/** @file Implement TPM2 Capability related command. Copyright (c) 2013, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #pragma pack(1) typedef struct { TPM2_COMMAND_HEADER Header; TPM_CAP Capability; UINT32 Property; UINT32 PropertyCount; } TPM2_GET_CAPABILITY_COMMAND; typedef struct { TPM2_RESPONSE_HEADER Header; TPMI_YES_NO MoreData; TPMS_CAPABILITY_DATA CapabilityData; } TPM2_GET_CAPABILITY_RESPONSE; typedef struct { TPM2_COMMAND_HEADER Header; TPMT_PUBLIC_PARMS Parameters; } TPM2_TEST_PARMS_COMMAND; typedef struct { TPM2_RESPONSE_HEADER Header; } TPM2_TEST_PARMS_RESPONSE; #pragma pack() /** This command returns various information regarding the TPM and its current state. The capability parameter determines the category of data returned. The property parameter selects the first value of the selected category to be returned. If there is no property that corresponds to the value of property, the next higher value is returned, if it exists. The moreData parameter will have a value of YES if there are more values of the requested type that were not returned. If no next capability exists, the TPM will return a zero-length list and moreData will have a value of NO. NOTE: To simplify this function, leave returned CapabilityData for caller to unpack since there are many capability categories and only few categories will be used in firmware. It means the caller need swap the byte order for the feilds in CapabilityData. @param[in] Capability Group selection; determines the format of the response. @param[in] Property Further definition of information. @param[in] PropertyCount Number of properties of the indicated type to return. @param[out] MoreData Flag to indicate if there are more values of this type. @param[out] CapabilityData The capability data. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapability ( IN TPM_CAP Capability, IN UINT32 Property, IN UINT32 PropertyCount, OUT TPMI_YES_NO *MoreData, OUT TPMS_CAPABILITY_DATA *CapabilityData ) { EFI_STATUS Status; TPM2_GET_CAPABILITY_COMMAND SendBuffer; TPM2_GET_CAPABILITY_RESPONSE RecvBuffer; UINT32 SendBufferSize; UINT32 RecvBufferSize; // // Construct command // SendBuffer.Header.tag = SwapBytes16(TPM_ST_NO_SESSIONS); SendBuffer.Header.commandCode = SwapBytes32(TPM_CC_GetCapability); SendBuffer.Capability = SwapBytes32 (Capability); SendBuffer.Property = SwapBytes32 (Property); SendBuffer.PropertyCount = SwapBytes32 (PropertyCount); SendBufferSize = (UINT32) sizeof (SendBuffer); SendBuffer.Header.paramSize = SwapBytes32 (SendBufferSize); // // send Tpm command // RecvBufferSize = sizeof (RecvBuffer); Status = Tpm2SubmitCommand (SendBufferSize, (UINT8 *)&SendBuffer, &RecvBufferSize, (UINT8 *)&RecvBuffer ); if (EFI_ERROR (Status)) { return Status; } if (RecvBufferSize <= sizeof (TPM2_RESPONSE_HEADER) + sizeof (UINT8)) { return EFI_DEVICE_ERROR; } // // Return the response // *MoreData = RecvBuffer.MoreData; // // Does not unpack all possiable property here, the caller should unpack it and note the byte order. // CopyMem (CapabilityData, &RecvBuffer.CapabilityData, RecvBufferSize - sizeof (TPM2_RESPONSE_HEADER) - sizeof (UINT8)); return EFI_SUCCESS; } /** This command returns the information of TPM Family. This function parse the value got from TPM2_GetCapability and return the Family. @param[out] Family The Family of TPM. (a 4-octet character string) @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityFamily ( OUT CHAR8 *Family ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_FAMILY_INDICATOR, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } CopyMem (Family, &TpmCap.data.tpmProperties.tpmProperty->value, 4); return EFI_SUCCESS; } /** This command returns the information of TPM manufacture ID. This function parse the value got from TPM2_GetCapability and return the TPM manufacture ID. @param[out] ManufactureId The manufacture ID of TPM. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityManufactureID ( OUT UINT32 *ManufactureId ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_MANUFACTURER, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *ManufactureId = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns the information of TPM FirmwareVersion. This function parse the value got from TPM2_GetCapability and return the TPM FirmwareVersion. @param[out] FirmwareVersion1 The FirmwareVersion1. @param[out] FirmwareVersion2 The FirmwareVersion2. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityFirmwareVersion ( OUT UINT32 *FirmwareVersion1, OUT UINT32 *FirmwareVersion2 ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_FIRMWARE_VERSION_1, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *FirmwareVersion1 = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_FIRMWARE_VERSION_2, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *FirmwareVersion2 = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns the information of the maximum value for commandSize and responseSize in a command. This function parse the value got from TPM2_GetCapability and return the max command size and response size @param[out] MaxCommandSize The maximum value for commandSize in a command. @param[out] MaxResponseSize The maximum value for responseSize in a command. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityMaxCommandResponseSize ( OUT UINT32 *MaxCommandSize, OUT UINT32 *MaxResponseSize ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_MAX_COMMAND_SIZE, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *MaxCommandSize = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_MAX_RESPONSE_SIZE, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *MaxResponseSize = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns Returns a list of TPMS_ALG_PROPERTIES. Each entry is an algorithm ID and a set of properties of the algorithm. This function parse the value got from TPM2_GetCapability and return the list. @param[out] AlgList List of algorithm. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilitySupportedAlg ( OUT TPML_ALG_PROPERTY *AlgList ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; UINTN Index; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_ALGS, 1, MAX_CAP_ALGS, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } CopyMem (AlgList, &TpmCap.data.algorithms, sizeof (TPML_ALG_PROPERTY)); AlgList->count = SwapBytes32 (AlgList->count); for (Index = 0; Index < AlgList->count; Index++) { AlgList->algProperties[Index].alg = SwapBytes16 (AlgList->algProperties[Index].alg); WriteUnaligned32 ((UINT32 *)&AlgList->algProperties[Index].algProperties, SwapBytes32 (ReadUnaligned32 ((UINT32 *)&AlgList->algProperties[Index].algProperties))); } return EFI_SUCCESS; } /** This command returns the information of TPM LockoutCounter. This function parse the value got from TPM2_GetCapability and return the LockoutCounter. @param[out] LockoutCounter The LockoutCounter of TPM. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityLockoutCounter ( OUT UINT32 *LockoutCounter ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_LOCKOUT_COUNTER, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *LockoutCounter = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns the information of TPM LockoutInterval. This function parse the value got from TPM2_GetCapability and return the LockoutInterval. @param[out] LockoutInterval The LockoutInterval of TPM. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityLockoutInterval ( OUT UINT32 *LockoutInterval ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_LOCKOUT_INTERVAL, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *LockoutInterval = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns the information of TPM InputBufferSize. This function parse the value got from TPM2_GetCapability and return the InputBufferSize. @param[out] InputBufferSize The InputBufferSize of TPM. the maximum size of a parameter (typically, a TPM2B_MAX_BUFFER) @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityInputBufferSize ( OUT UINT32 *InputBufferSize ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_INPUT_BUFFER, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *InputBufferSize = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command returns the information of TPM PCRs. This function parse the value got from TPM2_GetCapability and return the PcrSelection. @param[out] Pcrs The Pcr Selection @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityPcrs ( OUT TPML_PCR_SELECTION *Pcrs ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; UINTN Index; Status = Tpm2GetCapability ( TPM_CAP_PCRS, 0, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } Pcrs->count = SwapBytes32 (TpmCap.data.assignedPCR.count); for (Index = 0; Index < Pcrs->count; Index++) { Pcrs->pcrSelections[Index].hash = SwapBytes16 (TpmCap.data.assignedPCR.pcrSelections[Index].hash); Pcrs->pcrSelections[Index].sizeofSelect = TpmCap.data.assignedPCR.pcrSelections[Index].sizeofSelect; CopyMem (Pcrs->pcrSelections[Index].pcrSelect, TpmCap.data.assignedPCR.pcrSelections[Index].pcrSelect, Pcrs->pcrSelections[Index].sizeofSelect); } return EFI_SUCCESS; } /** This function will query the TPM to determine which hashing algorithms are supported and which PCR banks are currently active. @param[out] TpmHashAlgorithmBitmap A bitmask containing the algorithms supported by the TPM. @param[out] ActivePcrBanks A bitmask containing the PCRs currently allocated. @retval EFI_SUCCESS TPM was successfully queried and return values can be trusted. @retval Others An error occurred, likely in communication with the TPM. **/ EFI_STATUS EFIAPI Tpm2GetCapabilitySupportedAndActivePcrs ( OUT UINT32 *TpmHashAlgorithmBitmap, OUT UINT32 *ActivePcrBanks ) { EFI_STATUS Status; TPML_PCR_SELECTION Pcrs; UINTN Index; // // Get supported PCR and current Active PCRs. // Status = Tpm2GetCapabilityPcrs (&Pcrs); // // If error, assume that we have at least SHA-1 (and return the error.) // if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "GetSupportedAndActivePcrs - Tpm2GetCapabilityPcrs fail!