBUG_ITP_BREAK) && !defined (_CONSOLE) AsmEfiSetBreakSupport ((UINTN)(ImageContext->ImageAddress)); #endif return Status; } EFI_STATUS EFIAPI PeCoffLoaderUnloadImage ( IN OUT EFI_PEI_PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Unload a PE/COFF image from memory Arguments: ImageContext - Contains information on image to load into memory Returns: EFI_SUCCESS --*/ { #ifdef EFI_NT_EMULATOR // // Calling Win32 API free library // mPeCoffLoaderWinNtLoadAsDll->FreeLibrary (ImageContext->ModHandle); #endif return EFI_SUCCESS; }