/************************************************************************ * * Copyright (c) 2013-2015 Intel Corporation. * * This program and the accompanying materials * are licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * * This file contains all of the Cat Mountain Memory Reference Code (MRC). * * These functions are generic and should work for any Cat Mountain config. * * MRC requires two data structures to be passed in which are initialised by "PreMemInit()". * * The basic flow is as follows: * 01) Check for supported DDR speed configuration * 02) Set up MEMORY_MANAGER buffer as pass-through (POR) * 03) Set Channel Interleaving Mode and Channel Stride to the most aggressive setting possible * 04) Set up the MCU logic * 05) Set up the DDR_PHY logic * 06) Initialise the DRAMs (JEDEC) * 07) Perform the Receive Enable Calibration algorithm * 08) Perform the Write Leveling algorithm * 09) Perform the Read Training algorithm (includes internal Vref) * 10) Perform the Write Training algorithm * 11) Set Channel Interleaving Mode and Channel Stride to the desired settings * * Dunit configuration based on Valleyview MRC. * ***************************************************************************/ #include "mrc.h" #include "memory_options.h" #include "meminit.h" #include "meminit_utils.h" #include "hte.h" #include "io.h" // Override ODT to off state if requested #define DRMC_DEFAULT (mrc_params->rd_odt_value==0?BIT12:0) // tRFC values (in picoseconds) per density const uint32_t tRFC[5] = { 90000, // 512Mb 110000, // 1Gb 160000, // 2Gb 300000, // 4Gb 350000, // 8Gb }; // tCK clock period in picoseconds per speed index 800, 1066, 1333 const uint32_t tCK[3] = { 2500, 1875, 1500 }; #ifdef SIM // Select static timings specific to simulation environment #define PLATFORM_ID 0 #else // Select static timings specific to ClantonPeek platform #define PLATFORM_ID 1 #endif // Global variables const uint16_t ddr_wclk[] = {193, 158}; const uint16_t ddr_wctl[] = { 1, 217}; const uint16_t ddr_wcmd[] = { 1, 220}; #ifdef BACKUP_RCVN const uint16_t ddr_rcvn[] = {129, 498}; #endif // BACKUP_RCVN #ifdef BACKUP_WDQS const uint16_t ddr_wdqs[] = { 65, 289}; #endif // BACKUP_WDQS #ifdef BACKUP_RDQS const uint8_t ddr_rdqs[] = { 32, 24}; #endif // BACKUP_RDQS #ifdef BACKUP_WDQ const uint16_t ddr_wdq[] = { 32, 257}; #endif // BACKUP_WDQ // Select MEMORY_MANAGER as the source for PRI interface static void select_memory_manager( MRCParams_t *mrc_params) { RegDCO Dco; ENTERFN(); Dco.raw = isbR32m(MCU, DCO); Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER isbW32m(MCU, DCO, Dco.raw); LEAVEFN(); } // Select HTE as the source for PRI interface void select_hte( MRCParams_t *mrc_params) { RegDCO Dco; ENTERFN(); Dco.raw = isbR32m(MCU, DCO); Dco.field.PMICTL = 1; //1 - PRI owned by HTE isbW32m(MCU, DCO, Dco.raw); LEAVEFN(); } // Send DRAM command, data should be formated // using DCMD_Xxxx macro or emrsXCommand structure. static void dram_init_command( uint32_t data) { Wr32(DCMD, 0, data); } // Send DRAM wake command using special MCU side-band WAKE opcode static void dram_wake_command( void) { ENTERFN(); Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG), (uint32_t) SB_COMMAND(SB_WAKE_CMND_OPCODE, MCU, 0)); LEAVEFN(); } // Stop self refresh driven by MCU static void clear_self_refresh( MRCParams_t *mrc_params) { ENTERFN(); // clear the PMSTS Channel Self Refresh bits isbM32m(MCU, PMSTS, BIT0, BIT0); LEAVEFN(); } // Configure MCU before jedec init sequence static void prog_decode_before_jedec( MRCParams_t *mrc_params) { RegDRP Drp; RegDRCF Drfc; RegDCAL Dcal; RegDSCH Dsch; RegDPMC0 Dpmc0; ENTERFN(); // Disable power saving features Dpmc0.raw = isbR32m(MCU, DPMC0); Dpmc0.field.CLKGTDIS = 1; Dpmc0.field.DISPWRDN = 1; Dpmc0.field.DYNSREN = 0; Dpmc0.field.PCLSTO = 0; isbW32m(MCU, DPMC0, Dpmc0.raw); // Disable out of order transactions Dsch.raw = isbR32m(MCU, DSCH); Dsch.field.OOODIS = 1; Dsch.field.NEWBYPDIS = 1; isbW32m(MCU, DSCH, Dsch.raw); // Disable issuing the REF command Drfc.raw = isbR32m(MCU, DRFC); Drfc.field.tREFI = 0; isbW32m(MCU, DRFC, Drfc.raw); // Disable ZQ calibration short Dcal.raw = isbR32m(MCU, DCAL); Dcal.field.ZQCINT = 0; Dcal.field.SRXZQCL = 0; isbW32m(MCU, DCAL, Dcal.raw); // Training performed in address mode 0, rank population has limited impact, however // simulator complains if enabled non-existing rank. Drp.raw = 0; if (mrc_params->rank_enables & 1) Drp.field.rank0Enabled = 1; if (mrc_params->rank_enables & 2) Drp.field.rank1Enabled = 1; isbW32m(MCU, DRP, Drp.raw); LEAVEFN(); } // After Cold Reset, BIOS should set COLDWAKE bit to 1 before // sending the WAKE message to the Dunit. // For Standby Exit, or any other mode in which the DRAM is in // SR, this bit must be set to 0. static void perform_ddr_reset( MRCParams_t *mrc_params) { ENTERFN(); // Set COLDWAKE bit before sending the WAKE message isbM32m(MCU, DRMC, BIT16, BIT16); // Send wake command to DUNIT (MUST be done before JEDEC) dram_wake_command(); // Set default value isbW32m(MCU, DRMC, DRMC_DEFAULT); LEAVEFN(); } // Dunit Initialisation Complete. // Indicates that initialisation of the Dunit has completed. // Memory accesses are permitted and maintenance operation // begins. Until this bit is set to a 1, the memory controller will // not accept DRAM requests from the MEMORY_MANAGER or HTE. static void set_ddr_init_complete( MRCParams_t *mrc_params) { RegDCO Dco; ENTERFN(); Dco.raw = isbR32m(MCU, DCO); Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER Dco.field.IC = 1; //1 - initialisation complete isbW32m(MCU, DCO, Dco.raw); LEAVEFN(); } static void prog_page_ctrl( MRCParams_t *mrc_params) { RegDPMC0 Dpmc0; ENTERFN(); Dpmc0.raw = isbR32m(MCU, DPMC0); Dpmc0.field.PCLSTO = 0x4; Dpmc0.field.PREAPWDEN = 1; isbW32m(MCU, DPMC0, Dpmc0.raw); } // Configure MCU Power Management Control Register // and Scheduler Control Register. static void prog_ddr_control( MRCParams_t *mrc_params) { RegDSCH Dsch; RegDPMC0 Dpmc0; ENTERFN(); Dpmc0.raw = isbR32m(MCU, DPMC0); Dsch.raw = isbR32m(MCU, DSCH); Dpmc0.field.DISPWRDN = mrc_params->power_down_disable; Dpmc0.field.CLKGTDIS = 0; Dpmc0.field.PCLSTO = 4; Dpmc0.field.PREAPWDEN = 1; Dsch.field.OOODIS = 0; Dsch.field.OOOST3DIS = 0; Dsch.field.NEWBYPDIS = 0; isbW32m(MCU, DSCH, Dsch.raw); isbW32m(MCU, DPMC0, Dpmc0.raw); // CMDTRIST = 2h - CMD/ADDR are tristated when no valid command isbM32m(MCU, DPMC1, 2 << 4, BIT5|BIT4); LEAVEFN(); } // After training complete configure MCU Rank Population Register // specifying: ranks enabled, device width, density, address mode. static void prog_dra_drb( MRCParams_t *mrc_params) { RegDRP Drp; RegDCO Dco; ENTERFN(); Dco.raw = isbR32m(MCU, DCO); Dco.field.IC = 0; isbW32m(MCU, DCO, Dco.raw); Drp.raw = 0; if (mrc_params->rank_enables & 1) Drp.field.rank0Enabled = 1; if (mrc_params->rank_enables & 2) Drp.field.rank1Enabled = 1; if (mrc_params->dram_width == x16) { Drp.field.dimm0DevWidth = 1; Drp.field.dimm1DevWidth = 1; } // Density encoding in DRAMParams_t 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb // has to be mapped RANKDENSx encoding (0=1Gb) Drp.field.dimm0DevDensity = mrc_params->params.DENSITY - 1; Drp.field.dimm1DevDensity = mrc_params->params.DENSITY - 1; // Address mode can be overwritten if ECC enabled Drp.field.addressMap = mrc_params->address_mode; isbW32m(MCU, DRP, Drp.raw); Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER Dco.field.IC = 1; //1 - initialisation complete isbW32m(MCU, DCO, Dco.raw); LEAVEFN(); } // Configure refresh rate and short ZQ calibration interval. // Activate dynamic self refresh. static void change_refresh_period( MRCParams_t *mrc_params) { RegDRCF Drfc; RegDCAL Dcal; RegDPMC0 Dpmc0; ENTERFN(); Drfc.raw = isbR32m(MCU, DRFC); Drfc.field.tREFI = mrc_params->refresh_rate; Drfc.field.REFDBTCLR = 1; isbW32m(MCU, DRFC, Drfc.raw); Dcal.raw = isbR32m(MCU, DCAL); Dcal.field.ZQCINT = 3; // 63ms isbW32m(MCU, DCAL, Dcal.raw); Dpmc0.raw = isbR32m(MCU, DPMC0); Dpmc0.field.ENPHYCLKGATE = 1; Dpmc0.field.DYNSREN = 1; isbW32m(MCU, DPMC0, Dpmc0.raw); LEAVEFN(); } // Send DRAM wake command static void perform_wake( MRCParams_t *mrc_params) { ENTERFN(); dram_wake_command(); LEAVEFN(); } // prog_ddr_timing_control (aka mcu_init): // POST_CODE[major] == 0x02 // // It will initialise timing registers in the MCU (DTR0..DTR4). static void prog_ddr_timing_control( MRCParams_t *mrc_params) { uint8_t TCL, WL; uint8_t TRP, TRCD, TRAS, TRFC, TWR, TWTR, TRRD, TRTP, TFAW; uint32_t TCK; RegDTR0 Dtr0; RegDTR1 Dtr1; RegDTR2 Dtr2; RegDTR3 Dtr3; RegDTR4 Dtr4; ENTERFN(); // mcu_init starts post_code(0x02, 0x00); Dtr0.raw = isbR32m(MCU, DTR0); Dtr1.raw = isbR32m(MCU, DTR1); Dtr2.raw = isbR32m(MCU, DTR2); Dtr3.raw = isbR32m(MCU, DTR3); Dtr4.raw = isbR32m(MCU, DTR4); TCK = tCK[mrc_params->ddr_speed]; // Clock in picoseconds TCL = mrc_params->params.tCL; // CAS latency in clocks TRP = TCL; // Per CAT MRC TRCD = TCL; // Per CAT MRC TRAS = MCEIL(mrc_params->params.tRAS, TCK); TRFC = MCEIL(tRFC[mrc_params->params.DENSITY], TCK); TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 TWTR = MCEIL(mrc_params->params.tWTR, TCK); TRRD = MCEIL(mrc_params->params.tRRD, TCK); TRTP = 4; // Valid for 800 and 1066, use 5 for 1333 TFAW = MCEIL(mrc_params->params.tFAW, TCK); WL = 5 + mrc_params->ddr_speed; Dtr0.field.dramFrequency = mrc_params->ddr_speed; Dtr0.field.tCL = TCL - 5; //Convert from TCL (DRAM clocks) to VLV indx Dtr0.field.tRP = TRP - 5; //5 bit DRAM Clock Dtr0.field.tRCD = TRCD - 5; //5 bit DRAM Clock Dtr1.field.tWCL = WL - 3; //Convert from WL (DRAM clocks) to VLV indx Dtr1.field.tWTP = WL + 4 + TWR - 14; //Change to tWTP Dtr1.field.tRTP = MMAX(TRTP, 4) - 3; //4 bit DRAM Clock Dtr1.field.tRRD = TRRD - 4; //4 bit DRAM Clock Dtr1.field.tCMD = 1; //2N Dtr1.field.tRAS = TRAS - 14; //6 bit DRAM Clock Dtr1.field.tFAW = ((TFAW + 1) >> 1) - 5; //4 bit DRAM Clock Dtr1.field.tCCD = 0; //Set 4 Clock CAS to CAS delay (multi-burst) Dtr2.field.tRRDR = 1; Dtr2.field.tWWDR = 2; Dtr2.field.tRWDR = 2; Dtr3.field.tWRDR = 2; Dtr3.field.tWRDD = 2; if (mrc_params->ddr_speed == DDRFREQ_800) { // Extended RW delay (+1) Dtr3.field.tRWSR = TCL - 5 + 1; } else if(mrc_params->ddr_speed == DDRFREQ_1066) { // Extended RW delay (+1) Dtr3.field.tRWSR = TCL - 5 + 1; } Dtr3.field.tWRSR = 4 + WL + TWTR - 11; if (mrc_params->ddr_speed == DDRFREQ_800) { Dtr3.field.tXP = MMAX(0, 1 - Dtr1.field.tCMD); } else { Dtr3.field.tXP = MMAX(0, 2 - Dtr1.field.tCMD); } Dtr4.field.WRODTSTRT = Dtr1.field.tCMD; Dtr4.field.WRODTSTOP = Dtr1.field.tCMD; Dtr4.field.RDODTSTRT = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; //Convert from WL (DRAM clocks) to VLV indx Dtr4.field.RDODTSTOP = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; Dtr4.field.TRGSTRDIS = 0; Dtr4.field.ODTDIS = 0; isbW32m(MCU, DTR0, Dtr0.raw); isbW32m(MCU, DTR1, Dtr1.raw); isbW32m(MCU, DTR2, Dtr2.raw); isbW32m(MCU, DTR3, Dtr3.raw); isbW32m(MCU, DTR4, Dtr4.raw); LEAVEFN(); } // ddrphy_init: // POST_CODE[major] == 0x03 // // This function performs some initialisation on the DDRIO unit. // This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES. static void ddrphy_init(MRCParams_t *mrc_params) { uint32_t tempD; // temporary DWORD uint8_t channel_i; // channel counter uint8_t rank_i; // rank counter uint8_t bl_grp_i; // byte lane group counter (2 BLs per module) uint8_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; // byte lane divisor uint8_t speed = mrc_params->ddr_speed & (BIT1|BIT0); // For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333 uint8_t tCAS; uint8_t tCWL; ENTERFN(); tCAS = mrc_params->params.tCL; tCWL = 5 + mrc_params->ddr_speed; // ddrphy_init starts post_code(0x03, 0x00); // HSD#231531 // Make sure IOBUFACT is deasserted before initialising the DDR PHY. // HSD#234845 // Make sure WRPTRENABLE is deasserted before initialising the DDR PHY. for (channel_i=0; channel_ichannel_enables & (1<channel_enables & (1<rd_odt_value) { case 1: tempD = 0x3; break; // 60 ohm case 2: tempD = 0x3; break; // 120 ohm case 3: tempD = 0x3; break; // 180 ohm default: tempD = 0x3; break; // 120 ohm } isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength // Dynamic ODT/DIFFAMP tempD = (((tCAS)<<24)|((tCAS)<<16)|((tCAS)<<8)|((tCAS)<<0)); switch (speed) { case 0: tempD -= 0x01010101; break; // 800 case 1: tempD -= 0x02020202; break; // 1066 case 2: tempD -= 0x03030303; break; // 1333 case 3: tempD -= 0x04040404; break; // 1600 } isbM32m(DDRPHY, (B01LATCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // Launch Time: ODT, DIFFAMP, ODT, DIFFAMP switch (speed) { // HSD#234715 case 0: tempD = ((0x06<<16)|(0x07<<8)); break; // 800 case 1: tempD = ((0x07<<16)|(0x08<<8)); break; // 1066 case 2: tempD = ((0x09<<16)|(0x0A<<8)); break; // 1333 case 3: tempD = ((0x0A<<16)|(0x0B<<8)); break; // 1600 } isbM32m(DDRPHY, (B0ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP isbM32m(DDRPHY, (B1ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP switch (mrc_params->rd_odt_value) { case 0: tempD = ((0x3F<<16)|(0x3f<<10)); break; // override DIFFAMP=on, ODT=off default: tempD = ((0x3F<<16)|(0x2A<<10)); break; // override DIFFAMP=on, ODT=on } isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT isbM32m(DDRPHY, (B1OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT // DLL Setup // 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO) isbM32m(DDRPHY, (B0LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS isbM32m(DDRPHY, (B1LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS // RCVEN Bypass (PO) isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP // TX isbM32m(DDRPHY, (DQCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT16), (BIT16)); // 0 means driving DQ during DQS-preamble isbM32m(DDRPHY, (B01PTRCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT8), (BIT8)); // WR_LVL mode disable // RX (PO) isbM32m(DDRPHY, (B0VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext) isbM32m(DDRPHY, (B1VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext) isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable } // CLKEBB isbM32m(DDRPHY, (CMDOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT23)); // Enable tristate control of cmd/address bus isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT1|BIT0)); // ODT RCOMP isbM32m(DDRPHY, (CMDRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<5)|(0x03<<0)), ((BIT9|BIT8|BIT7|BIT6|BIT5)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // CMDPM* registers must be programmed in this order... isbM32m(DDRPHY, (CMDPMDLYREG4 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFFFU<<16)|(0xFFFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: SFR (regulator), MPLL isbM32m(DDRPHY, (CMDPMDLYREG3 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFU<<28)|(0xFFF<<16)|(0xF<<12)|(0x616<<0)), ((BIT31|BIT30|BIT29|BIT28)|(BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3, VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT_for_PM_MSG_gt0, MDLL Turn On isbM32m(DDRPHY, (CMDPMDLYREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // MPLL Divider Reset Delays isbM32m(DDRPHY, (CMDPMDLYREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn Off Delays: VREG, Staggered MDLL, MDLL, PI isbM32m(DDRPHY, (CMDPMDLYREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x6<<8)|BIT6|(0x4<<0)), (BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|(BIT11|BIT10|BIT9|BIT8)|BIT6|(BIT3|BIT2|BIT1|BIT0))); // Allow