\n")); *TpmHashAlgorithmBitmap = HASH_ALG_SHA1; *ActivePcrBanks = HASH_ALG_SHA1; } // // Otherwise, process the return data to determine what algorithms are supported // and currently allocated. // else { DEBUG ((EFI_D_INFO, "GetSupportedAndActivePcrs - Count = %08x\n", Pcrs.count)); *TpmHashAlgorithmBitmap = 0; *ActivePcrBanks = 0; for (Index = 0; Index < Pcrs.count; Index++) { switch (Pcrs.pcrSelections[Index].hash) { case TPM_ALG_SHA1: DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA1 present.\n")); *TpmHashAlgorithmBitmap |= HASH_ALG_SHA1; if (!IsZeroBuffer (Pcrs.pcrSelections[Index].pcrSelect, Pcrs.pcrSelections[Index].sizeofSelect)) { DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA1 active.\n")); *ActivePcrBanks |= HASH_ALG_SHA1; } break; case TPM_ALG_SHA256: DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA256 present.\n")); *TpmHashAlgorithmBitmap |= HASH_ALG_SHA256; if (!IsZeroBuffer (Pcrs.pcrSelections[Index].pcrSelect, Pcrs.pcrSelections[Index].sizeofSelect)) { DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA256 active.\n")); *ActivePcrBanks |= HASH_ALG_SHA256; } break; case TPM_ALG_SHA384: DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA384 present.\n")); *TpmHashAlgorithmBitmap |= HASH_ALG_SHA384; if (!IsZeroBuffer (Pcrs.pcrSelections[Index].pcrSelect, Pcrs.pcrSelections[Index].sizeofSelect)) { DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA384 active.\n")); *ActivePcrBanks |= HASH_ALG_SHA384; } break; case TPM_ALG_SHA512: DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA512 present.\n")); *TpmHashAlgorithmBitmap |= HASH_ALG_SHA512; if (!IsZeroBuffer (Pcrs.pcrSelections[Index].pcrSelect, Pcrs.pcrSelections[Index].sizeofSelect)) { DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SHA512 active.\n")); *ActivePcrBanks |= HASH_ALG_SHA512; } break; case TPM_ALG_SM3_256: DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SM3_256 present.\n")); *TpmHashAlgorithmBitmap |= HASH_ALG_SM3_256; if (!IsZeroBuffer (Pcrs.pcrSelections[Index].pcrSelect, Pcrs.pcrSelections[Index].sizeofSelect)) { DEBUG ((EFI_D_VERBOSE, "GetSupportedAndActivePcrs - HASH_ALG_SM3_256 active.\n")); *ActivePcrBanks |= HASH_ALG_SM3_256; } break; } } } return Status; } /** This command returns the information of TPM AlgorithmSet. This function parse the value got from TPM2_GetCapability and return the AlgorithmSet. @param[out] AlgorithmSet The AlgorithmSet of TPM. @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR The command was unsuccessful. **/ EFI_STATUS EFIAPI Tpm2GetCapabilityAlgorithmSet ( OUT UINT32 *AlgorithmSet ) { TPMS_CAPABILITY_DATA TpmCap; TPMI_YES_NO MoreData; EFI_STATUS Status; Status = Tpm2GetCapability ( TPM_CAP_TPM_PROPERTIES, TPM_PT_ALGORITHM_SET, 1, &MoreData, &TpmCap ); if (EFI_ERROR (Status)) { return Status; } *AlgorithmSet = SwapBytes32 (TpmCap.data.tpmProperties.tpmProperty->value); return EFI_SUCCESS; } /** This command is used to check to see if specific combinations of algorithm parameters are supported. @param[in] Parameters Algorithm parameters to be validated @retval EFI_SUCCESS Operation completed successfully. @retval EFI_DEVICE_ERROR Unexpected device behavior. **/ EFI_STATUS EFIAPI Tpm2TestParms ( IN TPMT_PUBLIC_PARMS *Parameters ) { EFI_STATUS Status; TPM2_TEST_PARMS_COMMAND SendBuffer; TPM2_TEST_PARMS_RESPONSE RecvBuffer; UINT32 SendBufferSize; UINT32 RecvBufferSize; UINT8 *Buffer; // // Construct command // SendBuffer.Header.tag = SwapBytes16(TPM_ST_NO_SESSIONS); SendBuffer.Header.commandCode = SwapBytes32(TPM_CC_TestParms); Buffer = (UINT8 *)&SendBuffer.Parameters; WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->type)); Buffer += sizeof(UINT16); switch (Parameters->type) { case TPM_ALG_KEYEDHASH: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.keyedHashDetail.scheme.scheme)); Buffer += sizeof(UINT16); switch (Parameters->parameters.keyedHashDetail.scheme.scheme) { case TPM_ALG_HMAC: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.keyedHashDetail.scheme.details.hmac.