/** @file MTRR setting library Copyright (c) 2008 - 2010, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include // // This table defines the offset, base and length of the fixed MTRRs // STATIC FIXED_MTRR MtrrLibFixedMtrrTable[] = { { MTRR_LIB_IA32_MTRR_FIX64K_00000, 0, SIZE_64KB }, { MTRR_LIB_IA32_MTRR_FIX16K_80000, 0x80000, SIZE_16KB }, { MTRR_LIB_IA32_MTRR_FIX16K_A0000, 0xA0000, SIZE_16KB }, { MTRR_LIB_IA32_MTRR_FIX4K_C0000, 0xC0000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_C8000, 0xC8000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_D0000, 0xD0000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_D8000, 0xD8000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_E0000, 0xE0000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_E8000, 0xE8000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_F0000, 0xF0000, SIZE_4KB }, { MTRR_LIB_IA32_MTRR_FIX4K_F8000, 0xF8000, SIZE_4KB }, }; /** Returns the variable MTRR count for the CPU. @return Variable MTRR count **/ UINT32 GetVariableMtrrCount ( VOID ) { return (UINT32)(AsmReadMsr64 (MTRR_LIB_IA32_MTRR_CAP) & MTRR_LIB_IA32_MTRR_CAP_VCNT_MASK); } /** Returns the firmware usable variable MTRR count for the CPU. @return Firmware usable variable MTRR count **/ UINT32 GetFirmwareVariableMtrrCount ( VOID ) { return GetVariableMtrrCount () - RESERVED_FIRMWARE_VARIABLE_MTRR_NUMBER; } /** Returns the default MTRR cache type for the system. @return MTRR default type **/ UINT64 GetMtrrDefaultMemoryType ( VOID ) { return (AsmReadMsr64 (MTRR_LIB_IA32_MTRR_DEF_TYPE) & 0xff); } /** Preparation before programming MTRR. This function will do some preparation for programming MTRRs: disable cache, invalid cache and disable MTRR caching functionality @return CR4 value before changing. **/ UINTN PreMtrrChange ( VOID ) { UINTN Value; // // Enter no fill cache mode, CD=1(Bit30), NW=0 (Bit29) // Value = AsmReadCr0 (); Value = (UINTN) BitFieldWrite64 (Value, 30, 30, 1); Value = (UINTN) BitFieldWrite64 (Value, 29, 29, 0); AsmWriteCr0 (Value); // // Flush cache // AsmWbinvd (); // // Clear PGE flag Bit 7 // Value = AsmReadCr4 (); AsmWriteCr4 ((UINTN) BitFieldWrite64 (Value, 7, 7, 0)); // // Flush all TLBs // CpuFlushTlb (); // // Disable Mtrrs // AsmMsrBitFieldWrite64 (MTRR_LIB_IA32_MTRR_DEF_TYPE, 10, 11, 0); return Value; } /** Cleaning up after programming MTRRs. This function will do some clean up after programming MTRRs: enable MTRR caching functionality, and enable cache @param Cr4 CR4 value to restore **/ VOID PostMtrrChange ( UINTN Cr4 ) { UINTN Value; // // Enable Cache MTRR // AsmMsrBitFieldWrite64 (MTRR_LIB_IA32_MTRR_DEF_TYPE, 10, 11, 3); // // Flush all TLBs and cache the second time // AsmWbinvd (); CpuFlushTlb (); // // Enable Normal Mode caching CD=NW=0, CD(Bit30), NW(Bit29) // Value = AsmReadCr0 (); Value = (UINTN) BitFieldWrite64 (Value, 30, 30, 0); Value = (UINTN) BitFieldWrite64 (Value, 29, 29, 0); AsmWriteCr0 (Value); AsmWriteCr4 (Cr4); return ; } /** Programs fixed MTRRs registers. @param MemoryCacheType The memory type to set. @param Base The base address of memory range. @param Length The length of memory range. @retval RETURN_SUCCESS The cache type was updated successfully @retval RETURN_UNSUPPORTED The requested range or cache type was invalid for the fixed MTRRs. **/ RETURN_STATUS ProgramFixedMtrr ( IN UINT64 MemoryCacheType, IN OUT UINT64 *Base, IN OUT UINT64 *Length ) { UINT32 