/** @file Elf32 Convert solution Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.
Portions copyright (c) 2013, ARM Ltd. All rights reserved.
Portions Copyright (c) 2020, Hewlett Packard Enterprise Development LP. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "WinNtInclude.h" #ifndef __GNUC__ #include #include #endif #include #include #include #include #include #include #include #include #include "PeCoffLib.h" #include "EfiUtilityMsgs.h" #include "GenFw.h" #include "ElfConvert.h" #include "Elf32Convert.h" STATIC VOID ScanSections32 ( VOID ); STATIC BOOLEAN WriteSections32 ( SECTION_FILTER_TYPES FilterType ); STATIC VOID WriteRelocations32 ( VOID ); STATIC VOID WriteDebug32 ( VOID ); STATIC VOID SetImageSize32 ( VOID ); STATIC VOID CleanUp32 ( VOID ); // // Rename ELF32 structures to common names to help when porting to ELF64. // typedef Elf32_Shdr Elf_Shdr; typedef Elf32_Ehdr Elf_Ehdr; typedef Elf32_Rel Elf_Rel; typedef Elf32_Sym Elf_Sym; typedef Elf32_Phdr Elf_Phdr; typedef Elf32_Dyn Elf_Dyn; #define ELFCLASS ELFCLASS32 #define ELF_R_TYPE(r) ELF32_R_TYPE(r) #define ELF_R_SYM(r) ELF32_R_SYM(r) // // Well known ELF structures. // STATIC Elf_Ehdr *mEhdr; STATIC Elf_Shdr *mShdrBase; STATIC Elf_Phdr *mPhdrBase; // // Coff information // STATIC UINT32 mCoffAlignment = 0x20; // // PE section alignment. // STATIC const UINT16 mCoffNbrSections = 4; // // ELF sections to offset in Coff file. // STATIC UINT32 *mCoffSectionsOffset = NULL; // // Offsets in COFF file // STATIC UINT32 mNtHdrOffset; STATIC UINT32 mTextOffset; STATIC UINT32 mDataOffset; STATIC UINT32 mHiiRsrcOffset; STATIC UINT32 mRelocOffset; STATIC UINT32 mDebugOffset; // // Initialization Function // BOOLEAN InitializeElf32 ( UINT8 *FileBuffer, ELF_FUNCTION_TABLE *ElfFunctions ) { // // Initialize data pointer and structures. // mEhdr = (Elf_Ehdr*) FileBuffer; // // Check the ELF32 specific header information. // if (mEhdr->e_ident[EI_CLASS] != ELFCLASS32) { Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS32"); return FALSE; } if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) { Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB"); return FALSE; } if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) { Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN"); return FALSE; } if (!((mEhdr->e_machine == EM_386) || (mEhdr->e_machine == EM_ARM) || (mEhdr->e_machine == EM_RISCV))) { Error (NULL, 0, 3000, "Unsupported", "ELF e_machine is not Elf32 machine."); return FALSE; } if (mEhdr->e_version != EV_CURRENT) { Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT); return FALSE; } // // Update section header pointers // mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff); mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff); // // Create COFF Section offset buffer and zero. // mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32)); if (mCoffSectionsOffset == NULL) { Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!"); return FALSE; } memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32)); // // Fill in function pointers. // ElfFunctions->ScanSections = ScanSections32; ElfFunctions->WriteSections = WriteSections32; ElfFunctions->WriteRelocations = WriteRelocations32; ElfFunctions->WriteDebug = WriteDebug32; ElfFunctions->SetImageSize = SetImageSize32; ElfFunctions->CleanUp = CleanUp32; return TRUE; } // // Header by Index functions // STATIC Elf_Shdr* GetShdrByIndex ( UINT32 Num ) { if (Num >= mEhdr->e_shnum) { Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num); exit(EXIT_FAILURE); } return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize); } STATIC Elf_Phdr* GetPhdrByIndex ( UINT32 num ) { if (num >= mEhdr->e_phnum) { Error (NULL, 0, 3000, "Invalid", "GetPhdrByIndex: Index %u is too high.", num); exit(EXIT_FAILURE); } return (Elf_Phdr *)((UINT8*)mPhdrBase + num * mEhdr->e_phentsize); } STATIC UINT32 CoffAlign ( UINT32 Offset ) { return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1); } STATIC UINT32 DebugRvaAlign ( UINT32 Offset ) { return (Offset + 3) & ~3; } // // filter functions // STATIC BOOLEAN IsTextShdr ( Elf_Shdr *Shdr ) { return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC); } STATIC BOOLEAN IsHiiRsrcShdr ( Elf_Shdr *Shdr ) { Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx); return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0); } STATIC BOOLEAN IsDataShdr ( Elf_Shdr *Shdr ) { if (IsHiiRsrcShdr(Shdr)) { return FALSE; } return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE); } STATIC BOOLEAN IsStrtabShdr ( Elf_Shdr *Shdr ) { Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx); return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0); } STATIC Elf_Shdr * FindStrtabShdr ( VOID ) { UINT32 i; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsStrtabShdr(shdr)) { return shdr; } } return NULL; } STATIC const UINT8 * GetSymName ( Elf_Sym *Sym ) { Elf_Shdr *StrtabShdr; UINT8 *StrtabContents; BOOLEAN foundEnd; UINT32 i; if (Sym->st_name == 0) { return NULL; } StrtabShdr = FindStrtabShdr(); if (StrtabShdr == NULL) { return NULL; } assert(Sym->st_name < StrtabShdr->sh_size); StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset; foundEnd = FALSE; for (i = Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) { foundEnd = (BOOLEAN)(StrtabContents[i] == 0); } assert(foundEnd); return StrtabContents + Sym->st_name; } // // Elf functions interface implementation // STATIC VOID ScanSections32 ( VOID ) { UINT32 i; EFI_IMAGE_DOS_HEADER *DosHdr; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; UINT32 CoffEntry; UINT32 SectionCount; BOOLEAN FoundSection; CoffEntry = 0; mCoffOffset = 0; // // Coff file start with a DOS header. // mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40; mNtHdrOffset = mCoffOffset; switch (mEhdr->e_machine) { case EM_386: case EM_ARM: mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; default: VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine); mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; } mTableOffset = mCoffOffset; mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER); // // Set mCoffAlignment to the maximum alignment of the input sections // we care about // for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (shdr->sh_addralign <= mCoffAlignment) { continue; } if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) { mCoffAlignment = (UINT32)shdr->sh_addralign; } } // // Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT // if (mCoffAlignment > MAX_COFF_ALIGNMENT) { Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT."); assert (FALSE); } // // Move the PE/COFF header right before the first section. This will help us // save space when converting to TE. // if (mCoffAlignment > mCoffOffset) { mNtHdrOffset += mCoffAlignment - mCoffOffset; mTableOffset += mCoffAlignment - mCoffOffset; mCoffOffset = mCoffAlignment; } // // First text sections. // mCoffOffset = CoffAlign(mCoffOffset); mTextOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsTextShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } /* Relocate entry. */ if ((mEhdr->e_entry >= shdr->sh_addr) && (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) { CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr; } // // Set mTextOffset with the offset of the first '.text' section // if (!FoundSection) { mTextOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } if (!FoundSection) { Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section."); assert (FALSE); } mDebugOffset = DebugRvaAlign(mCoffOffset); mCoffOffset = CoffAlign(mCoffOffset); if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName); } // // Then data sections. // mDataOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsDataShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } // // Set mDataOffset with the offset of the first '.data' section // if (!FoundSection) { mDataOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName); } // // Make room for .debug data in .data (or .text if .data is empty) instead of // putting it in a section of its own. This is explicitly allowed by the // PE/COFF spec, and prevents bloat in the binary when using large values for // section alignment. // if (SectionCount > 0) { mDebugOffset = DebugRvaAlign(mCoffOffset); } mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) + sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + strlen(mInImageName) + 1; mCoffOffset = CoffAlign(mCoffOffset); if (SectionCount == 0) { mDataOffset = mCoffOffset; } // // The HII resource sections. // mHiiRsrcOffset = mCoffOffset; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsHiiRsrcShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } if (shdr->sh_size != 0) { mHiiRsrcOffset = mCoffOffset; mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; mCoffOffset = CoffAlign(mCoffOffset); SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset); } break; } } mRelocOffset = mCoffOffset; // // Allocate base Coff file. Will be expanded later for relocations. // mCoffFile = (UINT8 *)malloc(mCoffOffset); if (mCoffFile == NULL) { Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!"); } assert (mCoffFile != NULL); memset(mCoffFile, 0, mCoffOffset); // // Fill headers. // DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile; DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE; DosHdr->e_lfanew = mNtHdrOffset; NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset); NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE; switch (mEhdr->e_machine) { case EM_386: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; case EM_ARM: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; default: VerboseMsg ("%s unknown e_machine type %hu. Assume IA-32", mInImageName, mEhdr->e_machine); NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections; NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL); mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp; NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0; NtHdr->Pe32.FileHeader.NumberOfSymbols = 0; NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader); NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED | EFI_IMAGE_FILE_32BIT_MACHINE; NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset; NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset; NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0; NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry; NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset; NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset; NtHdr->Pe32.OptionalHeader.ImageBase = 0; NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.SizeOfImage = 0; NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset; NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES; // // Section headers. // if ((mDataOffset - mTextOffset) > 0) { CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset, EFI_IMAGE_SCN_CNT_CODE | EFI_IMAGE_SCN_MEM_EXECUTE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mHiiRsrcOffset - mDataOffset) > 0) { CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_WRITE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mRelocOffset - mHiiRsrcOffset) > 0) { CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_READ); NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset; NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset; } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } } STATIC BOOLEAN WriteSections32 ( SECTION_FILTER_TYPES FilterType ) { UINT32 Idx; Elf_Shdr *SecShdr; UINT32 SecOffset; BOOLEAN (*Filter)(Elf_Shdr *); // // Initialize filter pointer // switch (FilterType) { case SECTION_TEXT: Filter = IsTextShdr; break; case SECTION_HII: Filter = IsHiiRsrcShdr; break; case SECTION_DATA: Filter = IsDataShdr; break; default: return FALSE; } // // First: copy sections. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *Shdr = GetShdrByIndex(Idx); if ((*Filter)(Shdr)) { switch (Shdr->sh_type) { case SHT_PROGBITS: /* Copy. */ if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) { return FALSE; } memcpy(mCoffFile + mCoffSectionsOffset[Idx], (UINT8*)mEhdr + Shdr->sh_offset, Shdr->sh_size); break; case SHT_NOBITS: memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size); break; default: // // Ignore for unknown section type. // VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type); break; } } } // // Second: apply relocations. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { // // Determine if this is a relocation section. // Elf_Shdr *RelShdr = GetShdrByIndex(Idx); if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) { continue; } // // Relocation section found. Now extract section information that the relocations // apply to in the ELF data and the new COFF data. // SecShdr = GetShdrByIndex(RelShdr->sh_info); SecOffset = mCoffSectionsOffset[RelShdr->sh_info]; // // Only process relocations for the current filter type. // if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) { UINT32 RelOffset; // // Determine the symbol table referenced by the relocation data. // Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link); UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset; // // Process all relocation entries for this section. // for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) { // // Set pointer to relocation entry // Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset); // // Set pointer to symbol table entry associated with the relocation entry. // Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize); Elf_Shdr *SymShdr; UINT8 *Targ; UINT16 Address; // // Check section header index found in symbol table and get the section // header location. // if (Sym->st_shndx == SHN_UNDEF || Sym->st_shndx >= mEhdr->e_shnum) { const UINT8 *SymName = GetSymName(Sym); if (SymName == NULL) { SymName = (const UINT8 *)""; } Error (NULL, 0, 3000, "Invalid", "%s: Bad definition for symbol '%s'@%#x or unsupported symbol type. " "For example, absolute and undefined symbols are not supported.", mInImageName, SymName, Sym->st_value); exit(EXIT_FAILURE); } SymShdr = GetShdrByIndex(Sym->st_shndx); // // Convert the relocation data to a pointer into the coff file. // // Note: // r_offset is the virtual address of the storage