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_XOR: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.keyedHashDetail.scheme.details.xor.hashAlg)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.keyedHashDetail.scheme.details.xor.kdf)); Buffer += sizeof(UINT16); break; default: return EFI_INVALID_PARAMETER; } case TPM_ALG_SYMCIPHER: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.algorithm)); Buffer += sizeof(UINT16); switch (Parameters->parameters.symDetail.algorithm) { case TPM_ALG_AES: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.keyBits.aes)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.mode.aes)); Buffer += sizeof(UINT16); break; case TPM_ALG_SM4: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.keyBits.SM4)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.mode.SM4)); Buffer += sizeof(UINT16); break; case TPM_ALG_XOR: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.symDetail.keyBits.xor)); Buffer += sizeof(UINT16); break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } break; case TPM_ALG_RSA: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.symmetric.algorithm)); Buffer += sizeof(UINT16); switch (Parameters->parameters.rsaDetail.symmetric.algorithm) { case TPM_ALG_AES: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.symmetric.keyBits.aes)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.symmetric.mode.aes)); Buffer += sizeof(UINT16); break; case TPM_ALG_SM4: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.symmetric.keyBits.SM4)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.symmetric.mode.SM4)); Buffer += sizeof(UINT16); break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.scheme.scheme)); Buffer += sizeof(UINT16); switch (Parameters->parameters.rsaDetail.scheme.scheme) { case TPM_ALG_RSASSA: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.scheme.details.rsassa.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_RSAPSS: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.scheme.details.rsapss.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_RSAES: break; case TPM_ALG_OAEP: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.scheme.details.oaep.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.rsaDetail.keyBits)); Buffer += sizeof(UINT16); WriteUnaligned32 ((UINT32 *)Buffer, SwapBytes32 (Parameters->parameters.rsaDetail.exponent)); Buffer += sizeof(UINT32); break; case TPM_ALG_ECC: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.symmetric.algorithm)); Buffer += sizeof(UINT16); switch (Parameters->parameters.eccDetail.symmetric.algorithm) { case TPM_ALG_AES: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.symmetric.keyBits.aes)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.symmetric.mode.aes)); Buffer += sizeof(UINT16); break; case TPM_ALG_SM4: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.symmetric.keyBits.SM4)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.symmetric.mode.SM4)); Buffer += sizeof(UINT16); break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.scheme.scheme)); Buffer += sizeof(UINT16); switch (Parameters->parameters.eccDetail.scheme.scheme) { case TPM_ALG_ECDSA: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.scheme.details.ecdsa.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_ECDAA: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.scheme.details.ecdaa.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_ECSCHNORR: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.scheme.details.ecSchnorr.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_ECDH: break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.curveID)); Buffer += sizeof(UINT16); WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.kdf.scheme)); Buffer += sizeof(UINT16); switch (Parameters->parameters.eccDetail.kdf.scheme) { case TPM_ALG_MGF1: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.kdf.details.mgf1.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_KDF1_SP800_108: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.kdf.details.kdf1_sp800_108.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_KDF1_SP800_56a: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.kdf.details.kdf1_SP800_56a.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_KDF2: WriteUnaligned16 ((UINT16 *)Buffer, SwapBytes16 (Parameters->parameters.eccDetail.kdf.details.kdf2.hashAlg)); Buffer += sizeof(UINT16); break; case TPM_ALG_NULL: break; default: return EFI_INVALID_PARAMETER; } break; default: return EFI_INVALID_PARAMETER; } SendBufferSize = (UINT32)((UINTN)Buffer - (UINTN)&SendBuffer); SendBuffer.Header.paramSize = SwapBytes32 (SendBufferSize); // // send Tpm command // RecvBufferSize = sizeof (RecvBuffer); Status = Tpm2SubmitCommand (SendBufferSize, (UINT8 *)&SendBuffer, &RecvBufferSize, (UINT8 *)&RecvBuffer); if (EFI_ERROR (Status)) { return Status; } if (RecvBufferSize < sizeof (TPM2_RESPONSE_HEADER)) { DEBUG ((EFI_D_ERROR, "Tpm2TestParms - RecvBufferSize Error - %x\n", RecvBufferSize)); return EFI_DEVICE_ERROR; } if (SwapBytes32(RecvBuffer.Header.responseCode) != TPM_RC_SUCCESS) { DEBUG ((EFI_D_ERROR, "Tpm2TestParms - responseCode - %x\n", SwapBytes32(RecvBuffer.Header.responseCode))); return EFI_UNSUPPORTED; } return EFI_SUCCESS; }