/** @file The common variable operation routines shared by DXE_RUNTIME variable module and DXE_SMM variable module. Caution: This module requires additional review when modified. This driver will have external input - variable data. They may be input in SMM mode. This external input must be validated carefully to avoid security issue like buffer overflow, integer overflow. VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API. They need check input parameter. VariableServiceGetVariable() and VariableServiceSetVariable() are external API to receive datasize and data buffer. The size should be checked carefully. VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow, integer overflow. It should also check attribute to avoid authentication bypass. Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Variable.h" #include "AuthService.h" VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal; /// /// Define a memory cache that improves the search performance for a variable. /// VARIABLE_STORE_HEADER *mNvVariableCache = NULL; /// /// The memory entry used for variable statistics data. /// VARIABLE_INFO_ENTRY *gVariableInfo = NULL; /// /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID /// or EVT_GROUP_READY_TO_BOOT event. /// LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList); /// /// The flag to indicate whether the platform has left the DXE phase of execution. /// BOOLEAN mEndOfDxe = FALSE; /// /// The flag to indicate whether the variable storage locking is enabled. /// BOOLEAN mEnableLocking = TRUE; // // To prevent name collisions with possible future globally defined variables, // other internal firmware data variables that are not defined here must be // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or // any other GUID defined by the UEFI Specification. Implementations must // only permit the creation of variables with a UEFI Specification-defined // VendorGuid when these variables are documented in the UEFI Specification. // GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = { {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT}, {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT}, {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT}, {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT}, }; GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = { {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT}, {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT}, {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT}, }; /** SecureBoot Hook for auth variable update. @param[in] VariableName Name of Variable to be found. @param[in] VendorGuid Variable vendor GUID. **/ VOID EFIAPI SecureBootHook ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ); /** Routine used to track statistical information about variable usage. The data is stored in the EFI system table so it can be accessed later. VariableInfo.efi can dump out the table. Only Boot Services variable accesses are tracked by this code. The PcdVariableCollectStatistics build flag controls if this feature is enabled. A read that hits in the cache will have Read and Cache true for the transaction. Data is allocated by this routine, but never freed. @param[in] VariableName Name of the Variable to track. @param[in] VendorGuid Guid of the Variable to track. @param[in] Volatile TRUE if volatile FALSE if non-volatile. @param[in] Read TRUE if GetVariable() was called. @param[in] Write TRUE if SetVariable() was called. @param[in] Delete TRUE if deleted via SetVariable(). @param[in] Cache TRUE for a cache hit. **/ VOID UpdateVariableInfo ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN BOOLEAN Volatile, IN BOOLEAN Read, IN BOOLEAN Write, IN BOOLEAN Delete, IN BOOLEAN Cache ) { VARIABLE_INFO_ENTRY *Entry; if (FeaturePcdGet (PcdVariableCollectStatistics)) { if (AtRuntime ()) { // Don't collect statistics at runtime. return; } if (gVariableInfo == NULL) { // // On the first call allocate a entry and place a pointer to it in // the EFI System Table. // gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); ASSERT (gVariableInfo != NULL); CopyGuid (&gVariableInfo->VendorGuid, VendorGuid); gVariableInfo->Name = AllocatePool (StrSize (VariableName)); ASSERT (gVariableInfo->Name != NULL); StrCpy (gVariableInfo->Name, VariableName); gVariableInfo->Volatile = Volatile; } for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) { if (CompareGuid (VendorGuid, &Entry->VendorGuid)) { if (StrCmp (VariableName, Entry->Name) == 0) { if (Read) { Entry->ReadCount++; } if (Write) { Entry->WriteCount++; } if (Delete) { Entry->DeleteCount++; } if (Cache) { Entry->CacheCount++; } return; } } if (Entry->Next == NULL) { // // If the entry is not in the table add it. // Next iteration of the loop will fill in the data. // Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); ASSERT (Entry->Next != NULL); CopyGuid (&Entry->Next->VendorGuid, VendorGuid); Entry->Next->Name = AllocatePool (StrSize (VariableName)); ASSERT (Entry->Next->Name != NULL); StrCpy (Entry->Next->Name, VariableName); Entry->Next->Volatile = Volatile; } } } } /** This code checks if variable header is valid or not. @param Variable Pointer to the Variable Header. @retval TRUE Variable header is valid. @retval FALSE Variable header is not valid. **/ BOOLEAN IsValidVariableHeader ( IN VARIABLE_HEADER *Variable ) { if (Variable == NULL || Variable->StartId != VARIABLE_DATA) { return FALSE; } return TRUE; } /** This function writes data to the FWH at the correct LBA even if the LBAs are fragmented. @param Global Pointer to VARAIBLE_GLOBAL structure. @param Volatile Point out the Variable is Volatile or Non-Volatile. @param SetByIndex TRUE if target pointer is given as index. FALSE if target pointer is absolute. @param Fvb Pointer to the writable FVB protocol. @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER structure. @param DataSize Size of data to be written. @param Buffer Pointer to the buffer from which data is written. @retval EFI_INVALID_PARAMETER Parameters not valid. @retval EFI_SUCCESS Variable store successfully updated. **/ EFI_STATUS UpdateVariableStore ( IN VARIABLE_GLOBAL *Global, IN BOOLEAN Volatile, IN BOOLEAN SetByIndex, IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, IN UINTN DataPtrIndex, IN UINT32 DataSize, IN UINT8 *Buffer ) { EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry; UINTN BlockIndex2; UINTN LinearOffset; UINTN CurrWriteSize; UINTN CurrWritePtr; UINT8 *CurrBuffer; EFI_LBA LbaNumber; UINTN Size; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; VARIABLE_STORE_HEADER *VolatileBase; EFI_PHYSICAL_ADDRESS FvVolHdr; EFI_PHYSICAL_ADDRESS DataPtr; EFI_STATUS Status; FwVolHeader = NULL; DataPtr = DataPtrIndex; // // Check if the Data is Volatile. // if (!Volatile) { if (Fvb == NULL) { return EFI_INVALID_PARAMETER; } Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr); ASSERT_EFI_ERROR (Status); FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr); // // Data Pointer should point to the actual Address where data is to be // written. // if (SetByIndex) { DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; } if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) { return EFI_INVALID_PARAMETER; } } else { // // Data Pointer should point to the actual Address where data is to be // written. // VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); if (SetByIndex) { DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase; } if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) { return EFI_INVALID_PARAMETER; } // // If Volatile Variable just do a simple mem copy. // CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize); return EFI_SUCCESS; } // // If we are here we are dealing with Non-Volatile Variables. // LinearOffset = (UINTN) FwVolHeader; CurrWritePtr = (UINTN) DataPtr; CurrWriteSize = DataSize; CurrBuffer = Buffer; LbaNumber = 0; if (CurrWritePtr < LinearOffset) { return EFI_INVALID_PARAMETER; } for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) { for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) { // // Check to see if the Variable Writes are spanning through multiple // blocks. // if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) { if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) { Status = Fvb->Write ( Fvb, LbaNumber, (UINTN) (CurrWritePtr - LinearOffset), &CurrWriteSize, CurrBuffer ); return Status; } else { Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr); Status = Fvb->Write ( Fvb, LbaNumber, (UINTN) (CurrWritePtr - LinearOffset), &Size, CurrBuffer ); if (EFI_ERROR (Status)) { return Status; } CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length; CurrBuffer = CurrBuffer + Size; CurrWriteSize = CurrWriteSize - Size; } } LinearOffset += PtrBlockMapEntry->Length; LbaNumber++; } } return EFI_SUCCESS; } /** This code gets the current status of Variable Store. @param VarStoreHeader Pointer to the Variable Store Header. @retval EfiRaw Variable store status is raw. @retval EfiValid Variable store status is valid. @retval EfiInvalid Variable store status is invalid. **/ VARIABLE_STORE_STATUS GetVariableStoreStatus ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { if (CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) && VarStoreHeader->Format == VARIABLE_STORE_FORMATTED && VarStoreHeader->State == VARIABLE_STORE_HEALTHY ) { return EfiValid; } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff && VarStoreHeader->Size == 0xffffffff && VarStoreHeader->Format == 0xff && VarStoreHeader->State == 0xff ) { return EfiRaw; } else { return EfiInvalid; } } /** This code gets the size of name of variable. @param Variable Pointer to the Variable Header. @return UINTN Size of variable in bytes. **/ UINTN NameSizeOfVariable ( IN VARIABLE_HEADER *Variable ) { if (Variable->State == (UINT8) (-1) || Variable->DataSize == (UINT32) (-1) || Variable->NameSize == (UINT32) (-1) || Variable->Attributes == (UINT32) (-1)) { return 0; } return (UINTN) Variable->NameSize; } /** This code gets the size of variable data. @param Variable Pointer to the Variable Header. @return Size of variable in bytes. **/ UINTN DataSizeOfVariable ( IN VARIABLE_HEADER *Variable ) { if (Variable->State == (UINT8) (-1) || Variable->DataSize == (UINT32) (-1) || Variable->NameSize == (UINT32) (-1) || Variable->Attributes == (UINT32) (-1)) { return 0; } return (UINTN) Variable->DataSize; } /** This code gets the pointer to the variable name. @param Variable Pointer to the Variable Header. @return Pointer to Variable Name which is Unicode encoding. **/ CHAR16 * GetVariableNamePtr ( IN VARIABLE_HEADER *Variable ) { return (CHAR16 *) (Variable + 1); } /** This code gets the pointer to the variable data. @param Variable Pointer to the Variable Header. @return Pointer to Variable Data. **/ UINT8 * GetVariableDataPtr ( IN VARIABLE_HEADER *Variable ) { UINTN Value; // // Be careful about pad size for alignment. // Value = (UINTN) GetVariableNamePtr (Variable); Value += NameSizeOfVariable (Variable); Value += GET_PAD_SIZE (NameSizeOfVariable (Variable)); return (UINT8 *) Value; } /** This code gets the pointer to the next variable header. @param Variable Pointer to the Variable Header. @return Pointer to next variable header. **/ VARIABLE_HEADER * GetNextVariablePtr ( IN VARIABLE_HEADER *Variable ) { UINTN Value; if (!IsValidVariableHeader (Variable)) { return NULL; } Value = (UINTN) GetVariableDataPtr (Variable); Value += DataSizeOfVariable (Variable); Value += GET_PAD_SIZE (DataSizeOfVariable (Variable)); // // Be careful about pad size for alignment. // return (VARIABLE_HEADER *) HEADER_ALIGN (Value); } /** Gets the pointer to the first variable header in given variable store area. @param VarStoreHeader Pointer to the Variable Store Header. @return Pointer to the first variable header. **/ VARIABLE_HEADER * GetStartPointer ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { // // The end of variable store. // return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1); } /** Gets the pointer to the end of the variable storage