/**@file Platform PEI driver Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.
Copyright (c) 2011, Andrei Warkentin SPDX-License-Identifier: BSD-2-Clause-Patent **/ // // The package level header files this module uses // #include // // The Library classes this module consumes // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Platform.h" #include "Cmos.h" EFI_PEI_PPI_DESCRIPTOR mPpiBootMode[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, &gEfiPeiMasterBootModePpiGuid, NULL } }; UINT16 mHostBridgeDevId; EFI_BOOT_MODE mBootMode = BOOT_WITH_FULL_CONFIGURATION; BOOLEAN mS3Supported = FALSE; UINT32 mMaxCpuCount; VOID AddIoMemoryBaseSizeHob ( EFI_PHYSICAL_ADDRESS MemoryBase, UINT64 MemorySize ) { BuildResourceDescriptorHob ( EFI_RESOURCE_MEMORY_MAPPED_IO, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID AddReservedMemoryBaseSizeHob ( EFI_PHYSICAL_ADDRESS MemoryBase, UINT64 MemorySize, BOOLEAN Cacheable ) { BuildResourceDescriptorHob ( EFI_RESOURCE_MEMORY_RESERVED, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | (Cacheable ? EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE : 0 ) | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID AddIoMemoryRangeHob ( EFI_PHYSICAL_ADDRESS MemoryBase, EFI_PHYSICAL_ADDRESS MemoryLimit ) { AddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase)); } VOID AddMemoryBaseSizeHob ( EFI_PHYSICAL_ADDRESS MemoryBase, UINT64 MemorySize ) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID AddMemoryRangeHob ( EFI_PHYSICAL_ADDRESS MemoryBase, EFI_PHYSICAL_ADDRESS MemoryLimit ) { AddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase)); } VOID MemMapInitialization ( VOID ) { UINT64 PciIoBase; UINT64 PciIoSize; RETURN_STATUS PcdStatus; PciIoBase = 0xC000; PciIoSize = 0x4000; // // Video memory + Legacy BIOS region // AddIoMemoryRangeHob (0x0A0000, BASE_1MB); if (!mXen) { UINT32 TopOfLowRam; UINT64 PciExBarBase; UINT32 PciBase; UINT32 PciSize; TopOfLowRam = GetSystemMemorySizeBelow4gb (); PciExBarBase = 0; if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { // // The MMCONFIG area is expected to fall between the top of low RAM and // the base of the 32-bit PCI host aperture. // PciExBarBase = FixedPcdGet64 (PcdPciExpressBaseAddress); ASSERT (TopOfLowRam <= PciExBarBase); ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB); PciBase = (UINT32)(PciExBarBase + SIZE_256MB); } else { ASSERT (TopOfLowRam <= mQemuUc32Base); PciBase = mQemuUc32Base; } // // address purpose size // ------------ -------- ------------------------- // max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g) // 0xFC000000 gap 44 MB // 0xFEC00000 IO-APIC 4 KB // 0xFEC01000 gap 1020 KB // 0xFED00000 HPET 1 KB // 0xFED00400 gap 111 KB // 0xFED1C000 gap (PIIX4) / RCRB (ICH9) 16 KB // 0xFED20000 gap 896 KB // 0xFEE00000 LAPIC 1 MB // PciSize = 0xFC000000 - PciBase; AddIoMemoryBaseSizeHob (PciBase, PciSize); PcdStatus = PcdSet64S (PcdPciMmio32Base, PciBase); ASSERT_RETURN_ERROR (PcdStatus); PcdStatus = PcdSet64S (PcdPciMmio32Size, PciSize); ASSERT_RETURN_ERROR (PcdStatus); AddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); AddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB); if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { AddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB); // // Note: there should be an // // AddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB); // // call below, just like the one above for RCBA. However, Linux insists // that the MMCONFIG area be marked in the E820 or UEFI memory map as // "reserved memory" -- Linux does not content itself with a simple gap // in the memory map wherever the MCFG ACPI table points to. // // This appears to be a safety measure. The PCI Firmware Specification // (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can // *optionally* be returned in [...] EFIGetMemoryMap as reserved memory // [...]". (Emphasis added here.) // // Normally we add memory resource descriptor HOBs in // QemuInitializeRam(), and pre-allocate from those with memory // allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area // is most definitely not RAM; so, as an exception, cover it with // uncacheable reserved memory right here. // AddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE); BuildMemoryAllocationHob (PciExBarBase, SIZE_256MB, EfiReservedMemoryType); } AddIoMemoryBaseSizeHob (PcdGet32(PcdCpuLocalApicBaseAddress), SIZE_1MB); // // On Q35, the IO Port space is available for PCI resource