PUnit signals isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG // CLK-CTL isbM32m(DDRPHY, (CCOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT24)); // CLKEBB isbM32m(DDRPHY, (CCCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x0<<16)|(0x0<<12)|(0x0<<8)|(0xF<<4)|BIT0), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|BIT0)); // Buffer Enable: CS,CKE,ODT,CLK isbM32m(DDRPHY, (CCRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT RCOMP isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG // COMP (RON channel specific) // - DQ/DQS/DM RON: 32 Ohm // - CTRL/CMD RON: 27 Ohm // - CLK RON: 26 Ohm isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD isbM32m(DDRPHY, (CMDVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0F<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD isbM32m(DDRPHY, (CTLVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD // DQS Swapped Input Enable isbM32m(DDRPHY, (COMPEN1CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT19|BIT17), ((BIT31|BIT30)|BIT19|BIT17|(BIT15|BIT14))); // ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50) isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0E<<8)|(0x05<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD // Slew rate settings are frequency specific, numbers below are for 800Mhz (speed == 0) // - DQ/DQS/DM/CLK SR: 4V/ns, // - CTRL/CMD SR: 1.5V/ns tempD = (0x0E<<16)|(0x0E<<12)|(0x08<<8)|(0x0B<<4)|(0x0B<<0); isbM32m(DDRPHY, (DLYSELCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (tempD), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ isbM32m(DDRPHY, (TCOVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x05<<16)|(0x05<<8)|(0x05<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // TCO Vref CLK,DQS,DQ isbM32m(DDRPHY, (CCBUFODTCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODTCOMP CMD/CTL PU/PD isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (0), ((BIT31|BIT30)|BIT8)); // COMP #ifdef BACKUP_COMPS // DQ COMP Overrides isbM32m(DDRPHY, (DQDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU isbM32m(DDRPHY, (DQDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD isbM32m(DDRPHY, (DQDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU isbM32m(DDRPHY, (DQDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD isbM32m(DDRPHY, (DQODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU isbM32m(DDRPHY, (DQODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD // DQS COMP Overrides isbM32m(DDRPHY, (DQSDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU isbM32m(DDRPHY, (DQSDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD isbM32m(DDRPHY, (DQSDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU isbM32m(DDRPHY, (DQSDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD isbM32m(DDRPHY, (DQSODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU isbM32m(DDRPHY, (DQSODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD // CLK COMP Overrides isbM32m(DDRPHY, (CLKDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU isbM32m(DDRPHY, (CLKDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD isbM32m(DDRPHY, (CLKDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU isbM32m(DDRPHY, (CLKDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD isbM32m(DDRPHY, (CLKODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU isbM32m(DDRPHY, (CLKODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD // CMD COMP Overrides isbM32m(DDRPHY, (CMDDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU isbM32m(DDRPHY, (CMDDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD isbM32m(DDRPHY, (CMDDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU isbM32m(DDRPHY, (CMDDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD // CTL COMP Overrides isbM32m(DDRPHY, (CTLDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU isbM32m(DDRPHY, (CTLDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD isbM32m(DDRPHY, (CTLDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU isbM32m(DDRPHY, (CTLDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD #else // DQ TCOCOMP Overrides isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD // DQS TCOCOMP Overrides isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD // CLK TCOCOMP Overrides isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD #endif // BACKUP_COMPS // program STATIC delays #ifdef BACKUP_WCMD set_wcmd(channel_i, ddr_wcmd[PLATFORM_ID]); #else set_wcmd(channel_i, ddr_wclk[PLATFORM_ID] + HALF_CLK); #endif // BACKUP_WCMD for (rank_i=0; rank_irank_enables & (1<channel_enables & (1<channel_enables & (1<channel_enables & (1<channel_width == x16)) ? ((0x1<<12)|(0x1<<8)|(0xF<<4)|(0xF<<0)) : ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); #else tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); #endif isbM32m(DDRPHY, (DQDLLTXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL delay_n(3); isbM32m(DDRPHY, (DQDLLRXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL delay_n(3); isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL Overrides BL0 } // ECC tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); isbM32m(DDRPHY, (ECCDLLTXCTL), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL delay_n(3); // CMD (PO) isbM32m(DDRPHY, (CMDDLLTXCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL delay_n(3); } } // STEP4: post_code(0x03, 0x14); for (channel_i=0; channel_ichannel_enables & (1<rank_enables & (1 << Rank)) == 0) { continue; } dram_init_command(DCMD_NOP(Rank)); } isbW32m(MCU, DRMC, DRMC_DEFAULT); } // setup for emrs 2 // BIT[15:11] --> Always "0" // BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0) // BIT[08] --> Always "0" // BIT[07] --> SRT: use sr_temp_range // BIT[06] --> ASR: want "Manual SR Reference" (0) // BIT[05:03] --> CWL: use oem_tCWL // BIT[02:00] --> PASR: want "Full Array" (0) emrs2Command.raw = 0; emrs2Command.field.bankAddress = 2; WL = 5 + mrc_params->ddr_speed; emrs2Command.field.CWL = WL - 5; emrs2Command.field.SRT = mrc_params->sr_temp_range; // setup for emrs 3 // BIT[15:03] --> Always "0" // BIT[02] --> MPR: want "Normal Operation" (0) // BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0) emrs3Command.raw = 0; emrs3Command.field.bankAddress = 3; // setup for emrs 1 // BIT[15:13] --> Always "0" // BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0) // BIT[11:11] --> TDQS: want "Disabled" (0) // BIT[10:10] --> Always "0" // BIT[09,06,02] --> Rtt_nom: use rtt_nom_value // BIT[08] --> Always "0" // BIT[07] --> WR_LVL: want "Disabled" (0) // BIT[05,01] --> DIC: use ron_value // BIT[04:03] --> AL: additive latency want "0" (0) // BIT[00] --> DLL: want "Enable" (0) // // (BIT5|BIT1) set Ron value // 00 --> RZQ/6 (40ohm) // 01 --> RZQ/7 (34ohm) // 1* --> RESERVED // // (BIT9|BIT6|BIT2) set Rtt_nom value // 000 --> Disabled // 001 --> RZQ/4 ( 60ohm) // 010 --> RZQ/2 (120ohm) // 011 --> RZQ/6 ( 40ohm) // 1** --> RESERVED emrs1Command.raw = 0; emrs1Command.field.bankAddress = 1; emrs1Command.field.dllEnabled = 0; // 0 = Enable , 1 = Disable if (mrc_params->ron_value == 0) { emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_34; } else { emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_40; } if (mrc_params->rtt_nom_value == 0) { emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_40 << 6); } else if (mrc_params->rtt_nom_value == 1) { emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_60 << 6); } else if (mrc_params->rtt_nom_value == 2) { emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_120 << 6); } // save MRS1 value (excluding control fields) mrc_params->mrs1 = emrs1Command.raw >> 6; // setup for mrs 0 // BIT[15:13] --> Always "0" // BIT[12] --> PPD: for Quark (1) // BIT[11:09] --> WR: use oem_tWR // BIT[08] --> DLL: want "Reset" (1, self clearing) // BIT[07] --> MODE: want "Normal" (0) // BIT[06:04,02] --> CL: use oem_tCAS // BIT[03] --> RD_BURST_TYPE: want "Interleave" (1) // BIT[01:00] --> BL: want "8 Fixed" (0) // WR: // 0 --> 16 // 1 --> 5 // 2 --> 6 // 3 --> 7 // 4 --> 8 // 5 --> 10 // 6 --> 12 // 7 --> 14 // CL: // BIT[02:02] "0" if oem_tCAS <= 11 (1866?) // BIT[06:04] use oem_tCAS-4 mrs0Command.raw = 0; mrs0Command.field.bankAddress = 0; mrs0Command.field.dllReset = 1; mrs0Command.field.BL = 0; mrs0Command.field.PPD = 1; mrs0Command.field.casLatency = DTR0reg.field.tCL + 1; TCK = tCK[mrc_params->ddr_speed]; TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 mrs0Command.field.writeRecovery = TWR - 4; for (Rank = 0; Rank < NUM_RANKS; Rank++) { // Skip to next populated rank if ((mrc_params->rank_enables & (1 << Rank)) == 0) { continue; } emrs2Command.field.rankSelect = Rank; dram_init_command(emrs2Command.raw); emrs3Command.field.rankSelect = Rank; dram_init_command(emrs3Command.raw); emrs1Command.field.rankSelect = Rank; dram_init_command(emrs1Command.raw); mrs0Command.field.rankSelect = Rank; dram_init_command(mrs0Command.raw); dram_init_command(DCMD_ZQCL(Rank)); } LEAVEFN(); return; } // rcvn_cal: // POST_CODE[major] == 0x05 // // This function will perform our RCVEN Calibration Algorithm. // We will only use the 2xCLK domain timings to perform RCVEN Calibration. // All byte lanes will be calibrated "simultaneously" per channel per rank. static void rcvn_cal( MRCParams_t *mrc_params) { uint8_t channel_i; // channel counter uint8_t rank_i; // rank counter uint8_t bl_i; // byte lane counter uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor #ifdef R2R_SHARING uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs #ifndef BACKUP_RCVN uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs #endif // BACKUP_RCVN #endif // R2R_SHARING #ifdef BACKUP_RCVN #else uint32_t tempD; // temporary DWORD uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane RegDTR1 dtr1; RegDTR1 dtr1save; #endif // BACKUP_RCVN ENTERFN(); // rcvn_cal starts post_code(0x05, 0x00); #ifndef BACKUP_RCVN // need separate burst to sample DQS preamble dtr1.raw = dtr1save.raw = isbR32m(MCU, DTR1); dtr1.field.tCCD = 1; isbW32m(MCU, DTR1, dtr1.raw); #endif #ifdef R2R_SHARING // need to set "final_delay[][]" elements to "0" memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); #endif // R2R_SHARING // loop through each enabled channel for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { // perform RCVEN Calibration on a per rank basis for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { // POST_CODE here indicates the current channel and rank being calibrated post_code(0x05, (0x10 + ((channel_i << 4) | rank_i))); #ifdef BACKUP_RCVN // set hard-coded timing values for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) { set_rcvn(channel_i, rank_i, bl_i, ddr_rcvn[PLATFORM_ID]); } #else // enable FIFORST for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2) { isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), 0, BIT8); // 0 is enabled } // bl_i loop // initialise the starting delay to 128 PI (tCAS +1 CLK) for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { #ifdef SIM // Original value was late at the end of DQS sequence delay[bl_i] = 3 * FULL_CLK; #else delay[bl_i] = (4 + 1) * FULL_CLK; // 1x CLK domain timing is tCAS-4 #endif set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); } // bl_i loop // now find the rising edge find_rising_edge(mrc_params, delay, channel_i, rank_i, true); // Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse. for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { delay[bl_i] += QRTR_CLK; set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); } // bl_i loop // Now decrement delay by 128 PI (1 CLK) until we sample a "0" do { tempD = sample_dqs(mrc_params, channel_i, rank_i, true); for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { if (tempD & (1 << bl_i)) { if (delay[bl_i] >= FULL_CLK) { delay[bl_i] -= FULL_CLK; set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); } else { // not enough delay training_message(channel_i, rank_i, bl_i); post_code(0xEE, 0x50); } } } // bl_i loop } while (tempD & 0xFF); #ifdef R2R_SHARING // increment "num_ranks_enabled" num_ranks_enabled++; // Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble. for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { delay[bl_i] += QRTR_CLK; // add "delay[]" values to "final_delay[][]" for rolling average final_delay[channel_i][bl_i] += delay[bl_i]; // set timing based on rolling average values set_rcvn(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); } // bl_i loop #else // Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble. for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) { delay[bl_i] += QRTR_CLK; set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); } // bl_i loop #endif // R2R_SHARING // disable FIFORST for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2) { isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), BIT8, BIT8); // 1 is disabled } // bl_i loop #endif // BACKUP_RCVN } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop #ifndef BACKUP_RCVN // restore original isbW32m(MCU, DTR1, dtr1save.raw); #endif #ifdef MRC_SV if (mrc_params->tune_rcvn) { uint32_t rcven, val; uint32_t rdcmd2rcven; /* Formulas for RDCMD2DATAVALID & DIFFAMP dynamic timings 1. Set after RCVEN training //Tune RDCMD2DATAVALID x80/x84[21:16] MAX OF 2 RANKS : round up (rdcmd2rcven (rcven 1x) + 2x x 2 + PI/128) + 5 //rdcmd2rcven x80/84[12:8] //rcven 2x x70[23:20] & [11:8] //Tune DIFFAMP Timings //diffampen launch x88[20:16] & [4:0] -- B01LATCTL1 MIN OF 2 RANKS : round down (rcven 1x + 2x x 2 + PI/128) - 1 //diffampen length x8C/x90 [13:8] -- B0ONDURCTL B1ONDURCTL MAX OF 2 RANKS : roundup (rcven 1x + 2x x 2 + PI/128) + 5 2. need to do a fiforst after settings these values */ DPF(D_INFO, "BEFORE\n"); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL)); rcven = get_rcvn(0, 0, 0) / 128; rdcmd2rcven = (isbR32m(DDRPHY, B0LATCTL0) >> 8) & 0x1F; val = rdcmd2rcven + rcven + 6; isbM32m(DDRPHY, B0LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)); val = rdcmd2rcven + rcven - 1; isbM32m(DDRPHY, B01LATCTL1, val << 0, (BIT4|BIT3|BIT2|BIT1|BIT0)); val = rdcmd2rcven + rcven + 5; isbM32m(DDRPHY, B0ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)); rcven = get_rcvn(0, 0, 1) / 128; rdcmd2rcven = (isbR32m(DDRPHY, B1LATCTL0) >> 8) & 0x1F; val = rdcmd2rcven + rcven + 6; isbM32m(DDRPHY, B1LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)); val = rdcmd2rcven + rcven - 1; isbM32m(DDRPHY, B01LATCTL1, val << 16, (BIT20|BIT19|BIT18|BIT17|BIT16)); val = rdcmd2rcven + rcven + 5; isbM32m(DDRPHY, B1ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)); DPF(D_INFO, "AFTER\n"); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0)); DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL)); DPF(D_INFO, "\nPress a key\n"); mgetc(); // fifo reset isbM32m(DDRPHY, B01PTRCTL1, 0, BIT8); // 0 is enabled delay_n(3); isbM32m(DDRPHY, B01PTRCTL1, BIT8, BIT8); // 1 is disabled } #endif LEAVEFN(); return; } // Check memory executing write/read/verify of many data patterns // at the specified address. Bits in the result indicate failure // on specific byte lane. static uint32_t check_bls_ex( MRCParams_t *mrc_params, uint32_t address) { uint32_t result; uint8_t first_run = 0; if (mrc_params->hte_setup) { mrc_params->hte_setup = 0; first_run = 1; select_hte(mrc_params); } result = WriteStressBitLanesHTE(mrc_params, address, first_run); DPF(D_TRN, "check_bls_ex result is %x\n", result); return result; } // Check