area. This function gets pointer to the end of the variable storage area, according to the input variable store header. @param VarStoreHeader Pointer to the Variable Store Header. @return Pointer to the end of the variable storage area. **/ VARIABLE_HEADER * GetEndPointer ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { // // The end of variable store // return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size); } /** Check the PubKeyIndex is a valid key or not. This function will iterate the NV storage to see if this PubKeyIndex is still referenced by any valid count-based auth variabe. @param[in] PubKeyIndex Index of the public key in public key store. @retval TRUE The PubKeyIndex is still in use. @retval FALSE The PubKeyIndex is not referenced by any count-based auth variabe. **/ BOOLEAN IsValidPubKeyIndex ( IN UINT32 PubKeyIndex ) { VARIABLE_HEADER *Variable; if (PubKeyIndex > mPubKeyNumber) { return FALSE; } Variable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); while (IsValidVariableHeader (Variable)) { if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) && Variable->PubKeyIndex == PubKeyIndex) { return TRUE; } Variable = GetNextVariablePtr (Variable); } return FALSE; } /** Get the number of valid public key in PubKeyStore. @param[in] PubKeyNumber Number of the public key in public key store. @return Number of valid public key in PubKeyStore. **/ UINT32 GetValidPubKeyNumber ( IN UINT32 PubKeyNumber ) { UINT32 PubKeyIndex; UINT32 Counter; Counter = 0; for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) { if (IsValidPubKeyIndex (PubKeyIndex)) { Counter++; } } return Counter; } /** Filter the useless key in public key store. This function will find out all valid public keys in public key database, save them in new allocated buffer NewPubKeyStore, and give the new PubKeyIndex. The caller is responsible for freeing buffer NewPubKeyIndex and NewPubKeyStore with FreePool(). @param[in] PubKeyStore Point to the public key database. @param[in] PubKeyNumber Number of the public key in PubKeyStore. @param[out] NewPubKeyIndex Point to an array of new PubKeyIndex corresponds to NewPubKeyStore. @param[out] NewPubKeyStore Saved all valid public keys in PubKeyStore. @param[out] NewPubKeySize Buffer size of the NewPubKeyStore. @retval EFI_SUCCESS Trim operation is complete successfully. @retval EFI_OUT_OF_RESOURCES No enough memory resources, or no useless key in PubKeyStore. **/ EFI_STATUS PubKeyStoreFilter ( IN UINT8 *PubKeyStore, IN UINT32 PubKeyNumber, OUT UINT32 **NewPubKeyIndex, OUT UINT8 **NewPubKeyStore, OUT UINT32 *NewPubKeySize ) { UINT32 PubKeyIndex; UINT32 CopiedKey; UINT32 NewPubKeyNumber; NewPubKeyNumber = GetValidPubKeyNumber (PubKeyNumber); if (NewPubKeyNumber == PubKeyNumber) { return EFI_OUT_OF_RESOURCES; } if (NewPubKeyNumber != 0) { *NewPubKeySize = NewPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE; } else { *NewPubKeySize = sizeof (UINT8); } *NewPubKeyStore = AllocatePool (*NewPubKeySize); if (*NewPubKeyStore == NULL) { return EFI_OUT_OF_RESOURCES; } *NewPubKeyIndex = AllocateZeroPool ((PubKeyNumber + 1) * sizeof (UINT32)); if (*NewPubKeyIndex == NULL) { FreePool (*NewPubKeyStore); *NewPubKeyStore = NULL; return EFI_OUT_OF_RESOURCES; } CopiedKey = 0; for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) { if (IsValidPubKeyIndex (PubKeyIndex)) { CopyMem ( *NewPubKeyStore + CopiedKey * EFI_CERT_TYPE_RSA2048_SIZE, PubKeyStore + (PubKeyIndex - 1) * EFI_CERT_TYPE_RSA2048_SIZE, EFI_CERT_TYPE_RSA2048_SIZE ); (*NewPubKeyIndex)[PubKeyIndex] = ++CopiedKey; } } return EFI_SUCCESS; } /** Variable store garbage collection and reclaim operation. If ReclaimPubKeyStore is FALSE, reclaim variable space by deleting the obsoleted varaibles. If ReclaimPubKeyStore is TRUE, reclaim invalid key in public key database and update the PubKeyIndex for all the count-based authenticate variable in NV storage. @param[in] VariableBase Base address of variable store. @param[out] LastVariableOffset Offset of last variable. @param[in] IsVolatile The variable store is volatile or not; if it is non-volatile, need FTW. @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure. @param[in] NewVariable Pointer to new variable. @param[in] NewVariableSize New variable size. @param[in] ReclaimPubKeyStore Reclaim for public key database or not. @return EFI_SUCCESS Reclaim operation has finished successfully. @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space. @return EFI_DEVICE_ERROR The public key database doesn't exist. @return Others Unexpect error happened during reclaim operation. **/ EFI_STATUS Reclaim ( IN EFI_PHYSICAL_ADDRESS VariableBase, OUT UINTN *LastVariableOffset, IN BOOLEAN IsVolatile, IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack, IN VARIABLE_HEADER *NewVariable, IN UINTN NewVariableSize, IN BOOLEAN ReclaimPubKeyStore ) { VARIABLE_HEADER *Variable; VARIABLE_HEADER *AddedVariable; VARIABLE_HEADER *NextVariable; VARIABLE_HEADER *NextAddedVariable; VARIABLE_STORE_HEADER *VariableStoreHeader; UINT8 *ValidBuffer; UINTN MaximumBufferSize; UINTN VariableSize; UINTN NameSize; UINT8 *CurrPtr; VOID *Point0; VOID *Point1; BOOLEAN FoundAdded; EFI_STATUS Status; UINTN CommonVariableTotalSize; UINTN HwErrVariableTotalSize; UINT32 *NewPubKeyIndex; UINT8 *NewPubKeyStore; UINT32 NewPubKeySize; VARIABLE_HEADER *PubKeyHeader; VARIABLE_HEADER *UpdatingVariable; VARIABLE_HEADER *UpdatingInDeletedTransition; UpdatingVariable = NULL; UpdatingInDeletedTransition = NULL; if (UpdatingPtrTrack != NULL) { UpdatingVariable = UpdatingPtrTrack->CurrPtr; UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr; } VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase); CommonVariableTotalSize = 0; HwErrVariableTotalSize = 0; NewPubKeyIndex = NULL; NewPubKeyStore = NULL; NewPubKeySize = 0; PubKeyHeader = NULL; if (IsVolatile) { // // Start Pointers for the variable. // Variable = GetStartPointer (VariableStoreHeader); MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) && Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition ) { VariableSize = (UINTN) NextVariable - (UINTN) Variable; MaximumBufferSize += VariableSize; } Variable = NextVariable; } if (NewVariable != NULL) { // // Add the new variable size. // MaximumBufferSize += NewVariableSize; } // // Reserve the 1 Bytes with Oxff to identify the // end of the variable buffer. // MaximumBufferSize += 1; ValidBuffer = AllocatePool (MaximumBufferSize); if (ValidBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } } else { // // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache // as the buffer to reduce SMRAM consumption for SMM variable driver. // MaximumBufferSize = mNvVariableCache->Size; ValidBuffer = (UINT8 *) mNvVariableCache; } SetMem (ValidBuffer, MaximumBufferSize, 0xff); // // Copy variable store header. // CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER)); CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); if (ReclaimPubKeyStore) { ASSERT (IsVolatile == FALSE); // // Trim the PubKeyStore and get new PubKeyIndex. // Status = PubKeyStoreFilter ( mPubKeyStore, mPubKeyNumber, &NewPubKeyIndex, &NewPubKeyStore, &NewPubKeySize ); if (EFI_ERROR (Status)) { goto Done; } ASSERT ((NewPubKeyIndex != NULL) && (NewPubKeyStore != NULL)); // // Refresh the PubKeyIndex for all valid variables (ADDED and IN_DELETED_TRANSITION). // Variable = GetStartPointer (VariableStoreHeader); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { if ((StrCmp (GetVariableNamePtr (Variable), AUTHVAR_KEYDB_NAME) == 0) && (CompareGuid (&Variable->VendorGuid, &gEfiAuthenticatedVariableGuid))) { // // Skip the public key database, it will be reinstalled later. // PubKeyHeader = Variable; Variable = NextVariable; continue; } VariableSize = (UINTN) NextVariable - (UINTN) Variable; CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); ((VARIABLE_HEADER*) CurrPtr)->PubKeyIndex = NewPubKeyIndex[Variable->PubKeyIndex]; CurrPtr += VariableSize; if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) { CommonVariableTotalSize += VariableSize; } } Variable = NextVariable; } // // Reinstall the new public key database. // ASSERT (PubKeyHeader != NULL); if (PubKeyHeader == NULL) { Status = EFI_DEVICE_ERROR; goto Done; } CopyMem (CurrPtr, (UINT8*) PubKeyHeader, sizeof (VARIABLE_HEADER)); Variable = (VARIABLE_HEADER*) CurrPtr; Variable->DataSize = NewPubKeySize; StrCpy (GetVariableNamePtr (Variable), GetVariableNamePtr (PubKeyHeader)); CopyMem (GetVariableDataPtr (Variable), NewPubKeyStore, NewPubKeySize); CurrPtr = (UINT8*) GetNextVariablePtr (Variable); CommonVariableTotalSize += (UINTN) CurrPtr - (UINTN) Variable; } else { // // Reinstall all ADDED variables as long as they are not identical to Updating Variable. // Variable = GetStartPointer (VariableStoreHeader); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) { VariableSize = (UINTN) NextVariable - (UINTN) Variable; CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); CurrPtr += VariableSize; if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { HwErrVariableTotalSize += VariableSize; } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { CommonVariableTotalSize += VariableSize; } } Variable = NextVariable; } // // Reinstall all in delete transition variables. // Variable = GetStartPointer (VariableStoreHeader); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { // // Buffer has cached all ADDED variable. // Per IN_DELETED variable, we have to guarantee that // no ADDED one in previous buffer. // FoundAdded = FALSE; AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); while (IsValidVariableHeader (AddedVariable)) { NextAddedVariable = GetNextVariablePtr (AddedVariable); NameSize = NameSizeOfVariable (AddedVariable); if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) && NameSize == NameSizeOfVariable (Variable) ) { Point0 = (VOID *) GetVariableNamePtr (AddedVariable); Point1 = (VOID *) GetVariableNamePtr (Variable); if (CompareMem (Point0, Point1, NameSize) == 0) { FoundAdded = TRUE; break; } } AddedVariable = NextAddedVariable; } if (!FoundAdded) { // // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED. // VariableSize = (UINTN) NextVariable - (UINTN) Variable; CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED; CurrPtr += VariableSize; if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { HwErrVariableTotalSize += VariableSize; } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { CommonVariableTotalSize += VariableSize; } } } Variable = NextVariable; } // // Install the new variable if it is not NULL. // if (NewVariable != NULL) { if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) { // // No enough space to store the new variable. // Status = EFI_OUT_OF_RESOURCES; goto Done; } if (!IsVolatile) { if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += NewVariableSize; } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) { CommonVariableTotalSize += NewVariableSize; } if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) || (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) { // // No enough space to store the new variable by NV or NV+HR attribute. // Status = EFI_OUT_OF_RESOURCES; goto Done; } } CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize); ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED; if (UpdatingVariable != NULL) { UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))); UpdatingPtrTrack->InDeletedTransitionPtr = NULL; } CurrPtr += NewVariableSize; } } if (IsVolatile) { // // If volatile variable store, just copy valid buffer. // SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff); CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer)); *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer); Status = EFI_SUCCESS; } else { // // If non-volatile variable store, perform FTW here. // Status = FtwVariableSpace ( VariableBase, (VARIABLE_STORE_HEADER *) ValidBuffer ); if (!EFI_ERROR (Status)) { *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer); mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize; mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize; } else { NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase); while (IsValidVariableHeader (NextVariable)) { VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER); if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) { mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); } NextVariable = GetNextVariablePtr (NextVariable); } *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase; } } Done: if (IsVolatile) { FreePool (ValidBuffer); } else { // // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back. // CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size); if (NewPubKeyStore != NULL) { FreePool (NewPubKeyStore); } if (NewPubKeyIndex != NULL) { FreePool (NewPubKeyIndex); } } return Status; } /** Find the variable in the specified variable store. @param[in] VariableName Name of the variable to be found @param[in] VendorGuid Vendor GUID to be found. @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute check at runtime when searching variable. @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information. @retval EFI_SUCCESS Variable found successfully @retval EFI_NOT_FOUND Variable not found **/ EFI_STATUS FindVariableEx ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN BOOLEAN IgnoreRtCheck, IN OUT VARIABLE_POINTER_TRACK *PtrTrack ) { VARIABLE_HEADER *InDeletedVariable; VOID *Point; PtrTrack->InDeletedTransitionPtr = NULL; // // Find the variable by walk through HOB, volatile and non-volatile variable store. // InDeletedVariable = NULL; for ( PtrTrack->CurrPtr = PtrTrack->StartPtr ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr) ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr) ) { if (PtrTrack->CurrPtr->State == VAR_ADDED || PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED) ) { if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) { if (VariableName[0] == 0) { if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { InDeletedVariable = PtrTrack->CurrPtr; } else { PtrTrack->InDeletedTransitionPtr = InDeletedVariable; return EFI_SUCCESS; } } else { if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) { Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr); ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0); if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) { if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { InDeletedVariable = PtrTrack->CurrPtr; } else { PtrTrack->InDeletedTransitionPtr = InDeletedVariable; return EFI_SUCCESS; } } } } } } } PtrTrack->CurrPtr = InDeletedVariable; return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS; } /** Finds variable in storage blocks of volatile and non-volatile storage areas. This code finds variable in storage blocks of volatile and non-volatile storage areas. If VariableName is an empty string, then we just return the first qualified variable without comparing VariableName and VendorGuid. If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check at runtime when searching existing variable, only VariableName and VendorGuid are compared. Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime. @param[in] VariableName Name of the variable to be found. @param[in] VendorGuid Vendor GUID to be found. @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output, including the range searched and the target position. @param[in] Global Pointer to VARIABLE_GLOBAL structure, including base of volatile variable storage area, base of NV variable storage area, and a lock. @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute check at runtime when searching variable. @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL. @retval EFI_SUCCESS Variable successfully found. @retval EFI_NOT_FOUND Variable not found **/ EFI_STATUS FindVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT VARIABLE_POINTER_TRACK *PtrTrack, IN VARIABLE_GLOBAL *Global, IN BOOLEAN IgnoreRtCheck ) { EFI_STATUS Status; VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax]; VARIABLE_STORE_TYPE Type; if (VariableName[0] != 0 && VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } // // 0: Volatile, 1: HOB, 2: Non-Volatile. // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName // make use of this mapping to implement search algorithm. // VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase; VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase; VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache; // // Find the variable by walk through HOB, volatile and non-volatile variable store. // for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) { if (VariableStoreHeader[Type] == NULL) { continue; } PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]); PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]); PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile); Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack); if (!EFI_ERROR (Status)) { return Status; } } return EFI_NOT_FOUND; } /** Get index from supported language codes according to language string. This code is used to get corresponding index in supported language codes. It can handle RFC4646 and ISO639 language tags. In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index. In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index. For example: SupportedLang = "engfraengfra" Lang = "eng" Iso639Language = TRUE The return value is "0". Another example: SupportedLang = "en;fr;en-US;fr-FR" Lang = "fr-FR" Iso639Language = FALSE The return value is "3". @param SupportedLang Platform supported language codes. @param Lang Configured language. @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. @retval The index of language in the language codes. **/ UINTN GetIndexFromSupportedLangCodes( IN CHAR8 *SupportedLang, IN CHAR8 *Lang, IN BOOLEAN Iso639Language ) { UINTN Index; UINTN CompareLength; UINTN LanguageLength; if (Iso639Language) { CompareLength = ISO_639_2_ENTRY_SIZE; for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) { if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) { // // Successfully find the index of Lang string in SupportedLang string. // Index = Index / CompareLength; return Index; } } ASSERT (FALSE); return 0; } else { // // Compare RFC4646 language code // Index = 0; for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++); for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) { // // Skip ';' characters in SupportedLang // for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++); // // Determine the length of the next language code in SupportedLang // for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++); if ((CompareLength == LanguageLength) && (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) { // // Successfully find the index of Lang string in SupportedLang string. // return Index; } } ASSERT (FALSE); return 0; } } /** Get language string from supported language codes according to index. This code is used to get corresponding language strings in supported language codes. It can handle RFC4646 and ISO639 language tags. In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index. In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index. For example: SupportedLang = "engfraengfra" Index = "1" Iso639Language = TRUE The return value is "fra". Another example: SupportedLang = "en;fr;en-US;fr-FR" Index = "1" Iso639Language = FALSE The return value is "fr". @param SupportedLang Platform supported language codes. @param Index The index in supported language codes. @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646. @retval The language string in the language codes. **/ CHAR8 * GetLangFromSupportedLangCodes ( IN CHAR8 *SupportedLang, IN UINTN Index, IN BOOLEAN Iso639Language ) { UINTN SubIndex; UINTN CompareLength; CHAR8 *Supported; SubIndex = 0; Supported = SupportedLang; if (Iso639Language) { // // According to the index of Lang string in SupportedLang string to get the language. // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation. // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. // CompareLength = ISO_639_2_ENTRY_SIZE; mVariableModuleGlobal->Lang[CompareLength] = '\0'; return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength); } else { while (TRUE) { // // Take semicolon as delimitation, sequentially traverse supported language codes. // for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) { Supported++; } if ((*Supported == '\0') && (SubIndex != Index)) { // // Have completed the traverse, but not find corrsponding string. // This case is not allowed to happen. // ASSERT(FALSE); return NULL; } if (SubIndex == Index) { // // According to the index of Lang string in SupportedLang string to get the language. // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation. // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string. // mVariableModuleGlobal->PlatformLang[CompareLength] = '\0'; return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength); } SubIndex++; // // Skip ';' characters in Supported // for (; *Supported != '\0' && *Supported == ';'; Supported++); } } } /** Returns a pointer to an allocated buffer that contains the best matching language from a set of supported languages. This function supports both ISO 639-2 and RFC 4646 language codes, but language code types may not be mixed in a single call to this function. This function supports a variable argument list that allows the caller to pass in a prioritized list of language codes to test against all the language codes in SupportedLanguages. If SupportedLanguages is NULL, then ASSERT(). @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that contains a set of language codes in the format specified by Iso639Language. @param[in] Iso639Language If TRUE, then all language codes are assumed to be in ISO 639-2 format. If FALSE, then all language codes are assumed to be in RFC 4646 language format @param[in] ... A variable argument list that contains pointers to Null-terminated ASCII strings that contain one or more language codes in the format specified by Iso639Language. The first language code from each of these language code lists is used to determine if it is an exact or close match to any of the language codes in SupportedLanguages. Close matches only apply to RFC 4646 language codes, and the matching algorithm from RFC 4647 is used to determine if a close match is present. If an exact or close match is found, then the matching language code from SupportedLanguages is returned. If no matches are found, then the next variable argument parameter is evaluated. The variable argument list is terminated by a NULL. @retval NULL The best matching language could not be found in SupportedLanguages. @retval NULL There are not enough resources available to return the best matching language. @retval Other A pointer to a Null-terminated ASCII string that is the best matching language in SupportedLanguages. **/ CHAR8 * EFIAPI VariableGetBestLanguage ( IN CONST CHAR8 *SupportedLanguages, IN BOOLEAN Iso639Language, ... ) { VA_LIST Args; CHAR8 *Language; UINTN CompareLength; UINTN LanguageLength; CONST CHAR8 *Supported; CHAR8 *Buffer; if (SupportedLanguages == NULL) { return NULL; } VA_START (Args, Iso639Language); while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) { // // Default to ISO 639-2 mode // CompareLength = 3; LanguageLength = MIN (3, AsciiStrLen (Language)); // // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language // if (!Iso639Language) { for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++); } // // Trim back the length of Language used until it is empty // while (LanguageLength > 0) { // // Loop through all language codes in SupportedLanguages // for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) { // // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages // if (!Iso639Language) { // // Skip ';' characters in Supported // for (; *Supported != '\0' && *Supported == ';'; Supported++); // // Determine the length of the next language code in Supported // for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++); // // If