/** @file UncachedMemoryAllocation lib that uses DXE Service to change cachability for a buffer. Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.
Copyright (c) 2014, AMR Ltd. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include #include #include VOID * UncachedInternalAllocatePages ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages ); VOID * UncachedInternalAllocateAlignedPages ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages, IN UINTN Alignment ); // // Assume all of memory has the same cache attributes, unless we do our magic // UINT64 gAttributes; typedef struct { EFI_PHYSICAL_ADDRESS Base; VOID *Allocation; UINTN Pages; EFI_MEMORY_TYPE MemoryType; BOOLEAN Allocated; LIST_ENTRY Link; } FREE_PAGE_NODE; STATIC LIST_ENTRY mPageList = INITIALIZE_LIST_HEAD_VARIABLE (mPageList); // Track the size of the non-allocated buffer in the linked-list STATIC UINTN mFreedBufferSize = 0; /** * This function firstly checks if the requested allocation can fit into one * of the previously allocated buffer. * If the requested allocation does not fit in the existing pool then * the function makes a new allocation. * * @param MemoryType Type of memory requested for the new allocation * @param Pages Number of requested page * @param Alignment Required alignment * @param Allocation Address of the newly allocated buffer * * @return EFI_SUCCESS If the function manage to allocate a buffer * @return !EFI_SUCCESS If the function did not manage to allocate a buffer */ STATIC EFI_STATUS AllocatePagesFromList ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages, IN UINTN Alignment, OUT VOID **Allocation ) { EFI_STATUS Status; LIST_ENTRY *Link; FREE_PAGE_NODE *Node; FREE_PAGE_NODE *NewNode; UINTN AlignmentMask; EFI_PHYSICAL_ADDRESS Memory; EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor; // Alignment must be a power of two or zero. ASSERT ((Alignment & (Alignment - 1)) == 0); // // Look in our list for the smallest page that could satisfy the new allocation // NewNode = NULL; for (Link = mPageList.ForwardLink; Link != &mPageList; Link = Link->ForwardLink) { Node = BASE_CR (Link, FREE_PAGE_NODE, Link); if ((Node->Allocated == FALSE) && (Node->MemoryType == MemoryType)) { // We have a node that fits our requirements if (((UINTN)Node->Base & (Alignment - 1)) == 0) { // We found a page that matches the page size if (Node->Pages == Pages) { Node->Allocated = TRUE; Node->Allocation = (VOID*)(UINTN)Node->Base; *Allocation = Node->Allocation; // Update the size of the freed buffer mFreedBufferSize -= Pages * EFI_PAGE_SIZE; return EFI_SUCCESS; } else if (Node->Pages > Pages) { if (NewNode == NULL) { // It is the first node that could contain our new allocation NewNode = Node; } else if (NewNode->Pages > Node->Pages) { // This node offers a smaller number of page. NewNode = Node; } } } } } // Check if we have found a node that could contain our new allocation if (NewNode != NULL) { NewNode->Allocated = TRUE; NewNode->Allocation = (VOID*)(UINTN)NewNode->Base; *Allocation = NewNode->Allocation; mFreedBufferSize -= NewNode->Pages * EFI_PAGE_SIZE; return EFI_SUCCESS; } // // Otherwise, we need to allocate a new buffer // // We do not want to over-allocate in case the alignment requirement does not // require extra pages if (Alignment > EFI_PAGE_SIZE) { AlignmentMask = Alignment - 1; Pages += EFI_SIZE_TO_PAGES (Alignment); } else { AlignmentMask = 0; } Status = gBS->AllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory); if (EFI_ERROR (Status)) { return Status; } Status = gDS->GetMemorySpaceDescriptor (Memory, &Descriptor); if (!EFI_ERROR (Status)) { // We are making an assumption that all of memory has the same default attributes gAttributes = Descriptor.Attributes; } else { gBS->FreePages (Memory, Pages); return Status; } Status = gDS->SetMemorySpaceAttributes (Memory, EFI_PAGES_TO_SIZE (Pages), EFI_MEMORY_WC); if (EFI_ERROR (Status)) { gBS->FreePages (Memory, Pages); return Status; } NewNode = AllocatePool (sizeof (FREE_PAGE_NODE)); if (NewNode == NULL) { ASSERT (FALSE); gBS->FreePages (Memory, Pages); return EFI_OUT_OF_RESOURCES; } NewNode->Base = Memory; NewNode->Allocation = (VOID*)(((UINTN)Memory + AlignmentMask) & ~AlignmentMask); NewNode->Pages = Pages; NewNode->Allocated = TRUE; NewNode->MemoryType = MemoryType; InsertTailList (&mPageList, &NewNode->Link); *Allocation = NewNode->Allocation; return EFI_SUCCESS; } /** * Free the memory allocation * * This function will actually try to find the allocation in