/** @file Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License that accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: **/ #include "CommonHeader.h" #include "Platform.h" #include #include "PlatformBaseAddresses.h" #include "PchAccess.h" #include #include "Platform.h" #include "PchCommonDefinitions.h" #include #include #include #include // // Start::Alpine Valley platform // enum { SMBUS_READ_BYTE, SMBUS_WRITE_BYTE, SMBUS_READ_BLOCK, SMBUS_WRITE_BLOCK }; #define EC_BASE 0xE0000000 // // DEVICE 0 (Memroy Controller Hub) // #define MC_BUS 0x00 #define MC_DEV 0x00 #define MC_FUN 0x00 #define MC_DEV_FUN (MC_DEV << 3) #define MC_BUS_DEV_FUN ((MC_BUS << 8) + MC_DEV_FUN) // // SysCtl SMBus address and block size // #define AV_SC_SMBUS_ADDRESS 0x60 #define AV_SC_BYTE_LEN 1 #define AV_SC_BLOCK_LEN 4 #define AV_SC_SMBUS_WRCMD 1 #define AV_SC_SMBUS_RDCMD 0 // // SysCtl registers offset // #define AV_SC_REG_PLATFORM_ID 24 // 0x18 #define AV_SC_REG_BOARD_ID 28 // 0x1C #define AV_SC_REG_FAB_ID 32 // 0x20 #define AV_SC_REG_ECO_ID 68 // 0x44 #define AV_SC_REG_DDR_DAUGHTER_CARD_ID 144 // 0x90 #define AV_SC_REG_SODIMM_CONFIG 36 // // ID values // #define AV_SC_PLATFORM_ID_TABLET 0 #define AV_SC_PLATFORM_ID_NETBOOK 2 #define AV_SC_PLATFORM_ID_INTERPOSER 3 // Configuration TBD #define AV_SC_BOARD_ID_AV_SVP 1492 #define BUS_TRIES 3 // How many times to retry on Bus Errors #define GTT_SIZE_1MB 1 #define GTT_SIZE_2MB 2 #define PciCfg16Read( PciExpressBase, Bus, Device, Function, Register ) \ MmioRead16(PciExpressBase + \ (UINTN)(Bus << 20) + \ (UINTN)(Device << 15) + \ (UINTN)(Function << 12) + \ (UINTN)(Register)) #define PciCfg16Write( PciExpressBase, Bus, Device, Function, Register, Data ) \ MmioWrite16(PciExpressBase + \ (UINTN)(Bus << 20) + \ (UINTN)(Device << 15) + \ (UINTN)(Function << 12) + \ (UINTN)(Register), \ (UINT16)Data) // //Memory Test Manufacturing mode // UINT32 DataPatternForMemoryTest[] = { 0x55555555, 0xAAAAAAAA, 0x55555510, 0x555555EF, 0x55555510, 0x555555EF, 0x55555510, 0x555555EF, 0x55555555, 0xAAAAAAAA, 0x55551055, 0x5555EF55, 0x55551055, 0x5555EF55, 0x55551055, 0x5555EF55, 0x55555555, 0xAAAAAAAA, 0x55105555, 0x55EF5555, 0x55105555, 0x55EF5555, 0x55105555, 0x55EF5555, 0x55555555, 0xAAAAAAAA, 0x10555555, 0xEF555555, 0x10555555, 0xEF555555, 0x10555555, 0xEF555555 }; #define DATA_PATTERN_ARRAY_SIZE (sizeof(DataPatternForMemoryTest) / sizeof(UINT32)) // //Memory Test Manufacturing mode // // // The global indicator, the FvFileLoader callback will modify it to TRUE after loading PEIM into memory // BOOLEAN ImageInMemory = FALSE; EFI_STATUS EFIAPI Stall ( IN CONST EFI_PEI_SERVICES **PeiServices, IN CONST EFI_PEI_STALL_PPI *This, IN UINTN Microseconds ); EFI_STATUS EFIAPI MfgMemoryTest ( IN CONST EFI_PEI_SERVICES **PeiServices, IN PEI_MFG_MEMORY_TEST_PPI *This, IN UINT32 BeginAddress, IN UINT32 MemoryLength ); static EFI_PEI_STALL_PPI mStallPpi = { PEI_STALL_RESOLUTION, Stall }; static PEI_MFG_MEMORY_TEST_PPI mPeiMfgMemoryTestPpi = { MfgMemoryTest }; static EFI_PEI_PPI_DESCRIPTOR mInstallStallPpi[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiStallPpiGuid, &mStallPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, &gPeiMfgMemoryTestPpiGuid, &mPeiMfgMemoryTestPpi } }; EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList[1] = { { (EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiPeiMemoryDiscoveredPpiGuid, MemoryDiscoveredPpiNotifyCallback } }; EFI_STATUS EFIAPI InstallMonoStatusCode ( IN EFI_FFS_FILE_HEADER *FfsHeader, IN CONST EFI_PEI_SERVICES **PeiServices ); EFI_STATUS ReadPlatformIds ( IN CONST EFI_PEI_SERVICES **PeiServices, IN OUT EFI_PLATFORM_INFO_HOB *PlatformInfoHob ); // // Start::Alpine Valley platform // EFI_STATUS PeiSmbusExec ( UINT16 SmbusBase, UINT8 SlvAddr, UINT8 Operation, UINT8 Offset, UINT8 *Length, UINT8 *Buffer ); /** Detemine compatible board @return 0: Not compatible board 1: Compatible board **/ UINT32 DetermineCompatibleBoard ( void ) { UINTN PciD31F0RegBase = 0; UINT32 GpioValue = 0; UINT32 TmpVal = 0; UINT32 MmioConf0 = 0; UINT32 MmioPadval = 0; UINT32 PConf0Offset = 0x200; //GPIO_S5_4 pad_conf0 register offset UINT32 PValueOffset = 0x208; //GPIO_S5_4 pad_value register offset UINT32 SSUSOffset = 0x2000; UINT32 IoBase = 0; DEBUG ((EFI_D_ERROR, "DetermineCompatibleBoard() Entry\n")); PciD31F0RegBase = MmPciAddress (0, 0, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, 0 ); IoBase = MmioRead32 (PciD31F0RegBase + R_PCH_LPC_IO_BASE) & B_PCH_LPC_IO_BASE_BAR; MmioConf0 = IoBase + SSUSOffset + PConf0Offset; MmioPadval = IoBase + SSUSOffset + PValueOffset; //0xFED0E200/0xFED0E208 is pad_Conf/pad_val register address of GPIO_S5_4 DEBUG ((EFI_D_ERROR, "MmioConf0[0x%x], MmioPadval[0x%x]\n", MmioConf0, MmioPadval)); MmioWrite32 (MmioConf0, 0x2003CC00); TmpVal = MmioRead32 (MmioPadval); TmpVal &= ~0x6; //Clear bit 1:2 TmpVal |= 0x2; // Set the pin as GPI MmioWrite32 (MmioPadval, TmpVal); GpioValue = MmioRead32 (MmioPadval); DEBUG ((EFI_D_ERROR, "Gpio_S5_4 value is 0x%x\n", GpioValue)); return (GpioValue & 0x1); } EFI_STATUS FtpmPolicyInit ( IN CONST EFI_PEI_SERVICES **PeiServices, IN SYSTEM_CONFIGURATION *pSystemConfiguration ) { EFI_STATUS Status; EFI_PEI_PPI_DESCRIPTOR *mFtpmPolicyPpiDesc; SEC_FTPM_POLICY_PPI *mFtpmPolicyPpi; DEBUG((EFI_D_INFO, "FtpmPolicyInit Entry \n")); if (NULL == PeiServices || NULL == pSystemConfiguration) { DEBUG((EFI_D_ERROR, "Input error. \n")); return EFI_INVALID_PARAMETER; } Status = (*PeiServices)->AllocatePool( PeiServices, sizeof (EFI_PEI_PPI_DESCRIPTOR), (void **)&mFtpmPolicyPpiDesc ); ASSERT_EFI_ERROR (Status); Status = (*PeiServices)->AllocatePool( PeiServices, sizeof (SEC_FTPM_POLICY_PPI), (void **)&mFtpmPolicyPpi ); ASSERT_EFI_ERROR (Status); // // Initialize PPI // (*PeiServices)->SetMem ((VOID *)mFtpmPolicyPpi, sizeof (SEC_FTPM_POLICY_PPI), 0); mFtpmPolicyPpiDesc->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST; mFtpmPolicyPpiDesc->Guid = &gSeCfTPMPolicyPpiGuid; mFtpmPolicyPpiDesc->Ppi = mFtpmPolicyPpi; DEBUG((EFI_D_INFO, "pSystemConfiguration->fTPM = 0x%x \n", pSystemConfiguration->fTPM)); if(pSystemConfiguration->fTPM == 1) { mFtpmPolicyPpi->fTPMEnable = TRUE; } else { mFtpmPolicyPpi->fTPMEnable = FALSE; } Status = (*PeiServices)->InstallPpi( PeiServices, mFtpmPolicyPpiDesc ); ASSERT_EFI_ERROR (Status); DEBUG((EFI_D_INFO, "FtpmPolicyInit done \n")); return EFI_SUCCESS; } /** This routine