Language is longer than the Supported, then skip to the next language // if (LanguageLength > CompareLength) { continue; } } // // See if the first LanguageLength characters in Supported match Language // if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) { VA_END (Args); Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang; Buffer[CompareLength] = '\0'; return CopyMem (Buffer, Supported, CompareLength); } } if (Iso639Language) { // // If ISO 639 mode, then each language can only be tested once // LanguageLength = 0; } else { // // If RFC 4646 mode, then trim Language from the right to the next '-' character // for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--); } } } VA_END (Args); // // No matches were found // return NULL; } /** This function is to check if the remaining variable space is enough to set all Variables from argument list successfully. The purpose of the check is to keep the consistency of the Variables to be in variable storage. Note: Variables are assumed to be in same storage. The set sequence of Variables will be same with the sequence of VariableEntry from argument list, so follow the argument sequence to check the Variables. @param[in] Attributes Variable attributes for Variable entries. @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *. A NULL terminates the list. The VariableSize of VARIABLE_ENTRY_CONSISTENCY is the variable data size as input. It will be changed to variable total size as output. @retval TRUE Have enough variable space to set the Variables successfully. @retval FALSE No enough variable space to set the Variables successfully. **/ BOOLEAN EFIAPI CheckRemainingSpaceForConsistency ( IN UINT32 Attributes, ... ) { EFI_STATUS Status; VA_LIST Args; VARIABLE_ENTRY_CONSISTENCY *VariableEntry; UINT64 MaximumVariableStorageSize; UINT64 RemainingVariableStorageSize; UINT64 MaximumVariableSize; UINTN TotalNeededSize; UINTN OriginalVarSize; VARIABLE_STORE_HEADER *VariableStoreHeader; VARIABLE_POINTER_TRACK VariablePtrTrack; VARIABLE_HEADER *NextVariable; UINTN VarNameSize; UINTN VarDataSize; // // Non-Volatile related. // VariableStoreHeader = mNvVariableCache; Status = VariableServiceQueryVariableInfoInternal ( Attributes, &MaximumVariableStorageSize, &RemainingVariableStorageSize, &MaximumVariableSize ); ASSERT_EFI_ERROR (Status); TotalNeededSize = 0; VA_START (Args, Attributes); VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); while (VariableEntry != NULL) { // // Calculate variable total size. // VarNameSize = StrSize (VariableEntry->Name); VarNameSize += GET_PAD_SIZE (VarNameSize); VarDataSize = VariableEntry->VariableSize; VarDataSize += GET_PAD_SIZE (VarDataSize); VariableEntry->VariableSize = HEADER_ALIGN (sizeof (VARIABLE_HEADER) + VarNameSize + VarDataSize); TotalNeededSize += VariableEntry->VariableSize; VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); } VA_END (Args); if (RemainingVariableStorageSize >= TotalNeededSize) { // // Already have enough space. // return TRUE; } else if (AtRuntime ()) { // // At runtime, no reclaim. // The original variable space of Variables can't be reused. // return FALSE; } VA_START (Args, Attributes); VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); while (VariableEntry != NULL) { // // Check if Variable[Index] has been present and get its size. // OriginalVarSize = 0; VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader); VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader); Status = FindVariableEx ( VariableEntry->Name, VariableEntry->Guid, FALSE, &VariablePtrTrack ); if (!EFI_ERROR (Status)) { // // Get size of Variable[Index]. // NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr); OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr; // // Add the original size of Variable[Index] to remaining variable storage size. // RemainingVariableStorageSize += OriginalVarSize; } if (VariableEntry->VariableSize > RemainingVariableStorageSize) { // // No enough space for Variable[Index]. // VA_END (Args); return FALSE; } // // Sub the (new) size of Variable[Index] from remaining variable storage size. // RemainingVariableStorageSize -= VariableEntry->VariableSize; VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *); } VA_END (Args); return TRUE; } /** Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang. When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes. According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization, and are read-only. Therefore, in variable driver, only store the original value for other use. @param[in] VariableName Name of variable. @param[in] Data Variable data. @param[in] DataSize Size of data. 0 means delete. @retval EFI_SUCCESS The update operation is successful or ignored. @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime. @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation. @retval Others Other errors happened during the update operation. **/ EFI_STATUS AutoUpdateLangVariable ( IN CHAR16 *VariableName, IN VOID *Data, IN UINTN DataSize ) { EFI_STATUS Status; CHAR8 *BestPlatformLang; CHAR8 *BestLang; UINTN Index; UINT32 Attributes; VARIABLE_POINTER_TRACK Variable; BOOLEAN SetLanguageCodes; VARIABLE_ENTRY_CONSISTENCY VariableEntry[2]; // // Don't do updates for delete operation // if (DataSize == 0) { return EFI_SUCCESS; } SetLanguageCodes = FALSE; if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) { // // PlatformLangCodes is a volatile variable, so it can not be updated at runtime. // if (AtRuntime ()) { return EFI_WRITE_PROTECTED; } SetLanguageCodes = TRUE; // // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only // Therefore, in variable driver, only store the original value for other use. // if (mVariableModuleGlobal->PlatformLangCodes != NULL) { FreePool (mVariableModuleGlobal->PlatformLangCodes); } mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data); ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL); // // PlatformLang holds a single language from PlatformLangCodes, // so the size of PlatformLangCodes is enough for the PlatformLang. // if (mVariableModuleGlobal->PlatformLang != NULL) { FreePool (mVariableModuleGlobal->PlatformLang); } mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize); ASSERT (mVariableModuleGlobal->PlatformLang != NULL); } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) { // // LangCodes is a volatile variable, so it can not be updated at runtime. // if (AtRuntime ()) { return EFI_WRITE_PROTECTED; } SetLanguageCodes = TRUE; // // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only // Therefore, in variable driver, only store the original value for other use. // if (mVariableModuleGlobal->LangCodes != NULL) { FreePool (mVariableModuleGlobal->LangCodes); } mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data); ASSERT (mVariableModuleGlobal->LangCodes != NULL); } if (SetLanguageCodes && (mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) { // // Update Lang if PlatformLang is already set // Update PlatformLang if Lang is already set // Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (!EFI_ERROR (Status)) { // // Update Lang // VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME; Data = GetVariableDataPtr (Variable.CurrPtr); DataSize = Variable.CurrPtr->DataSize; } else { Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (!EFI_ERROR (Status)) { // // Update PlatformLang // VariableName = EFI_LANG_VARIABLE_NAME; Data = GetVariableDataPtr (Variable.CurrPtr); DataSize = Variable.CurrPtr->DataSize; } else { // // Neither PlatformLang nor Lang is set, directly return // return EFI_SUCCESS; } } } Status = EFI_SUCCESS; // // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions. // Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS; if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) { // // Update Lang when PlatformLangCodes/LangCodes were set. // if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) { // // When setting PlatformLang, firstly get most matched language string from supported language codes. // BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL); if (BestPlatformLang != NULL) { // // Get the corresponding index in language codes. // Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE); // // Get the corresponding ISO639 language tag according to RFC4646 language tag. // BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE); // // Check the variable space for both Lang and PlatformLang variable. // VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1; VariableEntry[0].Guid = &gEfiGlobalVariableGuid; VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME; VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang); VariableEntry[1].Guid = &gEfiGlobalVariableGuid; VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME; if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) { // // No enough variable space to set both Lang and PlatformLang successfully. // Status = EFI_OUT_OF_RESOURCES; } else { // // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously. // FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang, ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL); } DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status)); } } } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) { // // Update PlatformLang when PlatformLangCodes/LangCodes were set. // if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) { // // When setting Lang, firstly get most matched language string from supported language codes. // BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL); if (BestLang != NULL) { // // Get the corresponding index in language codes. // Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE); // // Get the corresponding RFC4646 language tag according to ISO639 language tag. // BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE); // // Check the variable space for both PlatformLang and Lang variable. // VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang); VariableEntry[0].Guid = &gEfiGlobalVariableGuid; VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME; VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1; VariableEntry[1].Guid = &gEfiGlobalVariableGuid; VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME; if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) { // // No enough variable space to set both PlatformLang and Lang successfully. // Status = EFI_OUT_OF_RESOURCES; } else { // // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously. // FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang, AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL); } DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status)); } } } if (SetLanguageCodes) { // // Continue to set PlatformLangCodes or LangCodes. // return EFI_SUCCESS; } else { return Status; } } /** Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set, index of associated public key is needed. @param[in] VariableName Name of variable. @param[in] VendorGuid Guid of variable. @param[in] Data Variable data. @param[in] DataSize Size of data. 0 means delete. @param[in] Attributes Attributes of the variable. @param[in] KeyIndex Index of associated public key. @param[in] MonotonicCount Value of associated monotonic count. @param[in, out] CacheVariable The variable information which is used to keep track of variable usage. @param[in] TimeStamp Value of associated TimeStamp. @retval EFI_SUCCESS The update operation is success. @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region. **/ EFI_STATUS UpdateVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize, IN UINT32 Attributes OPTIONAL, IN UINT32 KeyIndex OPTIONAL, IN UINT64 MonotonicCount OPTIONAL, IN OUT VARIABLE_POINTER_TRACK *CacheVariable, IN EFI_TIME *TimeStamp OPTIONAL ) { EFI_STATUS Status; VARIABLE_HEADER *NextVariable; UINTN ScratchSize; UINTN MaxDataSize; UINTN NonVolatileVarableStoreSize; UINTN VarNameOffset; UINTN VarDataOffset; UINTN VarNameSize; UINTN VarSize; BOOLEAN Volatile; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; UINT8 