MsrNum; UINT32 ByteShift; UINT64 TempQword; UINT64 OrMask; UINT64 ClearMask; TempQword = 0; OrMask = 0; ClearMask = 0; for (MsrNum = 0; MsrNum < MTRR_NUMBER_OF_FIXED_MTRR; MsrNum++) { if ((*Base >= MtrrLibFixedMtrrTable[MsrNum].BaseAddress) && (*Base < ( MtrrLibFixedMtrrTable[MsrNum].BaseAddress + (8 * MtrrLibFixedMtrrTable[MsrNum].Length) ) ) ) { break; } } if (MsrNum == MTRR_NUMBER_OF_FIXED_MTRR) { return RETURN_UNSUPPORTED; } // // We found the fixed MTRR to be programmed // for (ByteShift = 0; ByteShift < 8; ByteShift++) { if (*Base == ( MtrrLibFixedMtrrTable[MsrNum].BaseAddress + (ByteShift * MtrrLibFixedMtrrTable[MsrNum].Length) ) ) { break; } } if (ByteShift == 8) { return RETURN_UNSUPPORTED; } for ( ; ((ByteShift < 8) && (*Length >= MtrrLibFixedMtrrTable[MsrNum].Length)); ByteShift++ ) { OrMask |= LShiftU64 ((UINT64) MemoryCacheType, (UINT32) (ByteShift * 8)); ClearMask |= LShiftU64 ((UINT64) 0xFF, (UINT32) (ByteShift * 8)); *Length -= MtrrLibFixedMtrrTable[MsrNum].Length; *Base += MtrrLibFixedMtrrTable[MsrNum].Length; } if (ByteShift < 8 && (*Length != 0)) { return RETURN_UNSUPPORTED; } TempQword = (AsmReadMsr64 (MtrrLibFixedMtrrTable[MsrNum].Msr) & ~ClearMask) | OrMask; AsmWriteMsr64 (MtrrLibFixedMtrrTable[MsrNum].Msr, TempQword); return RETURN_SUCCESS; } /** Get the attribute of variable MTRRs. This function shadows the content of variable MTRRs into an internal array: VariableMtrr. @param MtrrValidBitsMask The mask for the valid bit of the MTRR @param MtrrValidAddressMask The valid address mask for MTRR @param VariableMtrr The array to shadow variable MTRRs content @return The return value of this paramter indicates the number of MTRRs which has been used. **/ UINT32 EFIAPI MtrrGetMemoryAttributeInVariableMtrr ( IN UINT64 MtrrValidBitsMask, IN UINT64 MtrrValidAddressMask, OUT VARIABLE_MTRR *VariableMtrr ) { UINTN Index; UINT32 MsrNum; UINT32 UsedMtrr; UINT32 FirmwareVariableMtrrCount; UINT32 VariableMtrrEnd; FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount (); VariableMtrrEnd = MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (2 * GetVariableMtrrCount ()) - 1; ZeroMem (VariableMtrr, sizeof (VARIABLE_MTRR) * MTRR_NUMBER_OF_VARIABLE_MTRR); UsedMtrr = 0; for (MsrNum = MTRR_LIB_IA32_VARIABLE_MTRR_BASE, Index = 0; ( (MsrNum < VariableMtrrEnd) && (Index < FirmwareVariableMtrrCount) ); MsrNum += 2 ) { if ((AsmReadMsr64 (MsrNum + 1) & MTRR_LIB_CACHE_MTRR_ENABLED) != 0) { VariableMtrr[Index].Msr = MsrNum; VariableMtrr[Index].BaseAddress = (AsmReadMsr64 (MsrNum) & MtrrValidAddressMask); VariableMtrr[Index].Length = ((~(AsmReadMsr64 (MsrNum + 1) & MtrrValidAddressMask) ) & MtrrValidBitsMask ) + 1; VariableMtrr[Index].Type = (AsmReadMsr64 (MsrNum) & 0x0ff); VariableMtrr[Index].Valid = TRUE; VariableMtrr[Index].Used = TRUE; UsedMtrr = UsedMtrr + 1; Index++; } } return UsedMtrr; } /** Checks overlap between given memory range and MTRRs. @param Start The start address of memory range. @param End The end address of memory range. @param VariableMtrr The array to shadow variable MTRRs content @retval TRUE Overlap exists. @retval FALSE No overlap. **/ BOOLEAN CheckMemoryAttributeOverlap ( IN PHYSICAL_ADDRESS Start, IN PHYSICAL_ADDRESS End, IN VARIABLE_MTRR *VariableMtrr ) { UINT32 Index; for (Index = 0; Index < 6; Index++) { if ( VariableMtrr[Index].Valid && !