memory executing simple write/read/verify at // the specified address. Bits in the result indicate failure // on specific byte lane. static uint32_t check_rw_coarse( MRCParams_t *mrc_params, uint32_t address) { uint32_t result = 0; uint8_t first_run = 0; if (mrc_params->hte_setup) { mrc_params->hte_setup = 0; first_run = 1; select_hte(mrc_params); } result = BasicWriteReadHTE(mrc_params, address, first_run, WRITE_TRAIN); DPF(D_TRN, "check_rw_coarse result is %x\n", result); return result; } // wr_level: // POST_CODE[major] == 0x06 // // This function will perform the Write Levelling algorithm (align WCLK and WDQS). // This algorithm will act on each rank in each channel separately. static void wr_level( MRCParams_t *mrc_params) { uint8_t channel_i; // channel counter uint8_t rank_i; // rank counter uint8_t bl_i; // byte lane counter uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor #ifdef R2R_SHARING uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs #ifndef BACKUP_WDQS uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs #endif // BACKUP_WDQS #endif // R2R_SHARING #ifdef BACKUP_WDQS #else bool all_edges_found; // determines stop condition for CRS_WR_LVL uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane // static makes it so the data is loaded in the heap once by shadow(), where // non-static copies the data onto the stack every time this function is called. uint32_t address; // address to be checked during COARSE_WR_LVL RegDTR4 dtr4; RegDTR4 dtr4save; #endif // BACKUP_WDQS ENTERFN(); // wr_level starts post_code(0x06, 0x00); #ifdef R2R_SHARING // need to set "final_delay[][]" elements to "0" memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); #endif // R2R_SHARING // loop through each enabled channel for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { // perform WRITE LEVELING algorithm on a per rank basis for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { // POST_CODE here indicates the current rank and channel being calibrated post_code(0x06, (0x10 + ((channel_i << 4) | rank_i))); #ifdef BACKUP_WDQS for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) { set_wdqs(channel_i, rank_i, bl_i, ddr_wdqs[PLATFORM_ID]); set_wdq(channel_i, rank_i, bl_i, (ddr_wdqs[PLATFORM_ID] - QRTR_CLK)); } #else { // Begin product specific code // perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state dram_init_command(DCMD_PREA(rank_i)); // enable Write Levelling Mode (EMRS1 w/ Write Levelling Mode Enable) dram_init_command(DCMD_MRS1(rank_i,0x0082)); // set ODT DRAM Full Time Termination disable in MCU dtr4.raw = dtr4save.raw = isbR32m(MCU, DTR4); dtr4.field.ODTDIS = 1; isbW32m(MCU, DTR4, dtr4.raw); for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++) { isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i), (BIT28 | (0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)), (BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Enable Sandy Bridge Mode (WDQ Tri-State) & Ensure 5 WDQS pulses during Write Leveling } isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (BIT16), (BIT16)); // Write Leveling Mode enabled in IO } // End product specific code // Initialise the starting delay to WCLK for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { { // Begin product specific code // CLK0 --> RK0 // CLK1 --> RK1 delay[bl_i] = get_wclk(channel_i, rank_i); } // End product specific code set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); } // bl_i loop // now find the rising edge find_rising_edge(mrc_params, delay, channel_i, rank_i, false); { // Begin product specific code // disable Write Levelling Mode isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (0), (BIT16)); // Write Leveling Mode disabled in IO for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++) { isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i), ((0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)), (BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation } // bl_i loop // restore original DTR4 isbW32m(MCU, DTR4, dtr4save.raw); // restore original value (Write Levelling Mode Disable) dram_init_command(DCMD_MRS1(rank_i, mrc_params->mrs1)); // perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state dram_init_command(DCMD_PREA(rank_i)); } // End product specific code post_code(0x06, (0x30 + ((channel_i << 4) | rank_i))); // COARSE WRITE LEVEL: // check that we're on the correct clock edge // hte reconfiguration request mrc_params->hte_setup = 1; // start CRS_WR_LVL with WDQS = WDQS + 128 PI for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { delay[bl_i] = get_wdqs(channel_i, rank_i, bl_i) + FULL_CLK; set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); // program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK)); } // bl_i loop // get an address in the targeted channel/rank address = get_addr(mrc_params, channel_i, rank_i); do { uint32_t coarse_result = 0x00; uint32_t coarse_result_mask = byte_lane_mask(mrc_params); all_edges_found = true; // assume pass #ifdef SIM // need restore memory to idle state as write can be in bad sync dram_init_command (DCMD_PREA(rank_i)); #endif mrc_params->hte_setup = 1; coarse_result = check_rw_coarse(mrc_params, address); // check for failures and margin the byte lane back 128 PI (1 CLK) for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { if (coarse_result & (coarse_result_mask << bl_i)) { all_edges_found = false; delay[bl_i] -= FULL_CLK; set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); // program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK)); } } // bl_i loop } while (!all_edges_found); #ifdef R2R_SHARING // increment "num_ranks_enabled" num_ranks_enabled++; // accumulate "final_delay[][]" values from "delay[]" values for rolling average for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { final_delay[channel_i][bl_i] += delay[bl_i]; set_wdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); // program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled) - QRTR_CLK); } // bl_i loop #endif // R2R_SHARING #endif // BACKUP_WDQS } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop LEAVEFN(); return; } // rd_train: // POST_CODE[major] == 0x07 // // This function will perform the READ TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time. // The idea here is to train the VREF and RDQS (and eventually RDQ) values to achieve maximum READ margins. // The algorithm will first determine the X coordinate (RDQS setting). // This is done by collapsing the VREF eye until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX. // Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX, then average those; this will be the final X coordinate. // The algorithm will then determine the Y coordinate (VREF setting). // This is done by collapsing the RDQS eye until we find a minimum required VREF eye for RDQS_MIN and RDQS_MAX. // Then we take the averages of the VREF eye at RDQS_MIN and RDQS_MAX, then average those; this will be the final Y coordinate. // NOTE: this algorithm assumes the eye curves have a one-to-one relationship, meaning for each X the curve has only one Y and vice-a-versa. static void rd_train( MRCParams_t *mrc_params) { #define MIN_RDQS_EYE 10 // in PI Codes #define MIN_VREF_EYE 10 // in VREF Codes #define RDQS_STEP 1 // how many RDQS codes to jump while margining #define VREF_STEP 1 // how many VREF codes to jump while margining #define VREF_MIN (0x00) // offset into "vref_codes[]" for minimum allowed VREF setting #define VREF_MAX (0x3F) // offset into "vref_codes[]" for maximum allowed VREF setting #define RDQS_MIN (0x00) // minimum RDQS delay value #define RDQS_MAX (0x3F) // maximum RDQS delay value #define B 0 // BOTTOM VREF #define T 1 // TOP VREF #define L 0 // LEFT RDQS #define R 1 // RIGHT RDQS uint8_t channel_i; // channel counter uint8_t rank_i; // rank counter uint8_t bl_i; // byte lane counter uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor #ifdef BACKUP_RDQS #else uint8_t side_x; // tracks LEFT/RIGHT approach vectors uint8_t side_y; // tracks BOTTOM/TOP approach vectors uint8_t x_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // X coordinate data (passing RDQS values) for approach vectors uint8_t y_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_BYTE_LANES]; // Y coordinate data (passing VREF values) for approach vectors uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // centered X (RDQS) uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES]; // centered Y (VREF) uint32_t address; // target address for "check_bls_ex()" uint32_t result; // result of "check_bls_ex()" uint32_t bl_mask; // byte lane mask for "result" checking #ifdef R2R_SHARING uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs #endif // R2R_SHARING #endif // BACKUP_RDQS // rd_train starts post_code(0x07, 0x00); ENTERFN(); #ifdef BACKUP_RDQS for (channel_i=0; channel_ichannel_enables & (1<rank_enables & (1<channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { // x_coordinate: x_coordinate[L][B][channel_i][rank_i][bl_i] = RDQS_MIN; x_coordinate[R][B][channel_i][rank_i][bl_i] = RDQS_MAX; x_coordinate[L][T][channel_i][rank_i][bl_i] = RDQS_MIN; x_coordinate[R][T][channel_i][rank_i][bl_i] = RDQS_MAX; // y_coordinate: y_coordinate[L][B][channel_i][bl_i] = VREF_MIN; y_coordinate[R][B][channel_i][bl_i] = VREF_MIN; y_coordinate[L][T][channel_i][bl_i] = VREF_MAX; y_coordinate[R][T][channel_i][bl_i] = VREF_MAX; } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop // initialise other variables bl_mask = byte_lane_mask(mrc_params); address = get_addr(mrc_params, 0, 0); #ifdef R2R_SHARING // need to set "final_delay[][]" elements to "0" memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); #endif // R2R_SHARING // look for passing coordinates for (side_y = B; side_y <= T; side_y++) { for (side_x = L; side_x <= R; side_x++) { post_code(0x07, (0x10 + (side_y * 2) + (side_x))); // find passing values for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (0x1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (0x1 << rank_i)) { // set x/y_coordinate search starting settings for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]); set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]); } // bl_i loop // get an address in the target channel/rank address = get_addr(mrc_params, channel_i, rank_i); // request HTE reconfiguration mrc_params->hte_setup = 1; // test the settings do { // result[07:00] == failing byte lane (MAX 8) result = check_bls_ex( mrc_params, address); // check for failures if (result & 0xFF) { // at least 1 byte lane failed for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { if (result & (bl_mask << bl_i)) { // adjust the RDQS values accordingly if (side_x == L) { x_coordinate[L][side_y][channel_i][rank_i][bl_i] += RDQS_STEP; } else { x_coordinate[R][side_y][channel_i][rank_i][bl_i] -= RDQS_STEP; } // check that we haven't closed the RDQS_EYE too much if ((x_coordinate[L][side_y][channel_i][rank_i][bl_i] > (RDQS_MAX - MIN_RDQS_EYE)) || (x_coordinate[R][side_y][channel_i][rank_i][bl_i] < (RDQS_MIN + MIN_RDQS_EYE)) || (x_coordinate[L][side_y][channel_i][rank_i][bl_i] == x_coordinate[R][side_y][channel_i][rank_i][bl_i])) { // not enough RDQS margin available at this VREF // update VREF values accordingly if (side_y == B) { y_coordinate[side_x][B][channel_i][bl_i] += VREF_STEP; } else { y_coordinate[side_x][T][channel_i][bl_i] -= VREF_STEP; } // check that we haven't closed the VREF_EYE too much if ((y_coordinate[side_x][B][channel_i][bl_i] > (VREF_MAX - MIN_VREF_EYE)) || (y_coordinate[side_x][T][channel_i][bl_i] < (VREF_MIN + MIN_VREF_EYE)) || (y_coordinate[side_x][B][channel_i][bl_i] == y_coordinate[side_x][T][channel_i][bl_i])) { // VREF_EYE collapsed below MIN_VREF_EYE training_message(channel_i, rank_i, bl_i); post_code(0xEE, (0x70 + (side_y * 2) + (side_x))); } else { // update the VREF setting set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]); // reset the X coordinate to begin the search at the new VREF x_coordinate[side_x][side_y][channel_i][rank_i][bl_i] = (side_x == L) ? (RDQS_MIN) : (RDQS_MAX); } } // update the RDQS setting set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]); } // if bl_i failed } // bl_i loop } // at least 1 byte lane failed } while (result & 0xFF); } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop } // side_x loop } // side_y loop post_code(0x07, 0x20); // find final RDQS (X coordinate) & final VREF (Y coordinate) for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { uint32_t tempD1; uint32_t tempD2; // x_coordinate: DPF(D_INFO, "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n", rank_i, bl_i, x_coordinate[L][T][channel_i][rank_i][bl_i], x_coordinate[R][T][channel_i][rank_i][bl_i], x_coordinate[L][B][channel_i][rank_i][bl_i], x_coordinate[R][B][channel_i][rank_i][bl_i]); tempD1 = (x_coordinate[R][T][channel_i][rank_i][bl_i] + x_coordinate[L][T][channel_i][rank_i][bl_i]) / 2; // average the TOP side LEFT & RIGHT values tempD2 = (x_coordinate[R][B][channel_i][rank_i][bl_i] + x_coordinate[L][B][channel_i][rank_i][bl_i]) / 2; // average the BOTTOM side LEFT & RIGHT values x_center[channel_i][rank_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages // y_coordinate: DPF(D_INFO, "VREF R/L eye lane%d : %d-%d %d-%d\n", bl_i, y_coordinate[R][B][channel_i][bl_i], y_coordinate[R][T][channel_i][bl_i], y_coordinate[L][B][channel_i][bl_i], y_coordinate[L][T][channel_i][bl_i]); tempD1 = (y_coordinate[R][T][channel_i][bl_i] + y_coordinate[R][B][channel_i][bl_i]) / 2; // average the RIGHT side TOP & BOTTOM values tempD2 = (y_coordinate[L][T][channel_i][bl_i] + y_coordinate[L][B][channel_i][bl_i]) / 2; // average the LEFT side TOP & BOTTOM values y_center[channel_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop #ifdef RX_EYE_CHECK // perform an eye check for (side_y=B; side_y<=T; side_y++) { for (side_x=L; side_x<=R; side_x++) { post_code(0x07, (0x30 + (side_y * 2) + (side_x))); // update the settings for the eye check for (channel_i=0; channel_ichannel_enables & (1<rank_enables & (1<hte_setup = 1; // check the eye if (check_bls_ex( mrc_params, address) & 0xFF) { // one or more byte lanes failed post_code(0xEE, (0x74 + (side_x * 2) + (side_y))); } } // side_x loop } // side_y loop #endif // RX_EYE_CHECK post_code(0x07, 0x40); // set final placements for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { #ifdef R2R_SHARING // increment "num_ranks_enabled" num_ranks_enabled++; #endif // R2R_SHARING for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { // x_coordinate: #ifdef R2R_SHARING final_delay[channel_i][bl_i] += x_center[channel_i][rank_i][bl_i]; set_rdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); #else set_rdqs(channel_i, rank_i, bl_i, x_center[channel_i][rank_i][bl_i]); #endif // R2R_SHARING // y_coordinate: set_vref(channel_i, bl_i, y_center[channel_i][bl_i]); } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop #endif // BACKUP_RDQS LEAVEFN(); return; } // wr_train: // POST_CODE[major] == 0x08 // // This function will perform the WRITE TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time. // The idea here is to train the WDQ timings to achieve maximum WRITE margins. // The algorithm will start with WDQ at the current WDQ setting (tracks WDQS in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data patterns pass. // This is because WDQS will be aligned