State; VARIABLE_POINTER_TRACK *Variable; VARIABLE_POINTER_TRACK NvVariable; VARIABLE_STORE_HEADER *VariableStoreHeader; UINTN CacheOffset; UINT8 *BufferForMerge; UINTN MergedBufSize; BOOLEAN DataReady; UINTN DataOffset; if (mVariableModuleGlobal->FvbInstance == NULL) { // // The FVB protocol is not installed, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed. // if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { // // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL // return EFI_NOT_AVAILABLE_YET; } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL // The authenticated variable perhaps is not initialized, just return here. // return EFI_NOT_AVAILABLE_YET; } } if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) { Variable = CacheVariable; } else { // // Update/Delete existing NV variable. // CacheVariable points to the variable in the memory copy of Flash area // Now let Variable points to the same variable in Flash area. // VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); Variable = &NvVariable; Variable->StartPtr = GetStartPointer (VariableStoreHeader); Variable->EndPtr = GetEndPointer (VariableStoreHeader); Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr)); if (CacheVariable->InDeletedTransitionPtr != NULL) { Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr)); } else { Variable->InDeletedTransitionPtr = NULL; } Variable->Volatile = FALSE; } Fvb = mVariableModuleGlobal->FvbInstance; // // Tricky part: Use scratch data area at the end of volatile variable store // as a temporary storage. // NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)); ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)); SetMem (NextVariable, ScratchSize, 0xff); DataReady = FALSE; if (Variable->CurrPtr != NULL) { // // Update/Delete existing variable. // if (AtRuntime ()) { // // If AtRuntime and the variable is Volatile and Runtime Access, // the volatile is ReadOnly, and SetVariable should be aborted and // return EFI_WRITE_PROTECTED. // if (Variable->Volatile) { Status = EFI_WRITE_PROTECTED; goto Done; } // // Only variable that have NV attributes can be updated/deleted in Runtime. // if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { Status = EFI_INVALID_PARAMETER; goto Done; } // // Only variable that have RT attributes can be updated/deleted in Runtime. // if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) { Status = EFI_INVALID_PARAMETER; goto Done; } } // // Setting a data variable with no access, or zero DataSize attributes // causes it to be deleted. // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will // not delete the variable. // if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) { if (Variable->InDeletedTransitionPtr != NULL) { // // Both ADDED and IN_DELETED_TRANSITION variable are present, // set IN_DELETED_TRANSITION one to DELETED state first. // State = Variable->InDeletedTransitionPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable->Volatile, FALSE, Fvb, (UINTN) &Variable->InDeletedTransitionPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status)) { if (!Variable->Volatile) { ASSERT (CacheVariable->InDeletedTransitionPtr != NULL); CacheVariable->InDeletedTransitionPtr->State = State; } } else { goto Done; } } State = Variable->CurrPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable->Volatile, FALSE, Fvb, (UINTN) &Variable->CurrPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status)) { UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE); if (!Variable->Volatile) { CacheVariable->CurrPtr->State = State; FlushHobVariableToFlash (VariableName, VendorGuid); } } goto Done; } // // If the variable is marked valid, and the same data has been passed in, // then return to the caller immediately. // if (DataSizeOfVariable (Variable->CurrPtr) == DataSize && (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (TimeStamp == NULL)) { // // Variable content unchanged and no need to update timestamp, just return. // UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE); Status = EFI_SUCCESS; goto Done; } else if ((Variable->CurrPtr->State == VAR_ADDED) || (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { // // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable // if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) { // // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name. // From DataOffset of NextVariable is to save the existing variable data. // DataOffset = sizeof (VARIABLE_HEADER) + Variable->CurrPtr->NameSize + GET_PAD_SIZE (Variable->CurrPtr->NameSize); BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset); CopyMem (BufferForMerge, (UINT8 *) ((UINTN) Variable->CurrPtr + DataOffset), Variable->CurrPtr->DataSize); // // Set Max Common Variable Data Size as default MaxDataSize // MaxDataSize = PcdGet32 (PcdMaxVariableSize) - DataOffset; if ((CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) && ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) || (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0))) { // // For variables with formatted as EFI_SIGNATURE_LIST, the driver shall not perform an append of // EFI_SIGNATURE_DATA values that are already part of the existing variable value. // Status = AppendSignatureList ( BufferForMerge, Variable->CurrPtr->DataSize, MaxDataSize - Variable->CurrPtr->DataSize, Data, DataSize, &MergedBufSize ); if (Status == EFI_BUFFER_TOO_SMALL) { // // Signature List is too long, Failed to Append. // Status = EFI_INVALID_PARAMETER; goto Done; } if (MergedBufSize == Variable->CurrPtr->DataSize) { if ((TimeStamp == NULL) || CompareTimeStamp (TimeStamp, &Variable->CurrPtr->TimeStamp)) { // // New EFI_SIGNATURE_DATA is not found and timestamp is not later // than current timestamp, return EFI_SUCCESS directly. // UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE); Status = EFI_SUCCESS; goto Done; } } } else { // // For other Variables, append the new data to the end of existing data. // Max Harware error record variable data size is different from common variable // if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset; } if (Variable->CurrPtr->DataSize + DataSize > MaxDataSize) { // // Existing data size + new data size exceed maximum variable size limitation. // Status = EFI_INVALID_PARAMETER; goto Done; } CopyMem ((UINT8*) ((UINTN) BufferForMerge + Variable->CurrPtr->DataSize), Data, DataSize); MergedBufSize = Variable->CurrPtr->DataSize + DataSize; } // // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data. // Data = BufferForMerge; DataSize = MergedBufSize; DataReady = TRUE; } // // Mark the old variable as in delete transition. // State = Variable->CurrPtr->State; State &= VAR_IN_DELETED_TRANSITION; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable->Volatile, FALSE, Fvb, (UINTN) &Variable->CurrPtr->State, sizeof (UINT8), &State ); if (EFI_ERROR (Status)) { goto Done; } if (!Variable->Volatile) { CacheVariable->CurrPtr->State = State; } } } else { // // Not found existing variable. Create a new variable. // if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) { Status = EFI_SUCCESS; goto Done; } // // Make sure we are trying to create a new variable. // Setting a data variable with zero DataSize or no access attributes means to delete it. // if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { Status = EFI_NOT_FOUND; goto Done; } // // Only variable have NV|RT attribute can be created in Runtime. // if (AtRuntime () && (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) { Status = EFI_INVALID_PARAMETER; goto Done; } } // // Function part - create a new variable and copy the data. // Both update a variable and create a variable will come here. // NextVariable->StartId = VARIABLE_DATA; // // NextVariable->State = VAR_ADDED; // NextVariable->Reserved = 0; NextVariable->PubKeyIndex = KeyIndex; NextVariable->MonotonicCount = MonotonicCount; ZeroMem (&NextVariable->TimeStamp, sizeof (EFI_TIME)); if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) && (TimeStamp != NULL)) { if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) { CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME)); } else { // // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only // when the new TimeStamp value is later than the current timestamp associated // with the variable, we need associate the new timestamp with the updated value. // if (Variable->CurrPtr != NULL) { if (CompareTimeStamp (&Variable->CurrPtr->TimeStamp, TimeStamp)) { CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME)); } } } } // // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned // Attributes bitmask parameter of a GetVariable() call. // NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE); VarNameOffset = sizeof (VARIABLE_HEADER); VarNameSize = StrSize (VariableName); CopyMem ( (UINT8 *) ((UINTN) NextVariable + VarNameOffset), VariableName, VarNameSize ); VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize); // // If DataReady is TRUE, it means the variable data has been saved into // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation. // if (!DataReady) { CopyMem ( (UINT8 *) ((UINTN) NextVariable + VarDataOffset), Data, DataSize ); } CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID)); // // There will be pad bytes after Data, the NextVariable->NameSize and // NextVariable->DataSize should not include pad size so that variable // service can get actual size in GetVariable. // NextVariable->NameSize = (UINT32)VarNameSize; NextVariable->DataSize = (UINT32)DataSize; // // The actual size of the variable that stores in storage should // include pad size. // VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize); if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { // // Create a nonvolatile variable. // Volatile = FALSE; NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size; if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize))) || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) { if (AtRuntime ()) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // Perform garbage collection & reclaim operation, and integrate the new variable at the same time. // Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable, NextVariable, HEADER_ALIGN (VarSize), FALSE ); if (!EFI_ERROR (Status)) { // // The new variable has been integrated successfully during reclaiming. // if (Variable->CurrPtr != NULL) { CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr)); CacheVariable->InDeletedTransitionPtr = NULL; } UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE); FlushHobVariableToFlash (VariableName, VendorGuid); } goto Done; } // // Four steps // 1. Write variable header // 2. Set variable state to header valid // 3. Write variable data // 4. Set variable state to valid // // // Step 1: // CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, mVariableModuleGlobal->NonVolatileLastVariableOffset, sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } // // Step 2: // NextVariable->State = VAR_HEADER_VALID_ONLY; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State), sizeof (UINT8), &NextVariable->State ); if (EFI_ERROR (Status)) { goto Done; } // // Step 3: // Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER), (UINT32) VarSize - sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER) ); if (EFI_ERROR (Status)) { goto Done; } // // Step 4: // NextVariable->State = VAR_ADDED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State), sizeof (UINT8), &NextVariable->State ); if (EFI_ERROR (Status)) { goto Done; } mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize); if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) { mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize); } else { mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize); } // // update the memory copy of Flash region. // CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize); } else { // // Create a volatile variable. // Volatile = TRUE; if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) > ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) { // // Perform