( (Start > (VariableMtrr[Index].BaseAddress + VariableMtrr[Index].Length - 1) ) || (End < VariableMtrr[Index].BaseAddress) ) ) { return TRUE; } } return FALSE; } /** Marks a variable MTRR as non-valid. @param Index The index of the array VariableMtrr to be invalidated @param VariableMtrr The array to shadow variable MTRRs content @param UsedMtrr The number of MTRRs which has already been used **/ VOID InvalidateShadowMtrr ( IN UINTN Index, IN VARIABLE_MTRR *VariableMtrr, OUT UINT32 *UsedMtrr ) { VariableMtrr[Index].Valid = FALSE; *UsedMtrr = *UsedMtrr - 1; } /** Combine memory attributes. If overlap exists between given memory range and MTRRs, try to combine them. @param Attributes The memory type to set. @param Base The base address of memory range. @param Length The length of memory range. @param VariableMtrr The array to shadow variable MTRRs content @param UsedMtrr The number of MTRRs which has already been used @param OverwriteExistingMtrr Returns whether an existing MTRR was used @retval EFI_SUCCESS Memory region successfully combined. @retval EFI_ACCESS_DENIED Memory region cannot be combined. **/ RETURN_STATUS CombineMemoryAttribute ( IN UINT64 Attributes, IN OUT UINT64 *Base, IN OUT UINT64 *Length, IN VARIABLE_MTRR *VariableMtrr, IN OUT UINT32 *UsedMtrr, OUT BOOLEAN *OverwriteExistingMtrr ) { UINT32 Index; UINT64 CombineStart; UINT64 CombineEnd; UINT64 MtrrEnd; UINT64 EndAddress; UINT32 FirmwareVariableMtrrCount; FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount (); *OverwriteExistingMtrr = FALSE; EndAddress = *Base +*Length - 1; for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { MtrrEnd = VariableMtrr[Index].BaseAddress + VariableMtrr[Index].Length - 1; if ( !VariableMtrr[Index].Valid || ( *Base > (MtrrEnd) || (EndAddress < VariableMtrr[Index].BaseAddress) ) ) { continue; } // // Combine same attribute MTRR range // if (Attributes == VariableMtrr[Index].Type) { // // if the Mtrr range contain the request range, return RETURN_SUCCESS // if (VariableMtrr[Index].BaseAddress <= *Base && MtrrEnd >= EndAddress) { *Length = 0; return RETURN_SUCCESS; } // // invalid this MTRR, and program the combine range // CombineStart = (*Base) < VariableMtrr[Index].BaseAddress ? (*Base) : VariableMtrr[Index].BaseAddress; CombineEnd = EndAddress > MtrrEnd ? EndAddress : MtrrEnd; // // Record the MTRR usage status in VariableMtrr array. // InvalidateShadowMtrr (Index, VariableMtrr, UsedMtrr); *Base = CombineStart; *Length = CombineEnd - CombineStart + 1; EndAddress = CombineEnd; *OverwriteExistingMtrr = TRUE; continue; } else { // // The cache type is different, but the range is convered by one MTRR // if (VariableMtrr[Index].BaseAddress == *Base && MtrrEnd == EndAddress) { InvalidateShadowMtrr (Index, VariableMtrr, UsedMtrr); continue; } } if ((Attributes== MTRR_CACHE_WRITE_THROUGH && VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) || (Attributes == MTRR_CACHE_WRITE_BACK && VariableMtrr[Index].Type == MTRR_CACHE_WRITE_THROUGH) || (Attributes == MTRR_CACHE_UNCACHEABLE) || (VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) ) { *OverwriteExistingMtrr = TRUE; continue; } // // Other type memory overlap is invalid // return RETURN_ACCESS_DENIED; } return RETURN_SUCCESS; } /** Calculate the maximum value which is a power of 2, but less the MemoryLength. @param MemoryLength The number to pass in. @return The maximum value which is align to power of 2 and less the MemoryLength **/ UINT64 Power2MaxMemory ( IN UINT64 MemoryLength ) { UINT64 