to WCLK by the Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window of validity. static void wr_train( MRCParams_t *mrc_params) { #define WDQ_STEP 1 // how many WDQ codes to jump while margining #define L 0 // LEFT side loop value definition #define R 1 // RIGHT side loop value definition uint8_t channel_i; // channel counter uint8_t rank_i; // rank counter uint8_t bl_i; // byte lane counter uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor #ifdef BACKUP_WDQ #else uint8_t side_i; // LEFT/RIGHT side indicator (0=L, 1=R) uint32_t tempD; // temporary DWORD uint32_t delay[2/*side_i*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // 2 arrays, for L & R side passing delays uint32_t address; // target address for "check_bls_ex()" uint32_t result; // result of "check_bls_ex()" uint32_t bl_mask; // byte lane mask for "result" checking #ifdef R2R_SHARING uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs #endif // R2R_SHARING #endif // BACKUP_WDQ // wr_train starts post_code(0x08, 0x00); ENTERFN(); #ifdef BACKUP_WDQ for (channel_i=0; channel_ichannel_enables & (1<rank_enables & (1<channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { // want to start with WDQ = (WDQS - QRTR_CLK) +/- QRTR_CLK tempD = get_wdqs(channel_i, rank_i, bl_i) - QRTR_CLK; delay[L][channel_i][rank_i][bl_i] = tempD - QRTR_CLK; delay[R][channel_i][rank_i][bl_i] = tempD + QRTR_CLK; } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop // initialise other variables bl_mask = byte_lane_mask(mrc_params); address = get_addr(mrc_params, 0, 0); #ifdef R2R_SHARING // need to set "final_delay[][]" elements to "0" memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); #endif // R2R_SHARING // start algorithm on the LEFT side and train each channel/bl until no failures are observed, then repeat for the RIGHT side. for (side_i = L; side_i <= R; side_i++) { post_code(0x08, (0x10 + (side_i))); // set starting values for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]); } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop // find passing values for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (0x1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (0x1 << rank_i)) { // get an address in the target channel/rank address = get_addr(mrc_params, channel_i, rank_i); // request HTE reconfiguration mrc_params->hte_setup = 1; // check the settings do { #ifdef SIM // need restore memory to idle state as write can be in bad sync dram_init_command (DCMD_PREA(rank_i)); #endif // result[07:00] == failing byte lane (MAX 8) result = check_bls_ex( mrc_params, address); // check for failures if (result & 0xFF) { // at least 1 byte lane failed for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { if (result & (bl_mask << bl_i)) { if (side_i == L) { delay[L][channel_i][rank_i][bl_i] += WDQ_STEP; } else { delay[R][channel_i][rank_i][bl_i] -= WDQ_STEP; } // check for algorithm failure if (delay[L][channel_i][rank_i][bl_i] != delay[R][channel_i][rank_i][bl_i]) { // margin available, update delay setting set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]); } else { // no margin available, notify the user and halt training_message(channel_i, rank_i, bl_i); post_code(0xEE, (0x80 + side_i)); } } // if bl_i failed } // bl_i loop } // at least 1 byte lane failed } while (result & 0xFF); // stop when all byte lanes pass } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop } // side_i loop // program WDQ to the middle of passing window for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { #ifdef R2R_SHARING // increment "num_ranks_enabled" num_ranks_enabled++; #endif // R2R_SHARING for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) { DPF(D_INFO, "WDQ eye rank%d lane%d : %d-%d\n", rank_i, bl_i, delay[L][channel_i][rank_i][bl_i], delay[R][channel_i][rank_i][bl_i]); tempD = (delay[R][channel_i][rank_i][bl_i] + delay[L][channel_i][rank_i][bl_i]) / 2; #ifdef R2R_SHARING final_delay[channel_i][bl_i] += tempD; set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); #else set_wdq(channel_i, rank_i, bl_i, tempD); #endif // R2R_SHARING } // bl_i loop } // if rank is enabled } // rank_i loop } // if channel is enabled } // channel_i loop #endif // BACKUP_WDQ LEAVEFN(); return; } // Wrapper for jedec initialisation routine static void perform_jedec_init( MRCParams_t *mrc_params) { jedec_init(mrc_params, 0); } // Configure DDRPHY for Auto-Refresh, Periodic Compensations, // Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down static void set_auto_refresh( MRCParams_t *mrc_params) { uint32_t channel_i; uint32_t rank_i; uint32_t bl_i; uint32_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; uint32_t tempD; ENTERFN(); // enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) { if (mrc_params->channel_enables & (1 << channel_i)) { // Enable Periodic RCOMPS isbM32m(DDRPHY, CMPCTRL, (BIT1), (BIT1)); // Enable Dynamic DiffAmp & Set Read ODT Value switch (mrc_params->rd_odt_value) { case 0: tempD = 0x3F; break; // OFF default: tempD = 0x00; break; // Auto } // rd_odt_value switch for (bl_i=0; bl_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_i++) { isbM32m(DDRPHY, (B0OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x00<<16)|(tempD<<10)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT isbM32m(DDRPHY, (B1OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x00<<16)|(tempD<<10)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10)));// Override: DIFFAMP, ODT } // bl_i loop // Issue ZQCS command for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) { if (mrc_params->rank_enables & (1 << rank_i)) { dram_init_command(DCMD_ZQCS(rank_i)); } // if rank_i enabled } // rank_i loop } // if channel_i enabled } // channel_i loop clear_pointers(); LEAVEFN(); return; } // Depending on configuration enables ECC support. // Available memory size is decresed, and updated with 0s // in order to clear error status. Address mode 2 forced. static void ecc_enable( MRCParams_t *mrc_params) { RegDRP Drp; RegDSCH Dsch; RegDECCCTRL Ctr; if (mrc_params->ecc_enables == 0) return; ENTERFN(); // Configuration required in ECC mode Drp.raw = isbR32m(MCU, DRP); Drp.field.addressMap = 2; Drp.field.split64 = 1; isbW32m(MCU, DRP, Drp.raw); // Disable new request bypass Dsch.raw = isbR32m(MCU, DSCH); Dsch.field.NEWBYPDIS = 1; isbW32m(MCU, DSCH, Dsch.raw); // Enable ECC Ctr.raw = 0; Ctr.field.SBEEN = 1; Ctr.field.DBEEN = 1; Ctr.field.ENCBGEN = 1; isbW32m(MCU, DECCCTRL, Ctr.raw); #ifdef SIM // Read back to be sure writing took place Ctr.raw = isbR32m(MCU, DECCCTRL); #endif // Assume 8 bank memory, one bank is gone for ECC mrc_params->mem_size -= mrc_params->mem_size / 8; // For S3 resume memory content has to be preserved if (mrc_params->boot_mode != bmS3) { select_hte(mrc_params); HteMemInit(mrc_params, MrcMemInit, MrcHaltHteEngineOnError); select_memory_manager(mrc_params); } LEAVEFN(); return; } // Lock MCU registers at the end of initialisation sequence. static void lock_registers( MRCParams_t *mrc_params) { RegDCO Dco; ENTERFN(); Dco.raw = isbR32m(MCU, DCO); Dco.field.PMIDIS = 0; //0 - PRI enabled Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER Dco.field.DRPLOCK = 1; Dco.field.REUTLOCK = 1; isbW32m(MCU, DCO, Dco.raw); LEAVEFN(); } #ifdef MRC_SV // cache write back invalidate static void asm_wbinvd(void) { #if defined (SIM) || defined (GCC) asm( "wbinvd;" ); #else __asm wbinvd; #endif } // cache invalidate static void asm_invd(void) { #if defined (SIM) || defined (GCC) asm( "invd;" ); #else __asm invd; #endif } static void cpu_read(void) { uint32_t adr, dat, limit; asm_invd(); limit = 8 * 1024; for (adr = 0; adr < limit; adr += 4) { dat = *(uint32_t*) adr; if ((adr & 0x0F) == 