garbage collection & reclaim operation, and integrate the new variable at the same time. // Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.VolatileVariableBase, &mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable, NextVariable, HEADER_ALIGN (VarSize), FALSE ); if (!EFI_ERROR (Status)) { // // The new variable has been integrated successfully during reclaiming. // if (Variable->CurrPtr != NULL) { CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr)); CacheVariable->InDeletedTransitionPtr = NULL; } UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE); } goto Done; } NextVariable->State = VAR_ADDED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, TRUE, TRUE, Fvb, mVariableModuleGlobal->VolatileLastVariableOffset, (UINT32) VarSize, (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize); } // // Mark the old variable as deleted. // if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) { if (Variable->InDeletedTransitionPtr != NULL) { // // Both ADDED and IN_DELETED_TRANSITION old variable are present, // set IN_DELETED_TRANSITION one to DELETED state first. // State = Variable->InDeletedTransitionPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable->Volatile, FALSE, Fvb, (UINTN) &Variable->InDeletedTransitionPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status)) { if (!Variable->Volatile) { ASSERT (CacheVariable->InDeletedTransitionPtr != NULL); CacheVariable->InDeletedTransitionPtr->State = State; } } else { goto Done; } } State = Variable->CurrPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable->Volatile, FALSE, Fvb, (UINTN) &Variable->CurrPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status) && !Variable->Volatile) { CacheVariable->CurrPtr->State = State; } } if (!EFI_ERROR (Status)) { UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE); if (!Volatile) { FlushHobVariableToFlash (VariableName, VendorGuid); } } Done: return Status; } /** Check if a Unicode character is a hexadecimal character. This function checks if a Unicode character is a hexadecimal character. The valid hexadecimal character is L'0' to L'9', L'a' to L'f', or L'A' to L'F'. @param Char The character to check against. @retval TRUE If the Char is a hexadecmial character. @retval FALSE If the Char is not a hexadecmial character. **/ BOOLEAN EFIAPI IsHexaDecimalDigitCharacter ( IN CHAR16 Char ) { return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f')); } /** This code checks if variable is hardware error record variable or not. According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value. @param VariableName Pointer to variable name. @param VendorGuid Variable Vendor Guid. @retval TRUE Variable is hardware error record variable. @retval FALSE Variable is not hardware error record variable. **/ BOOLEAN EFIAPI IsHwErrRecVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) || (StrLen (VariableName) != StrLen (L"HwErrRec####")) || (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) || !IsHexaDecimalDigitCharacter (VariableName[0x8]) || !IsHexaDecimalDigitCharacter (VariableName[0x9]) || !IsHexaDecimalDigitCharacter (VariableName[0xA]) || !IsHexaDecimalDigitCharacter (VariableName[0xB])) { return FALSE; } return TRUE; } /** This code checks if variable guid is global variable guid first. If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched. @param[in] VariableName Pointer to variable name. @param[in] VendorGuid Variable Vendor Guid. @param[in] Attributes Attributes of the variable. @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched. @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched. **/ EFI_STATUS EFIAPI CheckEfiGlobalVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN UINT32 Attributes ) { UINTN Index; UINTN NameLength; if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){ // // Try list 1, exactly match. // for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) { if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) && (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList[Index].Attributes)) { return EFI_SUCCESS; } } // // Try list 2. // NameLength = StrLen (VariableName) - 4; for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) { if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) && (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) && IsHexaDecimalDigitCharacter (VariableName[NameLength]) && IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) && IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) && IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) && (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList2[Index].Attributes)) { return EFI_SUCCESS; } } DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes)); return EFI_INVALID_PARAMETER; } return EFI_SUCCESS; } /** Mark a variable that will become read-only after leaving the DXE phase of execution. @param[in] This The VARIABLE_LOCK_PROTOCOL instance. @param[in] VariableName A pointer to the variable name that will be made read-only subsequently. @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently. @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked as pending to be read-only. @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL. Or VariableName is an empty string. @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has already been signaled. @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request. **/ EFI_STATUS EFIAPI VariableLockRequestToLock ( IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This, IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { VARIABLE_ENTRY *Entry; if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } if (mEndOfDxe) { return EFI_ACCESS_DENIED; } Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName)); if (Entry == NULL) { return EFI_OUT_OF_RESOURCES; } DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName)); AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Entry->Name = (CHAR16 *) (Entry + 1); StrCpy (Entry->Name, VariableName); CopyGuid (&Entry->Guid, VendorGuid); InsertTailList (&mLockedVariableList, &Entry->Link); ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return EFI_SUCCESS; } /** This code checks if variable should be treated as read-only variable. @param[in] VariableName Name of the Variable. @param[in] VendorGuid GUID of the Variable. @retval TRUE This variable is read-only variable. @retval FALSE This variable is NOT read-only variable. **/ BOOLEAN IsReadOnlyVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)) { if ((StrCmp (VariableName, EFI_SETUP_MODE_NAME) == 0) || (StrCmp (VariableName, EFI_SIGNATURE_SUPPORT_NAME) == 0) || (StrCmp (VariableName, EFI_SECURE_BOOT_MODE_NAME) == 0) || (StrCmp (VariableName, EFI_VENDOR_KEYS_VARIABLE_NAME) == 0) || (StrCmp (VariableName, EFI_KEK_DEFAULT_VARIABLE_NAME) == 0) || (StrCmp (VariableName, EFI_PK_DEFAULT_VARIABLE_NAME) == 0) || (StrCmp (VariableName, EFI_DB_DEFAULT_VARIABLE_NAME) == 0) || (StrCmp (VariableName, EFI_DBX_DEFAULT_VARIABLE_NAME) == 0) || (StrCmp (VariableName, EFI_DBT_DEFAULT_VARIABLE_NAME) == 0)) { return TRUE; } } return FALSE; } /** This code finds variable in storage blocks (Volatile or Non-Volatile). Caution: This function may receive untrusted input. This function may be invoked in SMM mode, and datasize is external input. This function will do basic validation, before parse the data. @param VariableName Name of Variable to be found. @param VendorGuid Variable vendor GUID. @param Attributes Attribute value of the variable found. @param DataSize Size of Data found. If size is less than the data, this value contains the required size. @param Data Data pointer. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SUCCESS Find the specified variable. @return EFI_NOT_FOUND Not found. @return EFI_BUFFER_TO_SMALL DataSize is too small for the result. **/ EFI_STATUS EFIAPI VariableServiceGetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT UINT32 *Attributes OPTIONAL, IN OUT UINTN *DataSize, OUT VOID *Data ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK Variable; UINTN VarDataSize; if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) { return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { goto Done; } // // Get data size // VarDataSize = DataSizeOfVariable (Variable.CurrPtr); ASSERT (VarDataSize != 0); if (*DataSize >= VarDataSize) { if (Data == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize); if (Attributes != NULL) { *Attributes = Variable.CurrPtr->Attributes; } *DataSize = VarDataSize; UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE); Status = EFI_SUCCESS; goto Done; } else { *DataSize = VarDataSize; Status = EFI_BUFFER_TOO_SMALL; goto Done; } Done: ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This code Finds the Next available variable. Caution: This function may receive untrusted input. This function may be invoked in SMM mode. This function will do basic validation, before parse the data. @param VariableNameSize Size of the variable name. @param VariableName Pointer to variable name. @param VendorGuid Variable Vendor Guid. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SUCCESS Find the specified variable. @return EFI_NOT_FOUND Not found. @return EFI_BUFFER_TO_SMALL DataSize is too small for the result. **/ EFI_STATUS EFIAPI VariableServiceGetNextVariableName ( IN OUT UINTN *VariableNameSize, IN OUT CHAR16 *VariableName, IN OUT EFI_GUID *VendorGuid ) { VARIABLE_STORE_TYPE Type; VARIABLE_POINTER_TRACK Variable; VARIABLE_POINTER_TRACK VariableInHob; VARIABLE_POINTER_TRACK VariablePtrTrack; UINTN VarNameSize; EFI_STATUS Status; VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax]; if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { goto Done; } if (VariableName[0] != 0) { // // If variable name is not NULL, get next variable. // Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); } // // 0: Volatile, 1: HOB, 2: Non-Volatile. // The index and attributes mapping must be kept in this order as FindVariable // makes use of this mapping to implement search algorithm. // VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase; VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase; VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache; while (TRUE) { // // Switch from Volatile to HOB, to Non-Volatile. // while ((Variable.CurrPtr >= Variable.EndPtr) || (Variable.CurrPtr == NULL) || !IsValidVariableHeader (Variable.CurrPtr) ) { // // Find current storage index // for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) { if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) { break; } } ASSERT (Type < VariableStoreTypeMax); // // Switch to next storage // for (Type++; Type < VariableStoreTypeMax; Type++) { if (VariableStoreHeader[Type] != NULL) { break; } } // // Capture the case that // 1. current storage is the last one, or // 2. no further storage // if (Type == VariableStoreTypeMax) { Status = EFI_NOT_FOUND; goto Done; } Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]); Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]); Variable.CurrPtr = Variable.StartPtr; } // // Variable is found // if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) { if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { // // If it is a IN_DELETED_TRANSITION variable, // and there is also a same ADDED one at the same time, // don't return it. // VariablePtrTrack.StartPtr = Variable.StartPtr; VariablePtrTrack.EndPtr = Variable.EndPtr; Status = FindVariableEx ( GetVariableNamePtr (Variable.CurrPtr), &Variable.CurrPtr->VendorGuid, FALSE, &VariablePtrTrack ); if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) { Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); continue; } } // // Don't return NV variable when HOB overrides it // if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv])) ) { VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]); VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]); Status = FindVariableEx ( GetVariableNamePtr (Variable.CurrPtr), &Variable.CurrPtr->VendorGuid, FALSE, &VariableInHob ); if (!EFI_ERROR (Status)) { Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); continue; } } VarNameSize = NameSizeOfVariable (Variable.CurrPtr); ASSERT (VarNameSize != 0); if (VarNameSize <= *VariableNameSize) { CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize); CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID)); Status = EFI_SUCCESS; } else { Status = EFI_BUFFER_TOO_SMALL; } *VariableNameSize = VarNameSize; goto Done; } } Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); } Done: ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This code sets variable in storage blocks (Volatile or Non-Volatile). Caution: This function may receive untrusted input. This function may be invoked in SMM mode, and datasize and data are external input. This function will do basic validation, before parse the data. This function will parse the authentication carefully to avoid security issues, like buffer overflow, integer overflow. This function will check attribute carefully to avoid authentication bypass. @param VariableName Name of Variable to be found. @param VendorGuid Variable vendor GUID. @param Attributes Attribute value of the variable found @param DataSize Size of Data found. If size is less than the data, this value contains the required size. @param Data Data pointer. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SUCCESS Set successfully. @return EFI_OUT_OF_RESOURCES Resource not enough to set variable. @return EFI_NOT_FOUND Not found. @return EFI_WRITE_PROTECTED Variable is read-only. **/ EFI_STATUS EFIAPI VariableServiceSetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN UINT32 Attributes, IN UINTN DataSize, IN VOID *Data ) { VARIABLE_POINTER_TRACK Variable; EFI_STATUS Status; VARIABLE_HEADER *NextVariable; EFI_PHYSICAL_ADDRESS Point; UINTN PayloadSize; LIST_ENTRY *Link; VARIABLE_ENTRY *Entry; // // Check input parameters. // if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } if (IsReadOnlyVariable (VariableName, VendorGuid)) { return EFI_WRITE_PROTECTED; } if (DataSize != 0 && Data == NULL) { return EFI_INVALID_PARAMETER; } // // Check for reserverd bit in variable attribute. // if ((Attributes & (~EFI_VARIABLE_ATTRIBUTES_MASK)) != 0) { return EFI_INVALID_PARAMETER; } // // Make sure if runtime bit is set, boot service bit is set also. // if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { return EFI_INVALID_PARAMETER; } // // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute // cannot be set both. // if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) { return EFI_INVALID_PARAMETER; } if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) { if (DataSize < AUTHINFO_SIZE) { // // Try to write Authenticated Variable without AuthInfo. // return EFI_SECURITY_VIOLATION; } PayloadSize = DataSize - AUTHINFO_SIZE; } else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) { // // Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor. // if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA || ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) || ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) { return EFI_SECURITY_VIOLATION; } PayloadSize = DataSize - AUTHINFO2_SIZE (Data); } else { PayloadSize = DataSize; } if ((UINTN)(~0) - PayloadSize < StrSize(VariableName)){ // // Prevent whole variable size overflow // return EFI_INVALID_PARAMETER; } // // The size of the VariableName, including the Unicode Null in bytes plus // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize) // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others. // if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) { return EFI_INVALID_PARAMETER; } if (!IsHwErrRecVariable(VariableName, VendorGuid)) { return EFI_INVALID_PARAMETER; } } else { // // The size of the VariableName, including the Unicode Null in bytes plus // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes. // if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) { return EFI_INVALID_PARAMETER; } } Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes); if (EFI_ERROR (Status)) { return Status; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); // // Consider reentrant in MCA/INIT/NMI. It needs be reupdated. // if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) { Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; // // Parse non-volatile variable data and get last variable offset. // NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point); while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point)) && IsValidVariableHeader (NextVariable)) { NextVariable = GetNextVariablePtr (NextVariable); } mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point; } if (mEndOfDxe && mEnableLocking) { // // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase. // for ( Link = GetFirstNode (&mLockedVariableList) ; !IsNull (&mLockedVariableList, Link) ; Link = GetNextNode (&mLockedVariableList, Link) ) { Entry = BASE_CR (Link, VARIABLE_ENTRY, Link); if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) { Status = EFI_WRITE_PROTECTED; DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName)); goto Done; } } } // // Check whether the input variable is already existed. // Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE); if (!EFI_ERROR (Status)) { if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) { Status = EFI_WRITE_PROTECTED; goto Done; } if (Attributes != 0 && (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) != Variable.CurrPtr->Attributes) { // // If a preexisting variable is rewritten with different attributes, SetVariable() shall not // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule: // 1. No access attributes specified // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE // Status = EFI_INVALID_PARAMETER; goto Done; } } if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) { // // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang. // Status = AutoUpdateLangVariable (VariableName, Data, DataSize); if (EFI_ERROR (Status)) { // // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang. // goto Done; } } // // Process PK, KEK, Sigdb seperately. // if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){ Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, TRUE); } else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) { Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE); } else if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) && ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) { Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE); if (EFI_ERROR (Status)) { Status = ProcessVarWithKek (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes); } } else { Status = ProcessVariable (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes); } Done: InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState); ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); if (!AtRuntime ()) { if (!EFI_ERROR (Status)) { SecureBootHook ( VariableName, VendorGuid ); } } return Status; } /** This code returns information about the EFI variables. Caution: This function may receive untrusted input. This function may be invoked in SMM mode. This function will do basic validation, before parse the data. @param Attributes Attributes bitmask to specify the type of variables on which to return information. @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available for the EFI variables associated with the attributes specified. @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available for EFI variables associated with the attributes specified. @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables associated with the attributes specified. @return EFI_SUCCESS Query successfully. **/ EFI_STATUS EFIAPI VariableServiceQueryVariableInfoInternal ( IN UINT32 Attributes, OUT UINT64 *MaximumVariableStorageSize, OUT UINT64 *RemainingVariableStorageSize, OUT UINT64 *MaximumVariableSize ) { VARIABLE_HEADER *Variable; VARIABLE_HEADER *NextVariable; UINT64 VariableSize; VARIABLE_STORE_HEADER *VariableStoreHeader; UINT64 CommonVariableTotalSize; UINT64 HwErrVariableTotalSize; EFI_STATUS Status; VARIABLE_POINTER_TRACK VariablePtrTrack; CommonVariableTotalSize = 0; HwErrVariableTotalSize = 0; if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { // // Query is Volatile related. // VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); } else { // // Query is Non-Volatile related. // VariableStoreHeader = mNvVariableCache; } // // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize // with the storage size (excluding the storage header size). // *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER); // // Harware error record variable needs larger size. // if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize); *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER); } else { if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size); *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize); } // // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size. // *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER); } // // Point to the starting address of the variables. // Variable = GetStartPointer (VariableStoreHeader); // // Now walk through the related variable store. // while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable; if (AtRuntime ()) { // // We don't take the state of the variables in mind // when calculating RemainingVariableStorageSize, // since the space occupied by variables not marked with // VAR_ADDED is not allowed to be reclaimed in Runtime. // if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else { CommonVariableTotalSize += VariableSize; } } else { // // Only care about Variables with State VAR_ADDED, because // the space not marked as VAR_ADDED is reclaimable now. // if (Variable->State == VAR_ADDED) { if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else { CommonVariableTotalSize += VariableSize; } } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { // // If it is a IN_DELETED_TRANSITION variable, // and there is not also a same ADDED one at the same time, // this IN_DELETED_TRANSITION variable is valid. // VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader); VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader); Status = FindVariableEx ( GetVariableNamePtr (Variable), &Variable->VendorGuid, FALSE, &VariablePtrTrack ); if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) { if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else { CommonVariableTotalSize += VariableSize; } } } } // // Go to the next one. // Variable = NextVariable; } if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){ *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize; }else { *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize; } if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) { *MaximumVariableSize = 0; } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) { *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER); } return EFI_SUCCESS; } /** This code returns information about the EFI variables. Caution: This function may receive untrusted input. This function may be invoked in SMM mode. This function will do basic validation, before parse the data. @param Attributes Attributes bitmask to specify the type of variables on which to return information. @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available for the EFI variables associated with the attributes specified. @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available for EFI variables associated with the attributes specified. @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables associated with the attributes specified. @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied. @return EFI_SUCCESS Query successfully. @return EFI_UNSUPPORTED The attribute is not supported on this platform. **/ EFI_STATUS EFIAPI VariableServiceQueryVariableInfo ( IN UINT32 Attributes, OUT UINT64 *MaximumVariableStorageSize, OUT UINT64 *RemainingVariableStorageSize, OUT UINT64 *MaximumVariableSize ) { EFI_STATUS