/** @file NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows NVM Express specification. Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "NvmExpress.h" #define NVME_SHUTDOWN_PROCESS_TIMEOUT 45 // // The number of NVME controllers managed by this driver, used by // NvmeRegisterShutdownNotification() and NvmeUnregisterShutdownNotification(). // UINTN mNvmeControllerNumber = 0; /** Read Nvm Express controller capability register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cap The buffer used to store capability register content. @return EFI_SUCCESS Successfully read the controller capability register content. @return EFI_DEVICE_ERROR Fail to read the controller capability register. **/ EFI_STATUS ReadNvmeControllerCapabilities ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CAP *Cap ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CAP_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned64 ((UINT64*)Cap, Data); return EFI_SUCCESS; } /** Read Nvm Express controller configuration register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cc The buffer used to store configuration register content. @return EFI_SUCCESS Successfully read the controller configuration register content. @return EFI_DEVICE_ERROR Fail to read the controller configuration register. **/ EFI_STATUS ReadNvmeControllerConfiguration ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CC *Cc ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CC_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned32 ((UINT32*)Cc, Data); return EFI_SUCCESS; } /** Write Nvm Express controller configuration register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cc The buffer used to store the content to be written into configuration register. @return EFI_SUCCESS Successfully write data into the controller configuration register. @return EFI_DEVICE_ERROR Fail to write data into the controller configuration register. **/ EFI_STATUS WriteNvmeControllerConfiguration ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CC *Cc ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Data = ReadUnaligned32 ((UINT32*)Cc); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CC_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((EFI_D_INFO, "Cc.En: %d\n", Cc->En)); DEBUG ((EFI_D_INFO, "Cc.Css: %d\n", Cc->Css)); DEBUG ((EFI_D_INFO, "Cc.Mps: %d\n", Cc->Mps)); DEBUG ((EFI_D_INFO, "Cc.Ams: %d\n", Cc->Ams)); DEBUG ((EFI_D_INFO, "Cc.Shn: %d\n", Cc->Shn)); DEBUG ((EFI_D_INFO, "Cc.Iosqes: %d\n", Cc->Iosqes)); DEBUG ((EFI_D_INFO, "Cc.Iocqes: %d\n", Cc->Iocqes)); return EFI_SUCCESS; } /** Read Nvm Express controller status register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Csts The buffer used to store status register content. @return EFI_SUCCESS Successfully read the controller status register content. @return EFI_DEVICE_ERROR Fail to read the controller status register. **/ EFI_STATUS ReadNvmeControllerStatus ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CSTS *Csts ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CSTS_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned32 ((UINT32*)Csts, Data); return EFI_SUCCESS; } /** Read Nvm Express admin queue attributes register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Aqa The buffer used to store admin queue attributes register content. @return EFI_SUCCESS Successfully read the admin queue attributes register content. @return EFI_DEVICE_ERROR Fail to read the admin queue attributes register. **/ EFI_STATUS ReadNvmeAdminQueueAttributes ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_AQA *Aqa ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_AQA_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned32 ((UINT32*)Aqa, Data); return EFI_SUCCESS; } /** Write Nvm Express admin queue attributes register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Aqa The buffer used to store the content to be written into admin queue attributes register. @return EFI_SUCCESS Successfully write data into the admin queue attributes register. @return EFI_DEVICE_ERROR Fail to write data into the admin queue attributes register. **/ EFI_STATUS WriteNvmeAdminQueueAttributes ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_AQA *Aqa ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Data = ReadUnaligned32 ((UINT32*)Aqa); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_AQA_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((EFI_D_INFO, "Aqa.Asqs: %d\n", Aqa->Asqs)); DEBUG ((EFI_D_INFO, "Aqa.Acqs: %d\n", Aqa->Acqs)); return EFI_SUCCESS; } /** Read Nvm Express admin submission queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Asq The buffer used to store admin submission queue base address register content. @return EFI_SUCCESS Successfully read the admin submission queue base address register content. @return EFI_DEVICE_ERROR Fail to read the admin submission queue base address register. **/ EFI_STATUS ReadNvmeAdminSubmissionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ASQ *Asq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ASQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned64 ((UINT64*)Asq, Data); return EFI_SUCCESS; } /** Write Nvm Express admin submission queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Asq The buffer used to store the content to be written into admin submission queue base address register. @return EFI_SUCCESS Successfully write data into the admin submission queue base address register. @return EFI_DEVICE_ERROR Fail to write data into the admin submission queue base address register. **/ EFI_STATUS WriteNvmeAdminSubmissionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ASQ *Asq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Data = ReadUnaligned64 ((UINT64*)Asq); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ASQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((EFI_D_INFO, "Asq: %lx\n", *Asq)); return EFI_SUCCESS; } /** Read Nvm Express admin completion queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Acq The buffer used to store admin completion queue base address register content. @return EFI_SUCCESS Successfully read the admin completion queue base address register content. @return EFI_DEVICE_ERROR Fail to read the admin completion queue base address register. **/ EFI_STATUS ReadNvmeAdminCompletionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ACQ *Acq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ACQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned64 ((UINT64*)Acq, Data); return EFI_SUCCESS; } /** Write Nvm Express admin completion queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Acq The buffer used to store the content to be written into admin completion queue base address register. @return EFI_SUCCESS Successfully write data into the admin completion queue base address register. @return EFI_DEVICE_ERROR Fail to write data into the admin completion queue base address register. **/ EFI_STATUS WriteNvmeAdminCompletionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ACQ *Acq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Data = ReadUnaligned64 ((UINT64*)Acq); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ACQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((EFI_D_INFO, "Acq: %lxh\n", *Acq)); return EFI_SUCCESS; } /** Disable the Nvm Express controller. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully disable the controller. @return EFI_DEVICE_ERROR Fail to disable the controller. **/ EFI_STATUS NvmeDisableController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINT8 Timeout; // // Read Controller Configuration Register. // Status = ReadNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } Cc.En = 0; // // Disable the controller. // Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } // // Cap.To specifies max delay time in 500ms increments for Csts.Rdy to transition from 1 to 0 after // Cc.Enable transition from 1 to 0. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To. // if (Private->Cap.To == 0) { Timeout = 1; } else { Timeout = Private->Cap.To; } for(Index = (Timeout * 500); Index != 0; --Index) { gBS->Stall(1000); // // Check if the controller is initialized // Status = ReadNvmeControllerStatus (Private, &Csts); if (EFI_ERROR(Status)) { return Status; } if (Csts.Rdy == 0) { break; } } if (Index == 0) { Status = EFI_DEVICE_ERROR; } DEBUG ((EFI_D_INFO, "NVMe controller is disabled with status [%r].\n", Status)); return Status; } /** Enable the Nvm Express controller. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully enable the controller. @return EFI_DEVICE_ERROR Fail to enable the controller. @return EFI_TIMEOUT Fail to enable the controller in given time slot. **/ EFI_STATUS NvmeEnableController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINT8 Timeout; // // Enable the controller. // CC.AMS, CC.MPS and CC.CSS are all set to 0. // ZeroMem (&Cc, sizeof (NVME_CC)); Cc.En = 1; Cc.Iosqes = 6; Cc.Iocqes = 4; Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } // // Cap.To specifies max delay time in 500ms increments for Csts.Rdy to set after // Cc.Enable. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To. // if (Private->Cap.To == 0) { Timeout = 1; } else { Timeout = Private->Cap.To; } for(Index = (Timeout * 500); Index != 0; --Index) { gBS->Stall(1000); // // Check if the controller is initialized // Status = ReadNvmeControllerStatus (Private, &Csts); if (EFI_ERROR(Status)) { return Status; } if (Csts.Rdy) { break; } } if (Index == 0) { Status = EFI_TIMEOUT; } DEBUG ((EFI_D_INFO, "NVMe controller is enabled with status [%r].\n", Status)); return Status; } /** Get identify controller data. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Buffer The buffer used to store the identify controller data. @return EFI_SUCCESS Successfully get the identify controller data. @return EFI_DEVICE_ERROR Fail to get the identify controller data. **/ EFI_STATUS NvmeIdentifyController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN VOID *Buffer ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD; // // According to Nvm Express 1.1 spec Figure 38, When not used, the field shall be cleared to 0h. // For the Identify command, the Namespace Identifier is only used for the Namespace data structure. // Command.Nsid = 0; CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_CONTROLLER_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a controller // Command.Cdw10 = 1; Command.Flags = CDW10_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, NVME_CONTROLLER_ID, &CommandPacket, NULL ); return Status; } /** Get specified identify namespace data. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param NamespaceId The specified namespace identifier. @param Buffer The buffer used to store the identify namespace data. @return EFI_SUCCESS Successfully get the identify namespace data. @return EFI_DEVICE_ERROR Fail to get the identify namespace data. **/ EFI_STATUS NvmeIdentifyNamespace ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN UINT32 NamespaceId, IN VOID *Buffer ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD; Command.Nsid = NamespaceId; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_NAMESPACE_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a namespace // CommandPacket.NvmeCmd->Cdw10 = 0; CommandPacket.NvmeCmd->Flags = CDW10_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, NamespaceId, &CommandPacket, NULL ); return Status; } /** Create io completion queue. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully create io completion queue. @return EFI_DEVICE_ERROR Fail to create io completion queue. **/ EFI_STATUS NvmeCreateIoCompletionQueue ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; NVME_ADMIN_CRIOCQ CrIoCq; UINT32 Index; UINT16 QueueSize; Status = EFI_SUCCESS; for (Index = 1; Index < NVME_MAX_QUEUES; Index++) { ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); ZeroMem (&CrIoCq, sizeof(NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_CRIOCQ_CMD; CommandPacket.TransferBuffer = Private->CqBufferPciAddr[Index]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; if (Index == 1) { QueueSize = NVME_CCQ_SIZE; } else { if (Private->Cap.Mqes > NVME_ASYNC_CCQ_SIZE) { QueueSize = NVME_ASYNC_CCQ_SIZE; } else { QueueSize = Private->Cap.Mqes; } } CrIoCq.Qid = Index; CrIoCq.Qsize = QueueSize; CrIoCq.Pc = 1; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoCq, sizeof (NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, 0, &CommandPacket, NULL ); if (EFI_ERROR (Status)) { break; } } return Status; } /** Create io submission queue. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully create io submission queue. @return EFI_DEVICE_ERROR Fail to create io submission queue. **/ EFI_STATUS NvmeCreateIoSubmissionQueue ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; NVME_ADMIN_CRIOSQ CrIoSq; UINT32 Index; UINT16 QueueSize; Status = EFI_SUCCESS; for (Index = 1; Index < NVME_MAX_QUEUES; Index++) { ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); ZeroMem (&CrIoSq, sizeof(NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_CRIOSQ_CMD; CommandPacket.TransferBuffer = Private->SqBufferPciAddr[Index]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; if (Index == 1) { QueueSize = NVME_CSQ_SIZE; } else { if (Private->Cap.Mqes > NVME_ASYNC_CSQ_SIZE) { QueueSize = NVME_ASYNC_CSQ_SIZE; } else { QueueSize = Private->Cap.Mqes; } } CrIoSq.Qid = Index; CrIoSq.Qsize = QueueSize; CrIoSq.Pc = 1; CrIoSq.Cqid = Index; CrIoSq.Qprio = 0; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoSq, sizeof (NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, 0, &CommandPacket, NULL ); if (EFI_ERROR (Status)) { break; } } return Status; } /** Initialize the Nvm Express controller. @param[in] Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @retval EFI_SUCCESS The NVM Express Controller is initialized successfully. @retval Others A device error occurred while initializing the controller. **/ EFI_STATUS NvmeControllerInit ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_STATUS Status; EFI_PCI_IO_PROTOCOL *PciIo; UINT64 Supports; NVME_AQA Aqa; NVME_ASQ Asq; NVME_ACQ Acq; UINT8 Sn[21]; UINT8 Mn[41]; // // Save original PCI attributes and enable this controller. // PciIo = Private->PciIo; Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationGet, 0, &Private->PciAttributes ); if (EFI_ERROR (Status)) { return Status; } Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationSupported, 0, &Supports ); if (!EFI_ERROR (Status)) { Supports &= (UINT64)EFI_PCI_DEVICE_ENABLE; Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationEnable, Supports, NULL ); } if (EFI_ERROR (Status)) { DEBUG ((EFI_D_INFO, "NvmeControllerInit: failed to enable controller\n")); return Status; } // // Enable 64-bit DMA support in the PCI layer. // Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationEnable, EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE, NULL ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "NvmeControllerInit: failed to enable 64-bit DMA (%r)\n", Status)); } // // Read the Controller Capabilities register and verify that the NVM command set is supported // Status = ReadNvmeControllerCapabilities (Private, &Private->Cap); if (EFI_ERROR (Status)) { return Status; } if (Private->Cap.Css != 0x01) { DEBUG ((EFI_D_INFO, "NvmeControllerInit: the controller doesn't support NVMe command set\n")); return EFI_UNSUPPORTED; } // // Currently the driver only supports 4k page size. // ASSERT ((Private->Cap.Mpsmin + 12) <= EFI_PAGE_SHIFT); Private->Cid[0] = 0; Private->Cid[1] = 0; Private->Cid[2] = 0; Private->Pt[0] = 0; Private->Pt[1] = 0; Private->Pt[2] = 0; Private->SqTdbl[0].Sqt = 0; Private->SqTdbl[1].Sqt = 0; Private->SqTdbl[2].Sqt = 0; Private->CqHdbl[0].Cqh = 0; Private->CqHdbl[1].Cqh = 0; Private->CqHdbl[2].Cqh = 0; Private->AsyncSqHead = 0; Status = NvmeDisableController (Private); if (EFI_ERROR(Status)) { return Status; } // // set number of entries admin submission & completion queues. // Aqa.Asqs = NVME_ASQ_SIZE; Aqa.Rsvd1 = 0; Aqa.Acqs = NVME_ACQ_SIZE; Aqa.Rsvd2 = 0; // // Address of admin submission queue. // Asq = (UINT64)(UINTN)(Private->BufferPciAddr) & ~0xFFF; // // Address of admin completion queue. // Acq = (UINT64)(UINTN)(Private->BufferPciAddr + EFI_PAGE_SIZE) & ~0xFFF; // // Address of I/O submission & completion queue. // ZeroMem (Private->Buffer, EFI_PAGES_TO_SIZE (6)); Private->SqBuffer[0] = (NVME_SQ *)(UINTN)(Private->Buffer); Private->SqBufferPciAddr[0] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr); Private->CqBuffer[0] = (NVME_CQ *)(UINTN)(Private->Buffer + 1 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[0] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 1 * EFI_PAGE_SIZE); Private->SqBuffer[1] = (NVME_SQ *)(UINTN)(Private->Buffer + 2 * EFI_PAGE_SIZE); Private->SqBufferPciAddr[1] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 2 * EFI_PAGE_SIZE); Private->CqBuffer[1] = (NVME_CQ *)(UINTN)(Private->Buffer + 3 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[1] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 3 * EFI_PAGE_SIZE); Private->SqBuffer[2] = (NVME_SQ *)(UINTN)(Private->Buffer + 4 * EFI_PAGE_SIZE); Private->SqBufferPciAddr[2] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 4 * EFI_PAGE_SIZE); Private->CqBuffer[2] = (NVME_CQ *)(UINTN)(Private->Buffer + 5 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[2] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 5 * EFI_PAGE_SIZE); DEBUG ((EFI_D_INFO, "Private->Buffer = [%016X]\n", (UINT64)(UINTN)Private->Buffer)); DEBUG ((EFI_D_INFO, "Admin Submission Queue size (Aqa.Asqs) = [%08X]\n", Aqa.Asqs)); DEBUG ((EFI_D_INFO, "Admin Completion Queue size (Aqa.Acqs) = [%08X]\n", Aqa.Acqs)); DEBUG ((EFI_D_INFO, "Admin Submission Queue (SqBuffer[0]) = [%016X]\n", Private->SqBuffer[0])); DEBUG ((EFI_D_INFO, "Admin Completion Queue (CqBuffer[0]) = [%016X]\n", Private->CqBuffer[0])); DEBUG ((EFI_D_INFO, "Sync I/O Submission Queue (SqBuffer[1]) = [%016X]\n", Private->SqBuffer[1])); DEBUG ((EFI_D_INFO, "Sync I/O Completion Queue (CqBuffer[1]) = [%016X]\n", Private->CqBuffer[1])); DEBUG ((EFI_D_INFO, "Async I/O Submission Queue (SqBuffer[2]) = [%016X]\n", Private->SqBuffer[2])); DEBUG ((EFI_D_INFO, "Async I/O Completion Queue (CqBuffer[2]) = [%016X]\n", Private->CqBuffer[2])); // // Program admin queue attributes. // Status = WriteNvmeAdminQueueAttributes (Private, &Aqa); if (EFI_ERROR(Status)) { return Status; } // // Program admin submission queue address. // Status = WriteNvmeAdminSubmissionQueueBaseAddress (Private, &Asq); if (EFI_ERROR(Status)) { return Status; } // // Program admin completion queue address. // Status = WriteNvmeAdminCompletionQueueBaseAddress (Private, &Acq); if (EFI_ERROR(Status)) { return Status; } Status = NvmeEnableController (Private); if (EFI_ERROR(Status)) { return Status; } // // Allocate buffer for Identify Controller data // if (Private->ControllerData == NULL) { Private->ControllerData = (NVME_ADMIN_CONTROLLER_DATA *)AllocateZeroPool (sizeof(NVME_ADMIN_CONTROLLER_DATA)); if (Private->ControllerData == NULL) { return EFI_OUT_OF_RESOURCES; } } // // Get current Identify Controller Data // Status = NvmeIdentifyController (Private, Private->ControllerData); if (EFI_ERROR(Status)) { FreePool(Private->ControllerData); Private->ControllerData = NULL; return EFI_NOT_FOUND; } // // Dump NvmExpress Identify Controller Data // CopyMem (Sn, Private->ControllerData->Sn, sizeof (Private->ControllerData->Sn)); Sn[20] = 0; CopyMem (Mn, Private->ControllerData->Mn, sizeof (Private->ControllerData->Mn)); Mn[40] = 0; DEBUG ((EFI_D_INFO, " == NVME IDENTIFY CONTROLLER DATA ==\n")); DEBUG ((EFI_D_INFO, " PCI VID : 0x%x\n", Private->ControllerData->Vid)); DEBUG ((EFI_D_INFO, " PCI SSVID : 0x%x\n", Private->ControllerData->Ssvid)); DEBUG ((EFI_D_INFO, " SN : %a\n", Sn)); DEBUG ((EFI_D_INFO, " MN : %a\n", Mn)); DEBUG ((EFI_D_INFO, " FR : 0x%x\n", *((UINT64*)Private->ControllerData->Fr))); DEBUG ((EFI_D_INFO, " RAB : 0x%x\n", Private->ControllerData->Rab)); DEBUG ((EFI_D_INFO, " IEEE : 0x%x\n", *(UINT32*)Private->ControllerData->Ieee_oui)); DEBUG ((EFI_D_INFO, " AERL : 0x%x\n", Private->ControllerData->Aerl)); DEBUG ((EFI_D_INFO, " SQES : 0x%x\n", Private->ControllerData->Sqes)); DEBUG ((EFI_D_INFO, " CQES : 0x%x\n", Private->ControllerData->Cqes)); DEBUG ((EFI_D_INFO, " NN : 0x%x\n", Private->ControllerData->Nn)); // // Create two I/O completion queues. // One for blocking I/O, one for non-blocking I/O. // Status = NvmeCreateIoCompletionQueue (Private); if (EFI_ERROR(Status)) { return Status; } // // Create two I/O Submission queues. // One for blocking I/O, one for non-blocking I/O. // Status = NvmeCreateIoSubmissionQueue (Private); return Status; } /** This routine is called to properly shutdown the Nvm Express controller per NVMe spec. @param[in] ResetType The type of reset to perform. @param[in] ResetStatus The status code for the reset. @param[in] DataSize The size, in bytes, of ResetData. @param[in] ResetData For a ResetType of EfiResetCold, EfiResetWarm, or EfiResetShutdown the data buffer starts with a Null-terminated string, optionally followed by additional binary data. The string is