Result; if (RShiftU64 (MemoryLength, 32)) { Result = LShiftU64 ( (UINT64) GetPowerOfTwo32 ( (UINT32) RShiftU64 (MemoryLength, 32) ), 32 ); } else { Result = (UINT64) GetPowerOfTwo32 ((UINT32) MemoryLength); } return Result; } /** Check the direction to program variable MTRRs. This function determines which direction of programming the variable MTRRs will use fewer MTRRs. @param Input Length of Memory to program MTRR @param MtrrNumber Pointer to the number of necessary MTRRs @retval TRUE Positive direction is better. FALSE Negtive direction is better. **/ BOOLEAN GetDirection ( IN UINT64 Input, IN UINTN *MtrrNumber ) { UINT64 TempQword; UINT32 Positive; UINT32 Subtractive; TempQword = Input; Positive = 0; Subtractive = 0; do { TempQword -= Power2MaxMemory (TempQword); Positive++; } while (TempQword != 0); TempQword = Power2MaxMemory (LShiftU64 (Input, 1)) - Input; Subtractive++; do { TempQword -= Power2MaxMemory (TempQword); Subtractive++; } while (TempQword != 0); if (Positive <= Subtractive) { *MtrrNumber = Positive; return TRUE; } else { *MtrrNumber = Subtractive; return FALSE; } } /** Invalid variable MTRRs according to the value in the shadow array. This function programs MTRRs according to the values specified in the shadow array. @param VariableMtrr The array to shadow variable MTRRs content **/ STATIC VOID InvalidateMtrr ( IN VARIABLE_MTRR *VariableMtrr ) { UINTN Index; UINTN Cr4; UINTN VariableMtrrCount; Cr4 = PreMtrrChange (); Index = 0; VariableMtrrCount = GetVariableMtrrCount (); while (Index < VariableMtrrCount) { if (VariableMtrr[Index].Valid == FALSE && VariableMtrr[Index].Used == TRUE ) { AsmWriteMsr64 (VariableMtrr[Index].Msr, 0); AsmWriteMsr64 (VariableMtrr[Index].Msr + 1, 0); VariableMtrr[Index].Used = FALSE; } Index ++; } PostMtrrChange (Cr4); } /** Programs variable MTRRs This function programs variable MTRRs @param MtrrNumber Index of MTRR to program. @param BaseAddress Base address of memory region. @param Length Length of memory region. @param MemoryCacheType Memory type to set. @param MtrrValidAddressMask The valid address mask for MTRR **/ STATIC VOID ProgramVariableMtrr ( IN UINTN MtrrNumber, IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 MemoryCacheType, IN UINT64 MtrrValidAddressMask ) { UINT64 TempQword; UINTN Cr4; Cr4 = PreMtrrChange (); // // MTRR Physical Base // TempQword = (BaseAddress & MtrrValidAddressMask) | MemoryCacheType; AsmWriteMsr64 ((UINT32) MtrrNumber, TempQword); // // MTRR Physical Mask // TempQword = ~(Length - 1); AsmWriteMsr64 ( (UINT32) (MtrrNumber + 1), (TempQword & MtrrValidAddressMask) | MTRR_LIB_CACHE_MTRR_ENABLED ); PostMtrrChange (Cr4); } /** Convert the Memory attibute value to MTRR_MEMORY_CACHE_TYPE. @param MtrrType MTRR memory type @return The enum item in MTRR_MEMORY_CACHE_TYPE **/ STATIC MTRR_MEMORY_CACHE_TYPE GetMemoryCacheTypeFromMtrrType ( IN UINT64 MtrrType ) { switch (MtrrType) { case MTRR_CACHE_UNCACHEABLE: return CacheUncacheable; case MTRR_CACHE_WRITE_COMBINING: return CacheWriteCombining; case MTRR_CACHE_WRITE_THROUGH: return CacheWriteThrough; case MTRR_CACHE_WRITE_PROTECTED: return CacheWriteProtected; case MTRR_CACHE_WRITE_BACK: return CacheWriteBack; default: // // MtrrType is MTRR_CACHE_INVALID_TYPE, that means // no mtrr covers the range // return CacheUncacheable; } } /** Initializes the valid bits mask and valid address mask for MTRRs. This function initializes the valid