unit to be relocated. // sh_addr is the virtual address for the base of the section. // Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr); // // Determine how to handle each relocation type based on the machine type. // if (mEhdr->e_machine == EM_386) { switch (ELF_R_TYPE(Rel->r_info)) { case R_386_NONE: break; case R_386_32: // // Absolute relocation. // Converts Targ from a absolute virtual address to the absolute // COFF address. // *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; case R_386_PC32: // // Relative relocation: Symbol - Ip + Addend // *(UINT32 *)Targ = *(UINT32 *)Targ + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr) - (SecOffset - SecShdr->sh_addr); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else if (mEhdr->e_machine == EM_ARM) { switch (ELF32_R_TYPE(Rel->r_info)) { case R_ARM_RBASE: // No relocation - no action required // break skipped case R_ARM_PC24: case R_ARM_REL32: case R_ARM_XPC25: case R_ARM_THM_PC22: case R_ARM_THM_JUMP19: case R_ARM_CALL: case R_ARM_JMP24: case R_ARM_THM_JUMP24: case R_ARM_PREL31: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_JMP6: case R_ARM_THM_ALU_PREL_11_0: case R_ARM_THM_PC12: case R_ARM_REL32_NOI: case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G2: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_LDC_PC_G0: case R_ARM_LDC_PC_G1: case R_ARM_LDC_PC_G2: case R_ARM_THM_JUMP11: case R_ARM_THM_JUMP8: case R_ARM_TLS_GD32: case R_ARM_TLS_LDM32: case R_ARM_TLS_IE32: // Thease are all PC-relative relocations and don't require modification // GCC does not seem to have the concept of a application that just needs to get relocated. break; case R_ARM_THM_MOVW_ABS_NC: // MOVW is only lower 16-bits of the addres Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); ThumbMovtImmediatePatch ((UINT16 *)Targ, Address); break; case R_ARM_THM_MOVT_ABS: // MOVT is only upper 16-bits of the addres Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16); ThumbMovtImmediatePatch ((UINT16 *)Targ, Address); break; case R_ARM_ABS32: case R_ARM_RABS32: // // Absolute relocation. // *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; default: Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info)); } } } } } return TRUE; } UINTN gMovwOffset = 0; STATIC VOID WriteRelocations32 ( VOID ) { UINT32 Index; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; EFI_IMAGE_DATA_DIRECTORY *Dir; BOOLEAN FoundRelocations; Elf_Dyn *Dyn; Elf_Rel *Rel; UINTN RelElementSize; UINTN RelSize; UINTN RelOffset; UINTN K; Elf32_Phdr *DynamicSegment; for (Index = 0, FoundRelocations = FALSE; Index < mEhdr->e_shnum; Index++) { Elf_Shdr *RelShdr = GetShdrByIndex(Index); if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) { Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info); if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) { UINT32 RelIdx; FoundRelocations = TRUE; for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) { Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx); if (mEhdr->e_machine == EM_386) { switch (ELF_R_TYPE(Rel->r_info)) { case R_386_NONE: case R_386_PC32: // // No fixup entry required. // break; case R_386_32: // // Creates a relative relocation entry from the absolute entry. // CoffAddFixup(mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr), EFI_IMAGE_REL_BASED_HIGHLOW); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else if (mEhdr->e_machine == EM_ARM) { switch (ELF32_R_TYPE(Rel->r_info)) { case R_ARM_RBASE: // No relocation - no action required // break skipped case R_ARM_PC24: case R_ARM_REL32: case R_ARM_XPC25: case R_ARM_THM_PC22: case R_ARM_THM_JUMP19: case R_ARM_CALL: case R_ARM_JMP24: case R_ARM_THM_JUMP24: case R_ARM_PREL31: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_JMP6: case R_ARM_THM_ALU_PREL_11_0: case R_ARM_THM_PC12: case R_ARM_REL32_NOI: case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G2: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_LDC_PC_G0: case R_ARM_LDC_PC_G1: case R_ARM_LDC_PC_G2: case R_ARM_THM_JUMP11: case R_ARM_THM_JUMP8: case R_ARM_TLS_GD32: case R_ARM_TLS_LDM32: case R_ARM_TLS_IE32: // Thease are all PC-relative relocations and don't require modification break; case R_ARM_THM_MOVW_ABS_NC: CoffAddFixup ( mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr), EFI_IMAGE_REL_BASED_ARM_MOV32T ); // PE/COFF treats MOVW/MOVT relocation as single 64-bit instruction // Track this address so we can log an error for unsupported sequence of MOVW/MOVT gMovwOffset = mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr); break; case R_ARM_THM_MOVT_ABS: if ((gMovwOffset + 4) != (mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr))) { Error (NULL, 0, 3000, "Not Supported", "PE/COFF requires MOVW+MOVT instruction