allocations from // 0x6000 up. // if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { PciIoBase = 0x6000; PciIoSize = 0xA000; ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase); } } // // Add PCI IO Port space available for PCI resource allocations. // BuildResourceDescriptorHob ( EFI_RESOURCE_IO, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED, PciIoBase, PciIoSize ); PcdStatus = PcdSet64S (PcdPciIoBase, PciIoBase); ASSERT_RETURN_ERROR (PcdStatus); PcdStatus = PcdSet64S (PcdPciIoSize, PciIoSize); ASSERT_RETURN_ERROR (PcdStatus); } EFI_STATUS GetNamedFwCfgBoolean ( IN CHAR8 *FwCfgFileName, OUT BOOLEAN *Setting ) { EFI_STATUS Status; FIRMWARE_CONFIG_ITEM FwCfgItem; UINTN FwCfgSize; UINT8 Value[3]; Status = QemuFwCfgFindFile (FwCfgFileName, &FwCfgItem, &FwCfgSize); if (EFI_ERROR (Status)) { return Status; } if (FwCfgSize > sizeof Value) { return EFI_BAD_BUFFER_SIZE; } QemuFwCfgSelectItem (FwCfgItem); QemuFwCfgReadBytes (FwCfgSize, Value); if ((FwCfgSize == 1) || (FwCfgSize == 2 && Value[1] == '\n') || (FwCfgSize == 3 && Value[1] == '\r' && Value[2] == '\n')) { switch (Value[0]) { case '0': case 'n': case 'N': *Setting = FALSE; return EFI_SUCCESS; case '1': case 'y': case 'Y': *Setting = TRUE; return EFI_SUCCESS; default: break; } } return EFI_PROTOCOL_ERROR; } #define UPDATE_BOOLEAN_PCD_FROM_FW_CFG(TokenName) \ do { \ BOOLEAN Setting; \ RETURN_STATUS PcdStatus; \ \ if (!EFI_ERROR (GetNamedFwCfgBoolean ( \ "opt/ovmf/" #TokenName, &Setting))) { \ PcdStatus = PcdSetBoolS (TokenName, Setting); \ ASSERT_RETURN_ERROR (PcdStatus); \ } \ } while (0) VOID NoexecDxeInitialization ( VOID ) { UPDATE_BOOLEAN_PCD_FROM_FW_CFG (PcdSetNxForStack); } VOID PciExBarInitialization ( VOID ) { union { UINT64 Uint64; UINT32 Uint32[2]; } PciExBarBase; // // We only support the 256MB size for the MMCONFIG area: // 256 buses * 32 devices * 8 functions * 4096 bytes config space. // // The masks used below enforce the Q35 requirements that the MMCONFIG area // be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB. // // Note that (b) also ensures that the minimum address width we have // determined in AddressWidthInitialization(), i.e., 36 bits, will suffice // for DXE's page tables to cover the MMCONFIG area. // PciExBarBase.Uint64 = FixedPcdGet64 (PcdPciExpressBaseAddress); ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0); ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0); // // Clear the PCIEXBAREN bit first, before programming the high register. // PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0); // // Program the high register. Then program the low register, setting the // MMCONFIG area size and enabling decoding at once. // PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]); PciWrite32 ( DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN ); } VOID MiscInitialization ( VOID ) { UINTN PmCmd; UINTN Pmba; UINT32 PmbaAndVal; UINT32 PmbaOrVal; UINTN AcpiCtlReg; UINT8 AcpiEnBit; RETURN_STATUS PcdStatus; // // Disable A20 Mask // IoOr8 (0x92, BIT1); // // Build the CPU HOB with guest RAM size dependent address width and 16-bits // of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during // S3 resume as well, so we build it unconditionally.) // BuildCpuHob (mPhysMemAddressWidth, 16); // // Determine platform type and save Host Bridge DID to PCD // switch (mHostBridgeDevId) { case INTEL_82441_DEVICE_ID: PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET); Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA); PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK; PmbaOrVal = PIIX4_PMBA_VALUE; AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC); AcpiEnBit = PIIX4_PMREGMISC_PMIOSE; break; case INTEL_Q35_MCH_DEVICE_ID: PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET); Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE); PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK; PmbaOrVal = ICH9_PMBASE_VALUE; AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL); AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN; break; default: DEBUG ((EFI_D_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n", __FUNCTION__, mHostBridgeDevId)); ASSERT (FALSE); return; } PcdStatus = PcdSet16S (PcdOvmfHostBridgePciDevId, mHostBridgeDevId); ASSERT_RETURN_ERROR (PcdStatus); // // If the appropriate IOspace enable bit is set, assume the ACPI PMBA // has been configured (e.g., by Xen) and skip the setup here. // This matches the logic in AcpiTimerLibConstructor (). // if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) { // // The PEI phase should be exited with fully accessibe ACPI PM IO space: // 1. set PMBA // PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal); // // 2. set PCICMD/IOSE // PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE); // // 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN) // PciOr8 (AcpiCtlReg, AcpiEnBit); } if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { // // Set Root Complex Register Block BAR // PciWrite32 ( POWER_MGMT_REGISTER_Q35 (ICH9_RCBA), ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN ); // // Set PCI Express Register Range Base Address // PciExBarInitialization (); } } VOID BootModeInitialization ( VOID ) { EFI_STATUS Status; if (CmosRead8 (0xF) == 0xFE) { mBootMode = BOOT_ON_S3_RESUME; } CmosWrite8 (0xF, 0x00); Status = PeiServicesSetBootMode (mBootMode); ASSERT_EFI_ERROR (Status); Status = PeiServicesInstallPpi (mPpiBootMode); ASSERT_EFI_ERROR (Status); } VOID ReserveEmuVariableNvStore ( ) { EFI_PHYSICAL_ADDRESS VariableStore; RETURN_STATUS PcdStatus; // // Allocate storage for NV variables early on so it will be // at a consistent address. Since VM memory is preserved // across reboots, this allows the NV variable storage to survive // a VM reboot. // VariableStore = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocateRuntimePages ( EFI_SIZE_TO_PAGES (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) ); DEBUG ((EFI_D_INFO, "Reserved variable store memory: 0x%lX; size: %dkb\n", VariableStore, (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / 1024 )); PcdStatus = PcdSet64S (PcdEmuVariableNvStoreReserved, VariableStore); ASSERT_RETURN_ERROR (PcdStatus); } VOID DebugDumpCmos ( VOID ) { UINT32 Loop; DEBUG ((EFI_D_INFO, "CMOS:\n")); for (Loop = 0; Loop < 0x80; Loop++) { if ((Loop % 0x10) == 0) { DEBUG ((EFI_D_INFO, "%02x:", Loop)); } DEBUG ((EFI_D_INFO, " %02x", CmosRead8 (Loop))); if ((Loop % 0x10) == 0xf) { DEBUG ((EFI_D_INFO, "\n")); } } } VOID S3Verification ( VOID ) { #if defined (MDE_CPU_X64) if (FeaturePcdGet (PcdSmmSmramRequire) && mS3Supported) { DEBUG ((EFI_D_ERROR, "%a: S3Resume2Pei doesn't support X64 PEI + SMM yet.\n", __FUNCTION__)); DEBUG ((EFI_D_ERROR, "%a: Please disable S3 on the QEMU command line (see the README),\n", __FUNCTION__)); DEBUG ((EFI_D_ERROR, "%a: or build OVMF with \"OvmfPkgIa32X64.dsc\".\n", __FUNCTION__)); ASSERT (FALSE); CpuDeadLoop (); } #endif } VOID Q35BoardVerification ( VOID ) { if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { return; } DEBUG (( DEBUG_ERROR, "%a: no TSEG (SMRAM) on host bridge DID=0x%04x; " "only DID=0x%04x (Q35) is supported\n", __FUNCTION__, mHostBridgeDevId, INTEL_Q35_MCH_DEVICE_ID )); ASSERT (FALSE); CpuDeadLoop (); } /** Fetch the boot CPU count and the possible CPU count from QEMU, and expose them to UefiCpuPkg modules. Set the mMaxCpuCount variable. **/ VOID MaxCpuCountInitialization ( VOID ) { UINT16 BootCpuCount; RETURN_STATUS PcdStatus; // // Try to fetch the boot CPU count. // QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount); BootCpuCount = QemuFwCfgRead16 (); if (BootCpuCount == 0) { // // QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let // MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or // until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached // first). // DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__)); mMaxCpuCount = PcdGet32 (PcdCpuMaxLogicalProcessorNumber); } else { // // We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to // (BootCpuCount - 1) precisely, regardless of timeout. // // Now try to fetch the possible CPU count. // UINTN CpuHpBase; UINT32 CmdData2; CpuHpBase = ((mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ? ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE); // // If only legacy mode is available in the CPU hotplug register block, or // the register block is completely missing, then the writes below are // no-ops. // // 1. Switch the hotplug register block to modern mode. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0); // // 2. Select a valid CPU for deterministic reading of // QEMU_CPUHP_R_CMD_DATA2. // // CPU#0 is always valid; it is the always present and non-removable // BSP. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0); // // 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to // read as zero, and which does not invalidate the selector. (The // selector may change, but it must not become invalid.) // // Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later. // IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING); // // 4. Read QEMU_CPUHP_R_CMD_DATA2. // // If the register block is entirely missing, then this is an unassigned // IO read, returning all-bits-one. // // If only legacy mode is available, then bit#0 stands for CPU#0 in the // "CPU present bitmap". CPU#0 is always present. // // Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning // all-bits-zero), or it is specified to read as zero after the above // steps. Both cases confirm modern mode. // CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2); DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2)); if (CmdData2 != 0) { // // QEMU doesn't support the modern CPU hotplug interface. Assume that the // possible CPU count equals the boot CPU count (precluding hotplug). // DEBUG ((DEBUG_WARN, "%a: modern CPU hotplug interface unavailable\n", __FUNCTION__)); mMaxCpuCount = BootCpuCount; } else { // // Grab the possible CPU count from the modern CPU hotplug interface. // UINT32 Present, Possible, Selected; Present = 0; Possible = 0; // // We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures // QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However, // QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending // hotplug events; therefore, select CPU#0 forcibly. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible); do { UINT8 CpuStatus; // // Read the status of the currently selected CPU. This will help with a // sanity check against "BootCpuCount". // CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT); if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) { ++Present; } // // Attempt to select the next CPU. // ++Possible; IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible); // // If the selection is successful, then the following read will return // the selector (which we know is positive at this point). Otherwise, // the read will return 0. // Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA); ASSERT (Selected == Possible || Selected == 0); } while (Selected > 0); // // Sanity check: fw_cfg and the modern CPU hotplug interface should // return the same boot CPU count. // if (BootCpuCount != Present) { DEBUG ((DEBUG_WARN, "%a: QEMU v2.7 reset bug: BootCpuCount=%d " "Present=%u\n", __FUNCTION__, BootCpuCount, Present)); // // The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus // platform reset (including S3), was corrected in QEMU commit // e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added // CPUs", 2016-11-16), part of release v2.8.0. // BootCpuCount = (UINT16)Present; } mMaxCpuCount = Possible; } } DEBUG ((DEBUG_INFO, "%a: BootCpuCount=%d mMaxCpuCount=%u\n", __FUNCTION__, BootCpuCount, mMaxCpuCount)); ASSERT (BootCpuCount <= mMaxCpuCount); PcdStatus = PcdSet32S (PcdCpuBootLogicalProcessorNumber, BootCpuCount); ASSERT_RETURN_ERROR (PcdStatus); PcdStatus = PcdSet32S (PcdCpuMaxLogicalProcessorNumber, mMaxCpuCount); ASSERT_RETURN_ERROR (PcdStatus); } /** Perform Platform PEI initialization. @param FileHandle Handle of the file being invoked. @param PeiServices Describes the list of possible PEI Services. @return EFI_SUCCESS The PEIM initialized successfully. **/ EFI_STATUS EFIAPI InitializePlatform ( IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; DEBUG ((DEBUG_INFO, "Platform PEIM Loaded\n")); DebugDumpCmos (); XenDetect (); if (QemuFwCfgS3Enabled ()) { DEBUG ((EFI_D_INFO, "S3 support was detected on QEMU\n")); mS3Supported = TRUE; Status = PcdSetBoolS (PcdAcpiS3Enable, TRUE); ASSERT_EFI_ERROR (Status); } S3Verification (); BootModeInitialization (); AddressWidthInitialization (); // // Query Host Bridge DID // mHostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID); MaxCpuCountInitialization (); if (FeaturePcdGet (PcdSmmSmramRequire)) { Q35BoardVerification (); Q35TsegMbytesInitialization (); Q35SmramAtDefaultSmbaseInitialization (); } PublishPeiMemory (); QemuUc32BaseInitialization (); InitializeRamRegions (); if (mXen) { DEBUG ((EFI_D_INFO, "Xen was detected\n")); InitializeXen (); } if (mBootMode != BOOT_ON_S3_RESUME) { if (!FeaturePcdGet (PcdSmmSmramRequire)) { ReserveEmuVariableNvStore (); } PeiFvInitialization (); MemTypeInfoInitialization (); MemMapInitialization (); NoexecDxeInitialization (); } InstallClearCacheCallback (); AmdSevInitialize (); MiscInitialization (); InstallFeatureControlCallback (); return EFI_SUCCESS; }