attempts to acquire the SMBus @retval FAILURE as failed @retval SUCCESS as passed **/ EFI_STATUS AcquireBus ( UINT16 SmbusBase ) { UINT8 StsReg; StsReg = 0; StsReg = (UINT8)IoRead8(SmbusBase + R_PCH_SMBUS_HSTS); if (StsReg & B_PCH_SMBUS_IUS) { return EFI_DEVICE_ERROR; } else if (StsReg & B_PCH_SMBUS_HBSY) { // // Clear Status Register and exit // // Wait for HSTS.HBSY to be clear // do { StsReg = (UINT8) IoRead8(SmbusBase+R_PCH_SMBUS_HSTS); } while ((StsReg & B_PCH_SMBUS_HBSY) != 0); // // Clear all status bits // IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, 0xFE); return EFI_SUCCESS; } else { // // Clear out any odd status information (Will Not Clear In Use) // IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, StsReg); return EFI_SUCCESS; } } // // End::Alpine Valley platform // /** This function checks the memory range in PEI. @param PeiServices Pointer to PEI Services. @param This Pei memory test PPI pointer. @param BeginAddress Beginning of the memory address to be checked. @param MemoryLength Bytes of memory range to be checked. @param Operation Type of memory check operation to be performed. @param ErrorAddress Return the address of the error memory address. @retval EFI_SUCCESS The operation completed successfully. @retval EFI_DEVICE_ERROR Memory test failed. It's not safe to use this range of memory. **/ EFI_STATUS EFIAPI MfgMemoryTest ( IN CONST EFI_PEI_SERVICES **PeiServices, IN PEI_MFG_MEMORY_TEST_PPI *This, IN UINT32 BeginAddress, IN UINT32 MemoryLength ) { UINT32 i; UINT32 memAddr; UINT32 readData; UINT32 xorData; UINT32 TestFlag = 0; memAddr = BeginAddress; // //Output Message for MFG // DEBUG ((EFI_D_ERROR, "MFGMODE SET\n")); // //Writting the pattern in defined location. // while (memAddr < (BeginAddress+MemoryLength)) { for (i = 0; i < DATA_PATTERN_ARRAY_SIZE; i++) { if (memAddr > (BeginAddress+MemoryLength -4)) { memAddr = memAddr + 4; break; } *((volatile UINT32*) memAddr) = DataPatternForMemoryTest[i]; memAddr = memAddr + 4; } } // //Verify the pattern. // memAddr = BeginAddress; while (memAddr < (BeginAddress+MemoryLength)) { for (i = 0; i < DATA_PATTERN_ARRAY_SIZE; i++) { if (memAddr > (BeginAddress+MemoryLength -4)) { memAddr = memAddr + 4; break; } readData = *((volatile UINT32*) memAddr); xorData = readData ^ DataPatternForMemoryTest[i]; // // If xorData is nonzero, this particular memAddr has a failure. // if (xorData != 0x00000000) { DEBUG ((EFI_D_ERROR, "Expected value....: %x\n", DataPatternForMemoryTest[i])); DEBUG ((EFI_D_ERROR, "ReadData value....: %x\n", readData)); DEBUG ((EFI_D_ERROR, "Pattern failure at....: %x\n", memAddr)); TestFlag = 1; } memAddr = memAddr + 4; } } if (TestFlag) { return EFI_DEVICE_ERROR; } // //Output Message for MFG // DEBUG ((EFI_D_ERROR, "MFGMODE MEMORY TEST PASSED\n")); return EFI_SUCCESS; } BOOLEAN IsRtcUipAlwaysSet ( IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_PEI_STALL_PPI *StallPpi; UINTN Count; (**PeiServices).LocatePpi (PeiServices, &gEfiPeiStallPpiGuid, 0, NULL, (void **)&StallPpi); for (Count = 0; Count < 500; Count++) { // Maximum waiting approximates to 1.5 seconds (= 3 msec * 500) IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERA); if ((IoRead8 (R_PCH_RTC_TARGET2) & B_PCH_RTC_REGISTERA_UIP) == 0) { return FALSE; } StallPpi->Stall (PeiServices, StallPpi, 3000); } return TRUE; } EFI_STATUS RtcPowerFailureHandler ( IN CONST EFI_PEI_SERVICES **PeiServices ) { UINT16 DataUint16; UINT8 DataUint8; BOOLEAN RtcUipIsAlwaysSet; DataUint16 = MmioRead16 (PMC_BASE_ADDRESS + R_PCH_PMC_GEN_PMCON_1); RtcUipIsAlwaysSet = IsRtcUipAlwaysSet (PeiServices); if ((DataUint16 & B_PCH_PMC_GEN_PMCON_RTC_PWR_STS) || (RtcUipIsAlwaysSet)) { // // Execute the sequence below. This will ensure that the RTC state machine has been initialized. // // Step 1. // BIOS clears this bit by writing a '0' to it. // if (DataUint16 & B_PCH_PMC_GEN_PMCON_RTC_PWR_STS) { // // Set to invalid date in order to reset the time to // BIOS build time later in the boot (SBRUN.c file). // IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_YEAR); IoWrite8 (R_PCH_RTC_TARGET2, 0x0FF); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_MONTH); IoWrite8 (R_PCH_RTC_TARGET2, 0x0FF); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_DAYOFMONTH); IoWrite8 (R_PCH_RTC_TARGET2, 0x0FF); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_DAYOFWEEK); IoWrite8 (R_PCH_RTC_TARGET2, 0x0FF); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_SECONDSALARM); IoWrite8 (R_PCH_RTC_TARGET2, 0x00); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_MINUTESALARM); IoWrite8 (R_PCH_RTC_TARGET2, 0x00); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_HOURSALARM); IoWrite8 (R_PCH_RTC_TARGET2, 0x00); } // // Step 2. // Set RTC Register 0Ah[6:4] to '110' or '111'. // IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERA); IoWrite8 (R_PCH_RTC_TARGET2, (V_PCH_RTC_REGISTERA_DV_DIV_RST1 | V_PCH_RTC_REGISTERA_RS_976P5US)); // // Step 3. // Set RTC Register 0Bh[7]. // IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERB); DataUint8 = (IoRead8 (R_PCH_RTC_TARGET2) | B_PCH_RTC_REGISTERB_SET); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERB); IoWrite8 (R_PCH_RTC_TARGET2, DataUint8); // // Step 4. // Set RTC Register 0Ah[6:4] to '010'. // IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERA); IoWrite8 (R_PCH_RTC_TARGET2, (V_PCH_RTC_REGISTERA_DV_NORM_OP | V_PCH_RTC_REGISTERA_RS_976P5US)); // // Step 5. // Clear RTC Register 0Bh[7]. // IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERB); DataUint8 = (IoRead8 (R_PCH_RTC_TARGET2) & (UINT8)~B_PCH_RTC_REGISTERB_SET); IoWrite8 (R_PCH_RTC_INDEX2, R_PCH_RTC_REGISTERB); IoWrite8 (R_PCH_RTC_TARGET2, DataUint8); } return EFI_SUCCESS; } VOID PchBaseInit ( VOID ) { // // Program ACPI Power Management I/O Space Base Address // MmioWrite16 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_ACPI_BASE ), (UINT16)((ACPI_BASE_ADDRESS & B_PCH_LPC_ACPI_BASE_BAR) | B_PCH_LPC_ACPI_BASE_EN) ); // // Program GPIO Base Address // MmioWrite16 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_GPIO_BASE ), (UINT16)((GPIO_BASE_ADDRESS & B_PCH_LPC_GPIO_BASE_BAR) | B_PCH_LPC_GPIO_BASE_EN) ); // // Set PMC Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_PMC_BASE ), (UINT32)((PMC_BASE_ADDRESS & B_PCH_LPC_PMC_BASE_BAR) | B_PCH_LPC_PMC_BASE_EN) ); // // Set IO Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_IO_BASE ), (UINT32)((IO_BASE_ADDRESS & B_PCH_LPC_IO_BASE_BAR) | B_PCH_LPC_IO_BASE_EN) ); // // Set ILB Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_ILB_BASE ), (UINT32)((ILB_BASE_ADDRESS & B_PCH_LPC_ILB_BASE_BAR) | B_PCH_LPC_ILB_BASE_EN) ); // // Set PUnit Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_PUNIT_BASE ), (UINT32)((PUNIT_BASE_ADDRESS & B_PCH_LPC_PUNIT_BASE_BAR) | B_PCH_LPC_PUNIT_BASE_EN) ); // // Set SPI Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_SPI_BASE ), (UINT32)((SPI_BASE_ADDRESS & B_PCH_LPC_SPI_BASE_BAR) | B_PCH_LPC_SPI_BASE_EN) ); // // Set Root Complex Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_RCBA ), (UINT32)((RCBA_BASE_ADDRESS & B_PCH_LPC_RCBA_BAR) | B_PCH_LPC_RCBA_EN) ); // // Set MPHY Base Address // MmioWrite32 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, R_PCH_LPC_MPHY_BASE ), (UINT32)((MPHY_BASE_ADDRESS & B_PCH_LPC_MPHY_BASE_BAR) | B_PCH_LPC_MPHY_BASE_EN) ); MmioWrite16 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_SMBUS, PCI_FUNCTION_NUMBER_PCH_SMBUS, R_PCH_SMBUS_BASE ), (UINT16)(SMBUS_BASE_ADDRESS & B_PCH_SMBUS_BASE_BAR) ); MmioOr8 ( MmPciAddress (0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_SMBUS, PCI_FUNCTION_NUMBER_PCH_SMBUS, R_PCH_SMBUS_PCICMD ), B_PCH_SMBUS_PCICMD_IOSE ); } /** This is the entrypoint of PEIM @param FileHandle Handle of the file being invoked. @param PeiServices Describes the list of possible PEI Services. @retval EFI_SUCCESS if it completed successfully. **/ EFI_STATUS EFIAPI PeiInitPlatform ( IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices ) { UINTN SmbusRegBase; EFI_PLATFORM_INFO_HOB PlatformInfo; EFI_STATUS Status= EFI_SUCCESS; EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable = NULL; UINTN VariableSize; SYSTEM_CONFIGURATION SystemConfiguration; UINT32 GGC = 0; EFI_PEI_PPI_DESCRIPTOR *mVlvMmioPolicyPpiDesc; VLV_MMIO_POLICY_PPI *mVlvMmioPolicyPpi; ZeroMem (&PlatformInfo, sizeof(PlatformInfo)); Status = InstallMonoStatusCode(FileHandle, PeiServices); ASSERT_EFI_ERROR (Status); // // Initialize Stall PPIs // Status = (*PeiServices)->InstallPpi (PeiServices, &mInstallStallPpi[0]); ASSERT_EFI_ERROR (Status); Status = (*PeiServices)->NotifyPpi (PeiServices, &mMemoryDiscoveredNotifyList[0]); ASSERT_EFI_ERROR (Status); SmbusRegBase = PchPciDeviceMmBase ( DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_SMBUS, PCI_FUNCTION_NUMBER_PCH_SMBUS ); // // Since PEI has no PCI enumerator, set the BAR & I/O space enable ourselves // MmioAndThenOr32 (SmbusRegBase + R_PCH_SMBUS_BASE, B_PCH_SMBUS_BASE_BAR, SMBUS_BASE_ADDRESS); MmioOr8 (SmbusRegBase + R_PCH_SMBUS_PCICMD, B_PCH_SMBUS_PCICMD_IOSE); PchBaseInit(); // //Todo: confirm if we need program 8254 // // Setting 8254 // Program timer 1 as refresh timer // IoWrite8 (0x43, 0x54); IoWrite8 (0x41, 0x12); // // RTC power failure handling // RtcPowerFailureHandler (PeiServices); PchMmPci32( 0, 0, 2, 0, 0x50) = 0x210; VariableSize = sizeof (SYSTEM_CONFIGURATION); ZeroMem (&SystemConfiguration, VariableSize); // // Obtain variable services // Status = (*PeiServices)->LocatePpi( PeiServices, &gEfiPeiReadOnlyVariable2PpiGuid, 0, NULL, (void **)&Variable ); ASSERT_EFI_ERROR(Status); Status = Variable->GetVariable ( Variable, L"Setup", &gEfiSetupVariableGuid, NULL, &VariableSize, &SystemConfiguration ); if (EFI_ERROR (Status) || VariableSize != sizeof(SYSTEM_CONFIGURATION)) { //The setup variable is corrupted VariableSize = sizeof(SYSTEM_CONFIGURATION); Status = Variable->GetVariable( Variable, L"SetupRecovery", &gEfiSetupVariableGuid, NULL, &VariableSize, &SystemConfiguration ); ASSERT_EFI_ERROR (Status); } if (EFI_ERROR (Status)) { GGC = ((2 << 3) | 0x200); PciCfg16Write(EC_BASE, 0, 2, 0, 0x50, GGC); GGC = PciCfg16Read(EC_BASE, 0, 2, 0, 0x50); DEBUG((EFI_D_INFO , "GGC: 0x%08x GMSsize:0x%08x\n", GGC, (GGC & (BIT7|BIT6|BIT5|BIT4|BIT3))>>3)); } else { if (SystemConfiguration.Igd == 1 && SystemConfiguration.PrimaryVideoAdaptor != 2) { GGC = (SystemConfiguration.IgdDvmt50PreAlloc << 3) | (SystemConfiguration.GTTSize == GTT_SIZE_1MB ? 0x100: 0x200); PciCfg16Write(EC_BASE, 0, 2, 0, 0x50, GGC); GGC = PciCfg16Read(EC_BASE, 0, 2, 0, 0x50); DEBUG((EFI_D_INFO , "GGC: 0x%08x GMSsize:0x%08x\n", GGC, (GGC & (BIT7|BIT6|BIT5|BIT4|BIT3))>>3)); } } // // Initialize PlatformInfo HOB // Status = ReadPlatformIds(PeiServices, &PlatformInfo); ASSERT_EFI_ERROR (Status); // // 0 -> Disable , 1 -> Enable // if(SystemConfiguration.CfioPnpSettings == 1) { DEBUG((EFI_D_INFO, "CheckCfioPnpSettings: CFIO Pnp Settings Enabled\n")); PlatformInfo.CfioEnabled = 1; } else { DEBUG((EFI_D_INFO, "CheckCfioPnpSettings: CFIO Pnp Settings Disabled\n")); PlatformInfo.CfioEnabled = 0; } // // Build HOB for PlatformInfo // BuildGuidDataHob ( &gEfiPlatformInfoGuid, &PlatformInfo, sizeof (EFI_PLATFORM_INFO_HOB) ); #ifdef FTPM_ENABLE Status = FtpmPolicyInit(PeiServices, &SystemConfiguration); if (EFI_ERROR (Status)) { DEBUG((EFI_D_ERROR, "fTPM init failed.\n")); } #endif // // Set the new boot mode for MRC // #ifdef NOCS_S3_SUPPORT Status = UpdateBootMode (PeiServices); ASSERT_EFI_ERROR (Status); #endif DEBUG((EFI_D_INFO, "Setup MMIO size ... \n\n")); // // Setup MMIO size // Status = (*PeiServices)->AllocatePool( PeiServices, sizeof (EFI_PEI_PPI_DESCRIPTOR), (void **)&mVlvMmioPolicyPpiDesc ); ASSERT_EFI_ERROR (Status); Status = (*PeiServices)->AllocatePool( PeiServices, sizeof (VLV_MMIO_POLICY_PPI), (void **)&mVlvMmioPolicyPpi ); ASSERT_EFI_ERROR (Status); (*PeiServices)->SetMem ( (VOID *)mVlvMmioPolicyPpi, sizeof (VLV_MMIO_POLICY_PPI), 0 ); mVlvMmioPolicyPpiDesc->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST; mVlvMmioPolicyPpiDesc->Guid = &gVlvMmioPolicyPpiGuid; mVlvMmioPolicyPpiDesc->Ppi = mVlvMmioPolicyPpi; switch (SystemConfiguration.MmioSize) { case 0: // 768MB mVlvMmioPolicyPpi->MmioSize = 0x300; break; case 1: // 1GB mVlvMmioPolicyPpi->MmioSize = 0x400; break; case 2: // 1.25GB mVlvMmioPolicyPpi->MmioSize = 0x500; break; case 3: // 1.5GB mVlvMmioPolicyPpi->MmioSize = 0x600; break; case 4: // 2GB mVlvMmioPolicyPpi->MmioSize = 0x800; break; default: mVlvMmioPolicyPpi->MmioSize = 0x800; break; } Status = (*PeiServices)->InstallPpi( PeiServices, mVlvMmioPolicyPpiDesc ); ASSERT_EFI_ERROR (Status); return Status; } EFI_STATUS ReadPlatformIds ( IN CONST EFI_PEI_SERVICES **PeiServices, IN OUT EFI_PLATFORM_INFO_HOB *PlatformInfoHob ) { { EFI_STATUS Status = EFI_SUCCESS; UINT8 FabId = 0; UINTN DataSize; EFI_PLATFORM_INFO_HOB TmpHob; EFI_PEI_READ_ONLY_VARIABLE2_PPI *PeiVar; UINT32 CompatibleBoard = 0; Status = (**PeiServices).LocatePpi ( PeiServices, &gEfiPeiReadOnlyVariable2PpiGuid, 0, NULL, (void **)&PeiVar ); ASSERT_EFI_ERROR (Status); DataSize = sizeof (EFI_PLATFORM_INFO_HOB); Status = PeiVar->GetVariable ( PeiVar, L"PlatformInfo", &gEfiVlv2VariableGuid, NULL, &DataSize, &TmpHob ); if (Status == EFI_SUCCESS) { PlatformInfoHob->BoardId = TmpHob.BoardId; PlatformInfoHob->MemCfgID = TmpHob.MemCfgID; PlatformInfoHob->BoardRev = TmpHob.BoardRev; PlatformInfoHob->PlatformFlavor = TmpHob.PlatformFlavor; return Status; } CompatibleBoard = DetermineCompatibleBoard(); if (1 == CompatibleBoard) { PlatformInfoHob->BoardId = BOARD_ID_MINNOW2_COMPATIBLE; DEBUG ((EFI_D_INFO, "I'm MinnowBoard Compatible!\n")); } else { PlatformInfoHob->BoardId = BOARD_ID_MINNOW2; DEBUG ((EFI_D_INFO, "I'm MinnowBoard Max!\n")); } PlatformInfoHob->MemCfgID = 0; PlatformInfoHob->BoardRev = FabId + 1; // FabId = 0 means FAB1 (BoardRev = 1), FabId = 1 means FAB2 (BoardRev = 2)... PlatformInfoHob->PlatformFlavor = FlavorMobile; } return EFI_SUCCESS; } // // Start::Alpine Valley platform // /** This routine reads SysCtl registers @param SmbusBase SMBUS Base Address @param SlvAddr Targeted Smbus Slave device address @param Operation Which SMBus protocol will be used @param Offset Offset of the register @param Length Number of bytes @param Buffer Buffer contains values read from registers @retval SUCCESS as passed @retval Others as failed **/ EFI_STATUS PeiSmbusExec ( UINT16 SmbusBase, UINT8 SlvAddr, UINT8 Operation, UINT8 Offset, UINT8 *Length, UINT8 *Buffer ) { EFI_STATUS Status=EFI_SUCCESS; UINT8 AuxcReg; UINT8 SmbusOperation = 0; UINT8 StsReg; UINT8 SlvAddrReg; UINT8 HostCmdReg; UINT8 BlockCount = 0; BOOLEAN BufferTooSmall; UINT8 Index; UINT8 *CallBuffer; UINT8 RetryCount = BUS_TRIES; // // MrcSmbusExec supports byte and block read. // Only allow Byte or block access // if (!((*Length == AV_SC_BYTE_LEN) || (*Length == AV_SC_BLOCK_LEN))) { return EFI_INVALID_PARAMETER; } // // See if its ok to use the bus based upon INUSE_STS bit. // Status = AcquireBus (SmbusBase); ASSERT_EFI_ERROR(Status); CallBuffer = Buffer; // //SmbStatus Bits of interest //[6] = IUS (In Use Status) //[4] = FAIL //[3] = BERR (Bus Error = transaction collision) //[2] = DERR (Device Error = Illegal Command Field, Unclaimed Cycle, Host Device Timeout, CRC Error) //[1] = INTR (Successful completion of last command) //[0] = HOST BUSY // // // This is the main operation loop. If the operation results in a Smbus // collision with another master on the bus, it attempts the requested // transaction again at least BUS_TRIES attempts. // while (RetryCount--) { // // Operation Specifics (pre-execution) // Status = EFI_SUCCESS; SlvAddrReg = SlvAddr; HostCmdReg = Offset; AuxcReg = 0; switch (Operation) { case SMBUS_WRITE_BYTE: IoWrite8 (SmbusBase+R_PCH_SMBUS_HD0, CallBuffer[0]); SmbusOperation = V_PCH_SMBUS_SMB_CMD_BYTE_DATA; break; case SMBUS_READ_BYTE: SmbusOperation = V_PCH_SMBUS_SMB_CMD_BYTE_DATA; SlvAddrReg |= B_PCH_SMBUS_RW_SEL_READ; if (*Length < 1) { Status = EFI_INVALID_PARAMETER; } *Length = 1; break; case SMBUS_WRITE_BLOCK: SmbusOperation = V_PCH_SMBUS_SMB_CMD_BLOCK; IoWrite8 (SmbusBase+R_PCH_SMBUS_HD0, *(UINT8 *) Length); BlockCount = (UINT8) (*Length); if ((*Length < 1) || (*Length > 32)) { Status = EFI_INVALID_PARAMETER; break; } AuxcReg |= B_PCH_SMBUS_E32B; break; case SMBUS_READ_BLOCK: SmbusOperation = V_PCH_SMBUS_SMB_CMD_BLOCK; SlvAddrReg |= B_PCH_SMBUS_RW_SEL_READ; if ((*Length < 1) || (*Length > 32)) { Status = EFI_INVALID_PARAMETER; break; } AuxcReg |= B_PCH_SMBUS_E32B; break; default: Status = EFI_INVALID_PARAMETER; break; } // // Set Auxiliary Control register // IoWrite8 (SmbusBase+R_PCH_SMBUS_AUXC, AuxcReg); // // Reset the pointer of the internal buffer // IoRead8 (SmbusBase+R_PCH_SMBUS_HCTL); // // Now that the 32 byte buffer is turned on, we can write th block data // into it // if (Operation == SMBUS_WRITE_BLOCK) { for (Index = 0; Index < BlockCount; Index++) { // // Write next byte // IoWrite8 (SmbusBase+R_PCH_SMBUS_HBD, CallBuffer[Index]); } } // // Set SMBus slave address for the device to read // IoWrite8(SmbusBase+R_PCH_SMBUS_TSA, SlvAddrReg); // // // Set Command register for the offset to read // IoWrite8(SmbusBase+R_PCH_SMBUS_HCMD, HostCmdReg ); // // Set Control Register to Set "operation command" protocol and start bit // IoWrite8(SmbusBase+R_PCH_SMBUS_HCTL, (UINT8) (SmbusOperation + B_PCH_SMBUS_START)); // // Wait for IO to complete // do { StsReg = (UINT8) IoRead8(SmbusBase+0); } while ((StsReg & (BIT4|BIT3|BIT2|BIT1)) == 0); if (StsReg & B_PCH_SMBUS_DERR) { Status = EFI_DEVICE_ERROR; break; } else if (StsReg & B_PCH_SMBUS_BERR) { // // Clear the Bus Error for another try // Status = EFI_DEVICE_ERROR; IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, B_PCH_SMBUS_BERR); // // Clear Status Registers // IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, B_PCH_SMBUS_HSTS_ALL); IoWrite8(SmbusBase+R_PCH_SMBUS_AUXS, B_PCH_SMBUS_CRCE); continue; } // // successfull completion // Operation Specifics (post-execution) // switch (Operation) { case SMBUS_READ_BYTE: CallBuffer[0] = (UINT8)(IoRead8 (SmbusBase+R_PCH_SMBUS_HD0)); break; case SMBUS_WRITE_BLOCK: IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, B_PCH_SMBUS_BYTE_DONE_STS); break; case SMBUS_READ_BLOCK: BufferTooSmall = FALSE; // // Find out how many bytes will be in the block // BlockCount = (UINT8)(IoRead8 (SmbusBase+R_PCH_SMBUS_HD0)); if (*Length < BlockCount) { BufferTooSmall = TRUE; } else { for (Index = 0; Index < BlockCount; Index++) { // // Read the byte // CallBuffer[Index] = (UINT8)IoRead8 (SmbusBase+R_PCH_SMBUS_HBD); } } *Length = BlockCount; if (BufferTooSmall) { Status = EFI_BUFFER_TOO_SMALL; } break; default: break; }; if ((StsReg & B_PCH_SMBUS_BERR) && (Status == EFI_SUCCESS)) { // // Clear the Bus Error for another try // Status = EFI_DEVICE_ERROR; IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, B_PCH_SMBUS_BERR); continue; } else { break; } } // // Clear Status Registers and exit // IoWrite8(SmbusBase+R_PCH_SMBUS_HSTS, B_PCH_SMBUS_HSTS_ALL); IoWrite8(SmbusBase+R_PCH_SMBUS_AUXS, B_PCH_SMBUS_CRCE); IoWrite8(SmbusBase+R_PCH_SMBUS_AUXC, 0); return Status; } // // End::Alpine Valley platform //