bits mask and valid address mask for MTRRs. @param MtrrValidBitsMask The mask for the valid bit of the MTRR @param MtrrValidAddressMask The valid address mask for the MTRR **/ STATIC VOID MtrrLibInitializeMtrrMask ( OUT UINT64 *MtrrValidBitsMask, OUT UINT64 *MtrrValidAddressMask ) { UINT32 RegEax; UINT8 PhysicalAddressBits; AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000008) { AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); PhysicalAddressBits = (UINT8) RegEax; *MtrrValidBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1; *MtrrValidAddressMask = *MtrrValidBitsMask & 0xfffffffffffff000ULL; } else { *MtrrValidBitsMask = MTRR_LIB_CACHE_VALID_ADDRESS; *MtrrValidAddressMask = 0xFFFFFFFF; } } /** Determing the real attribute of a memory range. This function is to arbitrate the real attribute of the memory when there are 2 MTRR covers the same memory range. For further details, please refer the IA32 Software Developer's Manual, Volume 3, Section 10.11.4.1. @param MtrrType1 the first kind of Memory type @param MtrrType2 the second kind of memory type **/ UINT64 MtrrPrecedence ( UINT64 MtrrType1, UINT64 MtrrType2 ) { UINT64 MtrrType; MtrrType = MTRR_CACHE_INVALID_TYPE; switch (MtrrType1) { case MTRR_CACHE_UNCACHEABLE: MtrrType = MTRR_CACHE_UNCACHEABLE; break; case MTRR_CACHE_WRITE_COMBINING: if ( MtrrType2==MTRR_CACHE_WRITE_COMBINING || MtrrType2==MTRR_CACHE_UNCACHEABLE ) { MtrrType = MtrrType2; } break; case MTRR_CACHE_WRITE_THROUGH: if ( MtrrType2==MTRR_CACHE_WRITE_THROUGH || MtrrType2==MTRR_CACHE_WRITE_BACK ) { MtrrType = MTRR_CACHE_WRITE_THROUGH; } else if(MtrrType2==MTRR_CACHE_UNCACHEABLE) { MtrrType = MTRR_CACHE_UNCACHEABLE; } break; case MTRR_CACHE_WRITE_PROTECTED: if (MtrrType2 == MTRR_CACHE_WRITE_PROTECTED || MtrrType2 == MTRR_CACHE_UNCACHEABLE) { MtrrType = MtrrType2; } break; case MTRR_CACHE_WRITE_BACK: if ( MtrrType2== MTRR_CACHE_UNCACHEABLE || MtrrType2==MTRR_CACHE_WRITE_THROUGH || MtrrType2== MTRR_CACHE_WRITE_BACK ) { MtrrType = MtrrType2; } break; case MTRR_CACHE_INVALID_TYPE: MtrrType = MtrrType2; break; default: break; } if (MtrrType2 == MTRR_CACHE_INVALID_TYPE) { MtrrType = MtrrType1; } return MtrrType; } /** This function attempts to set the attributes for a memory range. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes The bit mask of attributes to set for the memory region. @retval RETURN_SUCCESS The attributes were set for the memory region. @retval RETURN_INVALID_PARAMETER Length is zero. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. @retval RETURN_UNSUPPORTED The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. **/ RETURN_STATUS EFIAPI MtrrSetMemoryAttribute ( IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Attribute ) { UINT64 TempQword; RETURN_STATUS Status; UINT64 MemoryType; UINT64 Remainder; BOOLEAN OverLap; BOOLEAN Positive; UINT32 MsrNum; UINTN MtrrNumber; VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR]; UINT32 UsedMtrr; UINT64 MtrrValidBitsMask; UINT64 MtrrValidAddressMask; UINTN Cr4; BOOLEAN OverwriteExistingMtrr; UINT32 FirmwareVariableMtrrCount; UINT32 VariableMtrrEnd; FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount (); VariableMtrrEnd = MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (2 * GetVariableMtrrCount ()) - 1; MtrrLibInitializeMtrrMask(&MtrrValidBitsMask, &MtrrValidAddressMask); TempQword = 0; MemoryType = (UINT64)Attribute; OverwriteExistingMtrr = FALSE; // // Check for an invalid parameter // if (Length == 0) { return RETURN_INVALID_PARAMETER; } if ( (BaseAddress &~MtrrValidAddressMask) != 0 || (Length &~MtrrValidAddressMask) != 0 ) { return RETURN_UNSUPPORTED; } // // Check if Fixed MTRR // Status = RETURN_SUCCESS; while ((BaseAddress < BASE_1MB) && (Length > 0) && Status == RETURN_SUCCESS) { Cr4 = PreMtrrChange (); Status = ProgramFixedMtrr (MemoryType, &BaseAddress, &Length); PostMtrrChange (Cr4); if (RETURN_ERROR (Status)) { return Status; } } if (Length == 0) { // // A Length of 0 can only make sense for fixed MTTR ranges. // Since we just handled the fixed MTRRs, we can skip the // variable MTRR section. // goto Done; } // // Since memory ranges below 1MB will be overridden by the fixed MTRRs, // we can set the bade to 0 to save variable MTRRs. // if (BaseAddress == BASE_1MB) { BaseAddress = 0; Length += SIZE_1MB; } // // Check memory base address alignment // DivU64x64Remainder (BaseAddress, Power2MaxMemory (LShiftU64 (Length, 1)), &Remainder); if (Remainder != 0) { DivU64x64Remainder (BaseAddress, Power2MaxMemory (Length), &Remainder); if (Remainder != 0) { Status = RETURN_UNSUPPORTED; goto Done; } } // // Check for overlap // UsedMtrr = MtrrGetMemoryAttributeInVariableMtrr (MtrrValidBitsMask, MtrrValidAddressMask, VariableMtrr); OverLap = CheckMemoryAttributeOverlap (BaseAddress, BaseAddress + Length - 1, VariableMtrr); if (OverLap) { Status = CombineMemoryAttribute (MemoryType, &BaseAddress, &Length, VariableMtrr, &UsedMtrr, &OverwriteExistingMtrr); if (RETURN_ERROR (Status)) { goto Done; } if (Length == 0) { // // Combined successfully // Status = RETURN_SUCCESS; goto Done; } } // // Program Variable MTRRs // // Avoid hardcode here and read data dynamically // if (UsedMtrr >= FirmwareVariableMtrrCount) { Status = RETURN_OUT_OF_RESOURCES; goto Done; } // // The memory type is the same with the type specified by // MTRR_LIB_IA32_MTRR_DEF_TYPE. // if ((!OverwriteExistingMtrr) && (Attribute == GetMtrrDefaultMemoryType ())) { // // Invalidate the now-unused MTRRs // InvalidateMtrr(VariableMtrr); goto Done; } TempQword = Length; if (TempQword == Power2MaxMemory (TempQword)) { // // Invalidate the now-unused MTRRs // InvalidateMtrr(VariableMtrr); // // Find first unused MTRR // for (MsrNum = MTRR_LIB_IA32_VARIABLE_MTRR_BASE; MsrNum < VariableMtrrEnd; MsrNum += 2 ) { if ((AsmReadMsr64 (MsrNum + 1) & MTRR_LIB_CACHE_MTRR_ENABLED) == 0) { break; } } ProgramVariableMtrr ( MsrNum, BaseAddress, Length, MemoryType, MtrrValidAddressMask ); } else { Positive = GetDirection (TempQword, &MtrrNumber); if ((UsedMtrr + MtrrNumber) > FirmwareVariableMtrrCount) { Status = RETURN_OUT_OF_RESOURCES; goto Done; } // // Invalidate the now-unused MTRRs // InvalidateMtrr(VariableMtrr); // // Find first unused MTRR // for (MsrNum = MTRR_LIB_IA32_VARIABLE_MTRR_BASE; MsrNum < VariableMtrrEnd; MsrNum += 2 ) { if ((AsmReadMsr64 (MsrNum + 1) & MTRR_LIB_CACHE_MTRR_ENABLED) == 0) { break; } } if (!Positive) { Length = Power2MaxMemory (LShiftU64 (TempQword, 1)); ProgramVariableMtrr ( MsrNum, BaseAddress, Length, MemoryType, MtrrValidAddressMask ); BaseAddress += Length; TempQword = Length - TempQword; MemoryType = MTRR_CACHE_UNCACHEABLE; } do { // // Find unused MTRR // for (; MsrNum < VariableMtrrEnd; MsrNum += 2) { if ((AsmReadMsr64 (MsrNum + 1) & MTRR_LIB_CACHE_MTRR_ENABLED) == 0) { break; } } Length = Power2MaxMemory (TempQword); if (!Positive) { BaseAddress -= Length; } ProgramVariableMtrr ( MsrNum, BaseAddress, Length, MemoryType, MtrrValidAddressMask ); if (Positive) { BaseAddress += Length; } TempQword -= Length; } while (TempQword > 0); } Done: return Status; } /** This function will get the memory cache type of the specific address. This function is mainly for debug purpose. @param Address The specific address @return Memory cache type of the sepcific address **/ MTRR_MEMORY_CACHE_TYPE EFIAPI MtrrGetMemoryAttribute ( IN PHYSICAL_ADDRESS Address ) { UINT64 TempQword; UINTN Index; UINTN SubIndex; UINT64 MtrrType; UINT64 TempMtrrType; MTRR_MEMORY_CACHE_TYPE CacheType; VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR]; UINT64 MtrrValidBitsMask; UINT64 MtrrValidAddressMask; UINTN VariableMtrrCount; // // Check if MTRR is enabled, if not, return UC as attribute // TempQword = AsmReadMsr64 (MTRR_LIB_IA32_MTRR_DEF_TYPE); MtrrType = MTRR_CACHE_INVALID_TYPE; if ((TempQword & MTRR_LIB_CACHE_MTRR_ENABLED) == 0) { return CacheUncacheable; } // // If address is less than 1M, then try to go through the fixed MTRR // if (Address < BASE_1MB) { if ((TempQword & MTRR_LIB_CACHE_FIXED_MTRR_ENABLED) != 0) { // // Go through the fixed MTRR // for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { if (Address >= MtrrLibFixedMtrrTable[Index].BaseAddress && Address < ( MtrrLibFixedMtrrTable[Index].BaseAddress + (MtrrLibFixedMtrrTable[Index].Length * 8) ) ) { SubIndex = ((UINTN)Address - MtrrLibFixedMtrrTable[Index].BaseAddress) / MtrrLibFixedMtrrTable[Index].Length; TempQword = AsmReadMsr64 (MtrrLibFixedMtrrTable[Index].Msr); MtrrType = RShiftU64 (TempQword, SubIndex * 8) & 0xFF; return GetMemoryCacheTypeFromMtrrType (MtrrType); } } } } MtrrLibInitializeMtrrMask(&MtrrValidBitsMask, &MtrrValidAddressMask); MtrrGetMemoryAttributeInVariableMtrr( MtrrValidBitsMask, MtrrValidAddressMask, VariableMtrr ); // // Go through the variable MTRR // VariableMtrrCount = GetVariableMtrrCount (); for (Index = 0; Index < VariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid) { if (Address >= VariableMtrr[Index].BaseAddress && Address < VariableMtrr[Index].BaseAddress+VariableMtrr[Index].Length) { TempMtrrType = VariableMtrr[Index].Type; MtrrType = MtrrPrecedence (MtrrType, TempMtrrType); } } } CacheType = GetMemoryCacheTypeFromMtrrType (MtrrType); return CacheType; } /** This function will get the raw value in variable MTRRs @param VariableSettings A buffer to hold variable MTRRs content. @return The VariableSettings input pointer **/ MTRR_VARIABLE_SETTINGS* EFIAPI MtrrGetVariableMtrr ( OUT MTRR_VARIABLE_SETTINGS *VariableSettings ) { UINT32 Index; UINT32 VariableMtrrCount; VariableMtrrCount = GetVariableMtrrCount (); for (Index = 0; Index < VariableMtrrCount; Index++) { VariableSettings->Mtrr[Index].Base = AsmReadMsr64 (MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (Index << 1)); VariableSettings->Mtrr[Index].Mask = AsmReadMsr64 (MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (Index << 1) + 1); } return VariableSettings; } /** Worker function setting variable MTRRs @param VariableSettings A buffer to hold variable MTRRs content. **/ VOID MtrrSetVariableMtrrWorker ( IN MTRR_VARIABLE_SETTINGS *VariableSettings ) { UINT32 Index; UINT32 VariableMtrrCount; VariableMtrrCount = GetVariableMtrrCount (); for (Index = 0; Index < VariableMtrrCount; Index++) { AsmWriteMsr64 ( MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (Index << 1), VariableSettings->Mtrr[Index].Base ); AsmWriteMsr64 ( MTRR_LIB_IA32_VARIABLE_MTRR_BASE + (Index << 1) + 1, VariableSettings->Mtrr[Index].Mask ); } } /** This function sets variable MTRRs @param VariableSettings A buffer to hold variable MTRRs content. @return The pointer of VariableSettings **/ MTRR_VARIABLE_SETTINGS* EFIAPI MtrrSetVariableMtrr ( IN MTRR_VARIABLE_SETTINGS *VariableSettings ) { UINTN Cr4; Cr4 = PreMtrrChange (); MtrrSetVariableMtrrWorker (VariableSettings); PostMtrrChange (Cr4); return VariableSettings; } /** This function gets the content in fixed MTRRs @param FixedSettings A buffer to hold fixed Mtrrs content. @retval The pointer of FixedSettings **/ MTRR_FIXED_SETTINGS* EFIAPI MtrrGetFixedMtrr ( OUT MTRR_FIXED_SETTINGS *FixedSettings ) { UINT32 Index; for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { FixedSettings->Mtrr[Index] = AsmReadMsr64 (MtrrLibFixedMtrrTable[Index].Msr); }; return FixedSettings; } /** Worker function setting fixed MTRRs @param FixedSettings A buffer to hold fixed Mtrrs content. **/ VOID MtrrSetFixedMtrrWorker ( IN MTRR_FIXED_SETTINGS *FixedSettings ) { UINT32 Index; for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { AsmWriteMsr64 ( MtrrLibFixedMtrrTable[Index].Msr, FixedSettings->Mtrr[Index] ); } } /** This function sets fixed MTRRs @param FixedSettings A buffer to hold fixed Mtrrs content. @retval The pointer of FixedSettings **/ MTRR_FIXED_SETTINGS* EFIAPI MtrrSetFixedMtrr ( IN MTRR_FIXED_SETTINGS *FixedSettings ) { UINTN Cr4; Cr4 = PreMtrrChange (); MtrrSetFixedMtrrWorker (FixedSettings); PostMtrrChange (Cr4); return FixedSettings; } /** This function gets the content in all MTRRs (variable and fixed) @param MtrrSetting A buffer to hold all Mtrrs content. @retval the pointer of MtrrSetting **/ MTRR_SETTINGS * EFIAPI MtrrGetAllMtrrs ( OUT MTRR_SETTINGS *MtrrSetting ) { // // Get fixed MTRRs // MtrrGetFixedMtrr (&MtrrSetting->Fixed); // // Get variable MTRRs // MtrrGetVariableMtrr (&MtrrSetting->Variables); // // Get MTRR_DEF_TYPE value // MtrrSetting->MtrrDefType = AsmReadMsr64 (MTRR_LIB_IA32_MTRR_DEF_TYPE); return MtrrSetting; } /** This function sets all MTRRs (variable and fixed) @param MtrrSetting A buffer holding all MTRRs content. @retval The pointer of MtrrSetting **/ MTRR_SETTINGS * EFIAPI MtrrSetAllMtrrs ( IN MTRR_SETTINGS *MtrrSetting ) { UINTN Cr4; Cr4 = PreMtrrChange (); // // Set fixed MTRRs // MtrrSetFixedMtrrWorker (&MtrrSetting->Fixed); // // Set variable MTRRs // MtrrSetVariableMtrrWorker (&MtrrSetting->Variables); // // Set MTRR_DEF_TYPE value // AsmWriteMsr64 (MTRR_LIB_IA32_MTRR_DEF_TYPE, MtrrSetting->MtrrDefType); PostMtrrChange (Cr4); return MtrrSetting; } /** This function prints all MTRRs for debugging. **/ VOID MtrrDebugPrintAllMtrrs ( ) { DEBUG_CODE ( { MTRR_SETTINGS MtrrSettings; UINTN Index; UINTN VariableMtrrCount; MtrrGetAllMtrrs (&MtrrSettings); DEBUG((EFI_D_ERROR, "DefaultType = %016lx\n", MtrrSettings.MtrrDefType)); for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { DEBUG(( EFI_D_ERROR, "Fixed[%02d] = %016lx\n", Index, MtrrSettings.Fixed.Mtrr[Index] )); } VariableMtrrCount = GetVariableMtrrCount (); for (Index = 0; Index < VariableMtrrCount; Index++) { DEBUG(( EFI_D_ERROR, "Variable[%02d] = %016lx, %016lx\n", Index, MtrrSettings.Variables.Mtrr[Index].Base, MtrrSettings.Variables.Mtrr[Index].Mask )); } } ); }