sequence %x +4 != %x.", gMovwOffset, mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr)); } break; case R_ARM_ABS32: case R_ARM_RABS32: CoffAddFixup ( mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr), EFI_IMAGE_REL_BASED_HIGHLOW ); break; default: Error (NULL, 0, 3000, "Invalid", "WriteRelocations(): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info)); } } else { Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine); } } } } } if (!FoundRelocations && (mEhdr->e_machine == EM_ARM)) { /* Try again, but look for PT_DYNAMIC instead of SHT_REL */ for (Index = 0; Index < mEhdr->e_phnum; Index++) { RelElementSize = 0; RelSize = 0; RelOffset = 0; DynamicSegment = GetPhdrByIndex (Index); if (DynamicSegment->p_type == PT_DYNAMIC) { Dyn = (Elf32_Dyn *) ((UINT8 *)mEhdr + DynamicSegment->p_offset); while (Dyn->d_tag != DT_NULL) { switch (Dyn->d_tag) { case DT_REL: RelOffset = Dyn->d_un.d_val; break; case DT_RELSZ: RelSize = Dyn->d_un.d_val; break; case DT_RELENT: RelElementSize = Dyn->d_un.d_val; break; default: break; } Dyn++; } if (( RelOffset == 0 ) || ( RelSize == 0 ) || ( RelElementSize == 0 )) { Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations.", mInImageName); } for (Index = 0; Index < mEhdr->e_shnum; Index++) { Elf_Shdr *shdr = GetShdrByIndex(Index); // // The PT_DYNAMIC section contains DT_REL relocations whose r_offset // field is relative to the base of a segment (or the entire image), // and not to the base of an ELF input section as is the case for // SHT_REL sections. This means that we cannot fix up such relocations // unless we cross-reference ELF sections and segments, considering // that the output placement recorded in mCoffSectionsOffset[] is // section based, not segment based. // // Fortunately, there is a simple way around this: we require that the // in-memory layout of the ELF and PE/COFF versions of the binary is // identical. That way, r_offset will retain its validity as a PE/COFF // image offset, and we can record it in the COFF fixup table // unmodified. // if (shdr->sh_addr != mCoffSectionsOffset[Index]) { Error (NULL, 0, 3000, "Invalid", "%s: PT_DYNAMIC relocations require identical ELF and PE/COFF section offsets.", mInImageName); } } for (K = 0; K < RelSize; K += RelElementSize) { if (DynamicSegment->p_paddr == 0) { // Older versions of the ARM ELF (SWS ESPC 0003 B-02) specification define DT_REL // as an offset in the dynamic segment. p_paddr is defined to be zero for ARM tools Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + DynamicSegment->p_offset + RelOffset + K); } else { // This is how it reads in the generic ELF specification Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + RelOffset + K); } switch (ELF32_R_TYPE (Rel->r_info)) { case R_ARM_RBASE: break; case R_ARM_RABS32: CoffAddFixup (Rel->r_offset, EFI_IMAGE_REL_BASED_HIGHLOW); break; default: Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations, unknown type %d.", mInImageName, ELF32_R_TYPE (Rel->r_info)); break; } } break; } } } // // Pad by adding empty entries. // while (mCoffOffset & (mCoffAlignment - 1)) { CoffAddFixupEntry(0); } NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset); Dir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; Dir->Size = mCoffOffset - mRelocOffset; if (Dir->Size == 0) { // If no relocations, null out the directory entry and don't add the .reloc section Dir->VirtualAddress = 0; NtHdr->Pe32.FileHeader.NumberOfSections--; } else { Dir->VirtualAddress = mRelocOffset; CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_DISCARDABLE | EFI_IMAGE_SCN_MEM_READ); } } STATIC VOID WriteDebug32 ( VOID ) { UINT32 Len; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; EFI_IMAGE_DATA_DIRECTORY *DataDir; EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir; EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10; Len = strlen(mInImageName) + 1; Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset); Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW; Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len; Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1); Nb10->Signature = CODEVIEW_SIGNATURE_NB10; strcpy ((char *)(Nb10 + 1), mInImageName); NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset); DataDir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG]; DataDir->VirtualAddress = mDebugOffset; DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); } STATIC VOID SetImageSize32 ( VOID ) { EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; // // Set image size // NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset); NtHdr->Pe32.OptionalHeader.SizeOfImage = mCoffOffset; } STATIC VOID CleanUp32 ( VOID ) { if (mCoffSectionsOffset != NULL) { free (mCoffSectionsOffset); } }