a description that the caller may use to further indicate the reason for the system reset. ResetData is only valid if ResetStatus is something other than EFI_SUCCESS unless the ResetType is EfiResetPlatformSpecific where a minimum amount of ResetData is always required. For a ResetType of EfiResetPlatformSpecific the data buffer also starts with a Null-terminated string that is followed by an EFI_GUID that describes the specific type of reset to perform. **/ VOID EFIAPI NvmeShutdownAllControllers ( IN EFI_RESET_TYPE ResetType, IN EFI_STATUS ResetStatus, IN UINTN DataSize, IN VOID *ResetData OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE *Handles; UINTN HandleCount; UINTN HandleIndex; EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfos; UINTN OpenInfoCount; UINTN OpenInfoIndex; EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *NvmePassThru; NVME_CC Cc; NVME_CSTS Csts; UINTN Index; NVME_CONTROLLER_PRIVATE_DATA *Private; Status = gBS->LocateHandleBuffer ( ByProtocol, &gEfiPciIoProtocolGuid, NULL, &HandleCount, &Handles ); if (EFI_ERROR (Status)) { HandleCount = 0; } for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) { Status = gBS->OpenProtocolInformation ( Handles[HandleIndex], &gEfiPciIoProtocolGuid, &OpenInfos, &OpenInfoCount ); if (EFI_ERROR (Status)) { continue; } for (OpenInfoIndex = 0; OpenInfoIndex < OpenInfoCount; OpenInfoIndex++) { // // Find all the NVME controller managed by this driver. // gImageHandle equals to DriverBinding handle for this driver. // if (((OpenInfos[OpenInfoIndex].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) && (OpenInfos[OpenInfoIndex].AgentHandle == gImageHandle)) { Status = gBS->OpenProtocol ( OpenInfos[OpenInfoIndex].ControllerHandle, &gEfiNvmExpressPassThruProtocolGuid, (VOID **) &NvmePassThru, NULL, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { continue; } Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (NvmePassThru); // // Read Controller Configuration Register. // Status = ReadNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { continue; } // // The host should set the Shutdown Notification (CC.SHN) field to 01b // to indicate a normal shutdown operation. // Cc.Shn = NVME_CC_SHN_NORMAL_SHUTDOWN; Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { continue; } // // The controller indicates when shutdown processing is completed by updating the // Shutdown Status (CSTS.SHST) field to 10b. // Wait up to 45 seconds (break down to 4500 x 10ms) for the shutdown to complete. // for (Index = 0; Index < NVME_SHUTDOWN_PROCESS_TIMEOUT * 100; Index++) { Status = ReadNvmeControllerStatus (Private, &Csts); if (!EFI_ERROR(Status) && (Csts.Shst == NVME_CSTS_SHST_SHUTDOWN_COMPLETED)) { DEBUG((DEBUG_INFO, "NvmeShutdownController: shutdown processing is completed after %dms.\n", Index * 10)); break; } // // Stall for 10ms // gBS->Stall (10 * 1000); } if (Index == NVME_SHUTDOWN_PROCESS_TIMEOUT * 100) { DEBUG((DEBUG_ERROR, "NvmeShutdownController: shutdown processing is timed out\n")); } } } } } /** Register the shutdown notification through the ResetNotification protocol. Register the shutdown notification when mNvmeControllerNumber increased from 0 to 1. **/ VOID NvmeRegisterShutdownNotification ( VOID ) { EFI_STATUS Status; EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify; mNvmeControllerNumber++; if (mNvmeControllerNumber == 1) { Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify); if (!EFI_ERROR (Status)) { Status = ResetNotify->RegisterResetNotify (ResetNotify, NvmeShutdownAllControllers); ASSERT_EFI_ERROR (Status); } else { DEBUG ((DEBUG_WARN, "NVME: ResetNotification absent! Shutdown notification cannot be performed!\n")); } } } /** Unregister the shutdown notification through the ResetNotification protocol. Unregister the shutdown notification when mNvmeControllerNumber decreased from 1 to 0. **/ VOID NvmeUnregisterShutdownNotification ( VOID ) { EFI_STATUS Status; EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify; mNvmeControllerNumber--; if (mNvmeControllerNumber == 0) { Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify); if (!EFI_ERROR (Status)) { Status = ResetNotify->UnregisterResetNotify (ResetNotify, NvmeShutdownAllControllers); ASSERT_EFI_ERROR (Status); } } }