the linked list. * And it will then mark the entry as freed. * * @param Allocation Base address of the buffer to free * * @return EFI_SUCCESS The allocation has been freed * @return EFI_NOT_FOUND The allocation was not found in the pool. * @return EFI_INVALID_PARAMETER If Allocation is NULL * */ STATIC EFI_STATUS FreePagesFromList ( IN VOID *Allocation ) { LIST_ENTRY *Link; FREE_PAGE_NODE *Node; if (Allocation == NULL) { return EFI_INVALID_PARAMETER; } for (Link = mPageList.ForwardLink; Link != &mPageList; Link = Link->ForwardLink) { Node = BASE_CR (Link, FREE_PAGE_NODE, Link); if ((UINTN)Node->Allocation == (UINTN)Allocation) { Node->Allocated = FALSE; // Update the size of the freed buffer mFreedBufferSize += Node->Pages * EFI_PAGE_SIZE; // If the size of the non-allocated reaches the threshold we raise a warning. // It might be an expected behaviour in some cases. // We might device to free some of these buffers later on. if (mFreedBufferSize > PcdGet64 (PcdArmFreeUncachedMemorySizeThreshold)) { DEBUG ((EFI_D_WARN, "Warning: The list of non-allocated buffer has reach the threshold.\n")); } return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** * This function is automatically invoked when the driver exits * It frees all the non-allocated memory buffer. * This function is not responsible to free allocated buffer (eg: case of memory leak, * runtime allocation). */ EFI_STATUS EFIAPI UncachedMemoryAllocationLibDestructor ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { LIST_ENTRY *Link; FREE_PAGE_NODE *OldNode; // Test if the list is empty Link = mPageList.ForwardLink; if (Link == &mPageList) { return EFI_SUCCESS; } // Free all the pages and nodes do { OldNode = BASE_CR (Link, FREE_PAGE_NODE, Link); // Point to the next entry Link = Link->ForwardLink; // We only free the non-allocated buffer if (OldNode->Allocated == FALSE) { gBS->FreePages ((EFI_PHYSICAL_ADDRESS)(UINTN)OldNode->Base, OldNode->Pages); RemoveEntryList (&OldNode->Link); FreePool (OldNode); } } while (Link != &mPageList); return EFI_SUCCESS; } /** Converts a cached or uncached address to a physical address suitable for use in SoC registers. @param VirtualAddress The pointer to convert. @return The physical address of the supplied virtual pointer. **/ EFI_PHYSICAL_ADDRESS ConvertToPhysicalAddress ( IN VOID *VirtualAddress ) { return (EFI_PHYSICAL_ADDRESS)(UINTN)VirtualAddress; } VOID * UncachedInternalAllocatePages ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages ) { return UncachedInternalAllocateAlignedPages (MemoryType, Pages, EFI_PAGE_SIZE); } VOID * EFIAPI UncachedAllocatePages ( IN UINTN Pages ) { return UncachedInternalAllocatePages (EfiBootServicesData, Pages); } VOID * EFIAPI UncachedAllocateRuntimePages ( IN UINTN Pages ) { return UncachedInternalAllocatePages (EfiRuntimeServicesData, Pages); } VOID * EFIAPI UncachedAllocateReservedPages ( IN UINTN Pages ) { return UncachedInternalAllocatePages (EfiReservedMemoryType, Pages); } VOID EFIAPI UncachedFreePages ( IN VOID *Buffer, IN UINTN Pages ) { UncachedFreeAlignedPages (Buffer, Pages); return; } VOID * UncachedInternalAllocateAlignedPages ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages, IN UINTN Alignment ) { EFI_STATUS Status; VOID *Allocation; if (Pages == 0) { return NULL; } Allocation = NULL; Status = AllocatePagesFromList (MemoryType, Pages, Alignment, &Allocation); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return NULL; } else { return Allocation; } } VOID EFIAPI UncachedFreeAlignedPages ( IN VOID *Buffer, IN UINTN Pages ) { FreePagesFromList (Buffer); } VOID * UncachedInternalAllocateAlignedPool ( IN EFI_MEMORY_TYPE PoolType, IN UINTN AllocationSize, IN UINTN Alignment ) { VOID *AlignedAddress; // // Alignment must be a power of two or zero. // ASSERT ((Alignment & (Alignment - 1)) == 0); if (Alignment < EFI_PAGE_SIZE) { Alignment = EFI_PAGE_SIZE; } AlignedAddress = UncachedInternalAllocateAlignedPages (PoolType, EFI_SIZE_TO_PAGES (AllocationSize), Alignment); if (AlignedAddress == NULL) { return NULL; } return (VOID *) AlignedAddress; } VOID * EFIAPI UncachedAllocateAlignedPool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedPool (EfiBootServicesData, AllocationSize, Alignment); } VOID * EFIAPI UncachedAllocateAlignedRuntimePool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedPool (EfiRuntimeServicesData, AllocationSize, Alignment); } VOID * EFIAPI UncachedAllocateAlignedReservedPool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedPool (EfiReservedMemoryType, AllocationSize, Alignment); } VOID * UncachedInternalAllocateAlignedZeroPool ( IN EFI_MEMORY_TYPE PoolType, IN UINTN AllocationSize, IN UINTN Alignment ) { VOID *Memory; Memory = UncachedInternalAllocateAlignedPool (PoolType, AllocationSize, Alignment); if (Memory != NULL) { Memory = ZeroMem (Memory, AllocationSize); } return Memory; } VOID * EFIAPI UncachedAllocateAlignedZeroPool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedZeroPool (EfiBootServicesData, AllocationSize, Alignment); } VOID * EFIAPI UncachedAllocateAlignedRuntimeZeroPool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedZeroPool (EfiRuntimeServicesData, AllocationSize, Alignment); } VOID * EFIAPI UncachedAllocateAlignedReservedZeroPool ( IN UINTN AllocationSize, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedZeroPool (EfiReservedMemoryType, AllocationSize, Alignment); } VOID * UncachedInternalAllocateAlignedCopyPool ( IN EFI_MEMORY_TYPE PoolType, IN UINTN AllocationSize, IN CONST VOID *Buffer, IN UINTN Alignment ) { VOID *Memory; ASSERT (Buffer != NULL); ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1)); Memory = UncachedInternalAllocateAlignedPool (PoolType, AllocationSize, Alignment); if (Memory != NULL) { Memory = CopyMem (Memory, Buffer, AllocationSize); } return Memory; } VOID * EFIAPI UncachedAllocateAlignedCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedCopyPool (EfiBootServicesData, AllocationSize, Buffer, Alignment); } VOID * EFIAPI UncachedAllocateAlignedRuntimeCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer, Alignment); } VOID * EFIAPI UncachedAllocateAlignedReservedCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer, IN UINTN Alignment ) { return UncachedInternalAllocateAlignedCopyPool (EfiReservedMemoryType, AllocationSize, Buffer, Alignment); } VOID EFIAPI UncachedFreeAlignedPool ( IN VOID *Allocation ) { UncachedFreePages (Allocation, 0); } VOID * UncachedInternalAllocatePool ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN AllocationSize ) { UINTN CacheLineLength = ArmDataCacheLineLength (); return UncachedInternalAllocateAlignedPool (MemoryType, AllocationSize, CacheLineLength); } VOID * EFIAPI UncachedAllocatePool ( IN UINTN AllocationSize ) { return UncachedInternalAllocatePool (EfiBootServicesData, AllocationSize); } VOID * EFIAPI UncachedAllocateRuntimePool ( IN UINTN AllocationSize ) { return UncachedInternalAllocatePool (EfiRuntimeServicesData, AllocationSize); } VOID * EFIAPI UncachedAllocateReservedPool ( IN UINTN AllocationSize ) { return UncachedInternalAllocatePool (EfiReservedMemoryType, AllocationSize); } VOID * UncachedInternalAllocateZeroPool ( IN EFI_MEMORY_TYPE PoolType, IN UINTN AllocationSize ) { VOID *Memory; Memory = UncachedInternalAllocatePool (PoolType, AllocationSize); if (Memory != NULL) { Memory = ZeroMem (Memory, AllocationSize); } return Memory; } VOID * EFIAPI UncachedAllocateZeroPool ( IN UINTN AllocationSize ) { return UncachedInternalAllocateZeroPool (EfiBootServicesData, AllocationSize); } VOID * EFIAPI UncachedAllocateRuntimeZeroPool ( IN UINTN AllocationSize ) { return UncachedInternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize); } VOID * EFIAPI UncachedAllocateReservedZeroPool ( IN UINTN AllocationSize ) { return UncachedInternalAllocateZeroPool (EfiReservedMemoryType, AllocationSize); } VOID * UncachedInternalAllocateCopyPool ( IN EFI_MEMORY_TYPE PoolType, IN UINTN AllocationSize, IN CONST VOID *Buffer ) { VOID *Memory; ASSERT (Buffer != NULL); ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1)); Memory = UncachedInternalAllocatePool (PoolType, AllocationSize); if (Memory != NULL) { Memory = CopyMem (Memory, Buffer, AllocationSize); } return Memory; } VOID * EFIAPI UncachedAllocateCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer ) { return UncachedInternalAllocateCopyPool (EfiBootServicesData, AllocationSize, Buffer); } VOID * EFIAPI UncachedAllocateRuntimeCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer ) { return UncachedInternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer); } VOID * EFIAPI UncachedAllocateReservedCopyPool ( IN UINTN AllocationSize, IN CONST VOID *Buffer ) { return UncachedInternalAllocateCopyPool (EfiReservedMemoryType, AllocationSize, Buffer); } VOID EFIAPI UncachedFreePool ( IN VOID *Buffer ) { UncachedFreeAlignedPool (Buffer); } VOID EFIAPI UncachedSafeFreePool ( IN VOID *Buffer ) { if (Buffer != NULL) { UncachedFreePool (Buffer); Buffer = NULL; } }