0) { DPF(D_INFO, "\n%x : ", adr); } DPF(D_INFO, "%x ", dat); } DPF(D_INFO, "\n"); DPF(D_INFO, "CPU read done\n"); } static void cpu_write(void) { uint32_t adr, limit; limit = 8 * 1024; for (adr = 0; adr < limit; adr += 4) { *(uint32_t*) adr = 0xDEAD0000 + adr; } asm_wbinvd(); DPF(D_INFO, "CPU write done\n"); } static void cpu_memory_test( MRCParams_t *mrc_params) { uint32_t result = 0; uint32_t val, dat, adr, adr0, step, limit; uint64_t my_tsc; ENTERFN(); asm_invd(); adr0 = 1 * 1024 * 1024; limit = 256 * 1024 * 1024; for (step = 0; step <= 4; step++) { DPF(D_INFO, "Mem test step %d starting from %xh\n", step, adr0); my_tsc = read_tsc(); for (adr = adr0; adr < limit; adr += sizeof(uint32_t)) { if (step == 0) dat = adr; else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f)); else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f)); else if (step == 3) dat = 0x5555AAAA; else if (step == 4) dat = 0xAAAA5555; *(uint32_t*) adr = dat; } DPF(D_INFO, "Write time %llXh\n", read_tsc() - my_tsc); my_tsc = read_tsc(); for (adr = adr0; adr < limit; adr += sizeof(uint32_t)) { if (step == 0) dat = adr; else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f)); else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f)); else if (step == 3) dat = 0x5555AAAA; else if (step == 4) dat = 0xAAAA5555; val = *(uint32_t*) adr; if (val != dat) { DPF(D_INFO, "%x vs. %x@%x\n", dat, val, adr); result = adr|BIT31; } } DPF(D_INFO, "Read time %llXh\n", read_tsc() - my_tsc); } DPF( D_INFO, "Memory test result %x\n", result); LEAVEFN(); } #endif // MRC_SV // Execute memory test, if error dtected it is // indicated in mrc_params->status. static void memory_test( MRCParams_t *mrc_params) { uint32_t result = 0; ENTERFN(); select_hte(mrc_params); result = HteMemInit(mrc_params, MrcMemTest, MrcHaltHteEngineOnError); select_memory_manager(mrc_params); DPF(D_INFO, "Memory test result %x\n", result); mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST); LEAVEFN(); } // Force same timings as with backup settings static void static_timings( MRCParams_t *mrc_params) { uint8_t ch, rk, bl; for (ch = 0; ch < NUM_CHANNELS; ch++) { for (rk = 0; rk < NUM_RANKS; rk++) { for (bl = 0; bl < NUM_BYTE_LANES; bl++) { set_rcvn(ch, rk, bl, 498); // RCVN set_rdqs(ch, rk, bl, 24); // RDQS set_wdqs(ch, rk, bl, 292); // WDQS set_wdq( ch, rk, bl, 260); // WDQ if (rk == 0) { set_vref(ch, bl, 32); // VREF (RANK0 only) } } set_wctl(ch, rk, 217); // WCTL } set_wcmd(ch, 220); // WCMD } return; } // // Initialise system memory. // void MemInit( MRCParams_t *mrc_params) { static const MemInit_t init[] = { { 0x0101, bmCold|bmFast|bmWarm|bmS3, clear_self_refresh }, //0 { 0x0200, bmCold|bmFast|bmWarm|bmS3, prog_ddr_timing_control }, //1 initialise the MCU { 0x0103, bmCold|bmFast , prog_decode_before_jedec }, //2 { 0x0104, bmCold|bmFast , perform_ddr_reset }, //3 { 0x0300, bmCold|bmFast |bmS3, ddrphy_init }, //4 initialise the DDRPHY { 0x0400, bmCold|bmFast , perform_jedec_init }, //5 perform JEDEC initialisation of DRAMs { 0x0105, bmCold|bmFast , set_ddr_init_complete }, //6 { 0x0106, bmFast|bmWarm|bmS3, restore_timings }, //7 { 0x0106, bmCold , default_timings }, //8 { 0x0500, bmCold , rcvn_cal }, //9 perform RCVN_CAL algorithm { 0x0600, bmCold , wr_level }, //10 perform WR_LEVEL algorithm { 0x0120, bmCold , prog_page_ctrl }, //11 { 0x0700, bmCold , rd_train }, //12 perform RD_TRAIN algorithm { 0x0800, bmCold , wr_train }, //13 perform WR_TRAIN algorithm { 0x010B, bmCold , store_timings }, //14 { 0x010C, bmCold|bmFast|bmWarm|bmS3, enable_scrambling }, //15 { 0x010D, bmCold|bmFast|bmWarm|bmS3, prog_ddr_control }, //16 { 0x010E, bmCold|bmFast|bmWarm|bmS3, prog_dra_drb }, //17 { 0x010F, bmWarm|bmS3, perform_wake }, //18 { 0x0110, bmCold|bmFast|bmWarm|bmS3, change_refresh_period }, //19 { 0x0111, bmCold|bmFast|bmWarm|bmS3, set_auto_refresh }, //20 { 0x0112, bmCold|bmFast|bmWarm|bmS3, ecc_enable }, //21 { 0x0113, bmCold|bmFast , memory_test }, //22 { 0x0114, bmCold|bmFast|bmWarm|bmS3, lock_registers } //23 set init done }; uint32_t i; ENTERFN(); DPF(D_INFO, "Meminit build %s %s\n", __DATE__, __TIME__); // MRC started post_code(0x01, 0x00); if (mrc_params->boot_mode != bmCold) { if (mrc_params->ddr_speed != mrc_params->timings.ddr_speed) { // full training required as frequency changed mrc_params->boot_mode = bmCold; } } for (i = 0; i < MCOUNT(init); i++) { uint64_t my_tsc; #ifdef MRC_SV if (mrc_params->menu_after_mrc && i > 14) { uint8_t ch; mylop: DPF(D_INFO, "-- c - continue --\n"); DPF(D_INFO, "-- j - move to jedec init --\n"); DPF(D_INFO, "-- m - memory test --\n"); DPF(D_INFO, "-- r - cpu read --\n"); DPF(D_INFO, "-- w - cpu write --\n"); DPF(D_INFO, "-- b - hte base test --\n"); DPF(D_INFO, "-- g - hte extended test --\n"); ch = mgetc(); switch (ch) { case 'c': break; case 'j': //move to jedec init i = 5; break; case 'M': case 'N': { uint32_t n, res, cnt=0; for(n=0; mgetch()==0; n++) { if( ch == 'M' || n % 256 == 0) { DPF(D_INFO, "n=%d e=%d\n", n, cnt); } res = 0; if( ch == 'M') { memory_test(mrc_params); res |= mrc_params->status; } mrc_params->hte_setup = 1; res |= check_bls_ex(mrc_params, 0x00000000); res |= check_bls_ex(mrc_params, 0x00000000); res |= check_bls_ex(mrc_params, 0x00000000); res |= check_bls_ex(mrc_params, 0x00000000); if( mrc_params->rank_enables & 2) { mrc_params->hte_setup = 1; res |= check_bls_ex(mrc_params, 0x40000000); res |= check_bls_ex(mrc_params, 0x40000000); res |= check_bls_ex(mrc_params, 0x40000000); res |= check_bls_ex(mrc_params, 0x40000000); } if( res != 0) { DPF(D_INFO, "###########\n"); DPF(D_INFO, "#\n"); DPF(D_INFO, "# Error count %d\n", ++cnt); DPF(D_INFO, "#\n"); DPF(D_INFO, "###########\n"); } } // for select_memory_manager(mrc_params); } goto mylop; case 'm': memory_test(mrc_params); goto mylop; case 'n': cpu_memory_test(mrc_params); goto mylop; case 'l': ch = mgetc(); if (ch <= '9') DpfPrintMask ^= (ch - '0') << 3; DPF(D_INFO, "Log mask %x\n", DpfPrintMask); goto mylop; case 'p': print_timings(mrc_params); goto mylop; case 'R': rd_train(mrc_params); goto mylop; case 'W': wr_train(mrc_params); goto mylop; case 'r': cpu_read(); goto mylop; case 'w': cpu_write(); goto mylop; case 'g': { uint32_t result; select_hte(mrc_params); mrc_params->hte_setup = 1; result = check_bls_ex(mrc_params, 0); DPF(D_INFO, "Extended test result %x\n", result); select_memory_manager(mrc_params); } goto mylop; case 'b': { uint32_t result; select_hte(mrc_params); mrc_params->hte_setup = 1; result = check_rw_coarse(mrc_params, 0); DPF(D_INFO, "Base test result %x\n", result); select_memory_manager(mrc_params); } goto mylop; case 'B': select_hte(mrc_params); HteMemOp(0x2340, 1, 1); select_memory_manager(mrc_params); goto mylop; case '3': { RegDPMC0 DPMC0reg; DPF( D_INFO, "===>> Start suspend\n"); isbR32m(MCU, DSTAT); DPMC0reg.raw = isbR32m(MCU, DPMC0); DPMC0reg.field.DYNSREN = 0; DPMC0reg.field.powerModeOpCode = 0x05; // Disable Master DLL isbW32m(MCU, DPMC0, DPMC0reg.raw); // Should be off for negative test case verification #if 1 Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG), (uint32_t)SB_COMMAND(SB_SUSPEND_CMND_OPCODE, MCU, 0)); #endif DPF( D_INFO, "press key\n"); mgetc(); DPF( D_INFO, "===>> Start resume\n"); isbR32m(MCU, DSTAT); mrc_params->boot_mode = bmS3; i = 0; } } // switch } // if( menu #endif //MRC_SV if (mrc_params->boot_mode & init[i].boot_path) { uint8_t major = init[i].post_code >> 8 & 0xFF; uint8_t minor = init[i].post_code >> 0 & 0xFF; post_code(major, minor); my_tsc = read_tsc(); init[i].init_fn(mrc_params); DPF(D_TIME, "Execution time %llX", read_tsc() - my_tsc); } } // display the timings print_timings(mrc_params); // MRC is complete. post_code(0x01, 0xFF); LEAVEFN(); return; }