Status; if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) { return EFI_INVALID_PARAMETER; } if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) { // // Make sure the Attributes combination is supported by the platform. // return EFI_UNSUPPORTED; } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { // // Make sure if runtime bit is set, boot service bit is set also. // return EFI_INVALID_PARAMETER; } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) { // // Make sure RT Attribute is set if we are in Runtime phase. // return EFI_INVALID_PARAMETER; } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { // // Make sure Hw Attribute is set with NV. // return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Status = VariableServiceQueryVariableInfoInternal ( Attributes, MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize ); ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This function reclaims variable storage if free size is below the threshold. Caution: This function may be invoked at SMM mode. Care must be taken to make sure not security issue. **/ VOID ReclaimForOS( VOID ) { EFI_STATUS Status; UINTN CommonVariableSpace; UINTN RemainingCommonVariableSpace; UINTN RemainingHwErrVariableSpace; Status = EFI_SUCCESS; CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize; RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize; // // Check if the free area is blow a threshold. // if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize)) || ((PcdGet32 (PcdHwErrStorageSize) != 0) && (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){ Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, NULL, NULL, 0, FALSE ); ASSERT_EFI_ERROR (Status); } } /** Init non-volatile variable store. @retval EFI_SUCCESS Function successfully executed. @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource. @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted. **/ EFI_STATUS InitNonVolatileVariableStore ( VOID ) { EFI_FIRMWARE_VOLUME_HEADER *FvHeader; VARIABLE_HEADER *NextVariable; EFI_PHYSICAL_ADDRESS VariableStoreBase; UINT64 VariableStoreLength; UINTN VariableSize; EFI_HOB_GUID_TYPE *GuidHob; EFI_PHYSICAL_ADDRESS NvStorageBase; UINT8 *NvStorageData; UINT32 NvStorageSize; FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData; UINT32 BackUpOffset; UINT32 BackUpSize; mVariableModuleGlobal->FvbInstance = NULL; // // Note that in EdkII variable driver implementation, Hardware Error Record type variable // is stored with common variable in the same NV region. So the platform integrator should // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of // PcdFlashNvStorageVariableSize. // ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize)); // // Allocate runtime memory used for a memory copy of the FLASH region. // Keep the memory and the FLASH in sync as updates occur. // NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize); NvStorageData = AllocateRuntimeZeroPool (NvStorageSize); if (NvStorageData == NULL) { return EFI_OUT_OF_RESOURCES; } NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); if (NvStorageBase == 0) { NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); } // // Copy NV storage data to the memory buffer. // CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize); // // Check the FTW last write data hob. // GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid); if (GuidHob != NULL) { FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob); if (FtwLastWriteData->TargetAddress == NvStorageBase) { DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress)); // // Copy the backed up NV storage data to the memory buffer from spare block. // CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize); } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) && (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) { // // Flash NV storage from the Offset is backed up in spare block. // BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase); BackUpSize = NvStorageSize - BackUpOffset; DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress)); // // Copy the partial backed up NV storage data to the memory buffer from spare block. // CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize); } } FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData; // // Check if the Firmware Volume is not corrupted // if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) { FreePool (NvStorageData); DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n")); return EFI_VOLUME_CORRUPTED; } VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength); VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength); mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase; mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase; if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) { FreePool (NvStorageData); DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n")); return EFI_VOLUME_CORRUPTED; } ASSERT(mNvVariableCache->Size == VariableStoreLength); // // The max variable or hardware error variable size should be < variable store size. // ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength); // // Parse non-volatile variable data and get last variable offset. // NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase); while (IsValidVariableHeader (NextVariable)) { VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER); if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); } else { mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); } NextVariable = GetNextVariablePtr (NextVariable); } mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase; return EFI_SUCCESS; } /** Flush the HOB variable to flash. @param[in] VariableName Name of variable has been updated or deleted. @param[in] VendorGuid Guid of variable has been updated or deleted. **/ VOID FlushHobVariableToFlash ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { EFI_STATUS Status; VARIABLE_STORE_HEADER *VariableStoreHeader; VARIABLE_HEADER *Variable; VOID *VariableData; BOOLEAN ErrorFlag; ErrorFlag = FALSE; // // Flush the HOB variable to flash. // if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase; // // Set HobVariableBase to 0, it can avoid SetVariable to call back. // mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0; for ( Variable = GetStartPointer (VariableStoreHeader) ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable)) ; Variable = GetNextVariablePtr (Variable) ) { if (Variable->State != VAR_ADDED) { // // The HOB variable has been set to DELETED state in local. // continue; } ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0); if (VendorGuid == NULL || VariableName == NULL || !CompareGuid (VendorGuid, &Variable->VendorGuid) || StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) { VariableData = GetVariableDataPtr (Variable); Status = VariableServiceSetVariable ( GetVariableNamePtr (Variable), &Variable->VendorGuid, Variable->Attributes, Variable->DataSize, VariableData ); DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status)); } else { // // The updated or deleted variable is matched with the HOB variable. // Don't break here because we will try to set other HOB variables // since this variable could be set successfully. // Status = EFI_SUCCESS; } if (!EFI_ERROR (Status)) { // // If set variable successful, or the updated or deleted variable is matched with the HOB variable, // set the HOB variable to DELETED state in local. // DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable))); Variable->State &= VAR_DELETED; } else { ErrorFlag = TRUE; } } if (ErrorFlag) { // // We still have HOB variable(s) not flushed in flash. // mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader; } else { // // All HOB variables have been flushed in flash. // DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n")); if (!AtRuntime ()) { FreePool ((VOID *) VariableStoreHeader); } } } } /** Initializes variable write service after FTW was ready. @retval EFI_SUCCESS Function successfully executed. @retval Others Fail to initialize the variable service. **/ EFI_STATUS VariableWriteServiceInitialize ( VOID ) { EFI_STATUS Status; VARIABLE_STORE_HEADER *VariableStoreHeader; UINTN Index; UINT8 Data; EFI_PHYSICAL_ADDRESS VariableStoreBase; EFI_PHYSICAL_ADDRESS NvStorageBase; NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); if (NvStorageBase == 0) { NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); } VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength); // // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready. // mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase; VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase; // // Check if the free area is really free. // for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) { Data = ((UINT8 *) mNvVariableCache)[Index]; if (Data != 0xff) { // // There must be something wrong in variable store, do reclaim operation. // Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, NULL, NULL, 0, FALSE ); if (EFI_ERROR (Status)) { return Status; } break; } } FlushHobVariableToFlash (NULL, NULL); // // Authenticated variable initialize. // Status = AutenticatedVariableServiceInitialize (); return Status; } /** Initializes variable store area for non-volatile and volatile variable. @retval EFI_SUCCESS Function successfully executed. @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource. **/ EFI_STATUS VariableCommonInitialize ( VOID ) { EFI_STATUS Status; VARIABLE_STORE_HEADER *VolatileVariableStore; VARIABLE_STORE_HEADER *VariableStoreHeader; UINT64 VariableStoreLength; UINTN ScratchSize; EFI_HOB_GUID_TYPE *GuidHob; // // Allocate runtime memory for variable driver global structure. // mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL)); if (mVariableModuleGlobal == NULL) { return EFI_OUT_OF_RESOURCES; } InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY); // // Get HOB variable store. // GuidHob = GetFirstGuidHob (&gEfiAuthenticatedVariableGuid); if (GuidHob != NULL) { VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob); VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE)); if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) { mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader); if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) { FreePool (mVariableModuleGlobal); return EFI_OUT_OF_RESOURCES; } } else { DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n")); } } // // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data. // ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)); VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize); if (VolatileVariableStore == NULL) { if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase); } FreePool (mVariableModuleGlobal); return EFI_OUT_OF_RESOURCES; } SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff); // // Initialize Variable Specific Data. // mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore; mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore; CopyGuid (&VolatileVariableStore->Signature, &gEfiAuthenticatedVariableGuid); VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize); VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED; VolatileVariableStore->State = VARIABLE_STORE_HEALTHY; VolatileVariableStore->Reserved = 0; VolatileVariableStore->Reserved1 = 0; // // Init non-volatile variable store. // Status = InitNonVolatileVariableStore (); if (EFI_ERROR (Status)) { if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) { FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase); } FreePool (mVariableModuleGlobal); FreePool (VolatileVariableStore); } return Status; } /** Get the proper fvb handle and/or fvb protocol by the given Flash address. @param[in] Address The Flash address. @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle. @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol. **/ EFI_STATUS GetFvbInfoByAddress ( IN EFI_PHYSICAL_ADDRESS Address, OUT EFI_HANDLE *FvbHandle OPTIONAL, OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE *HandleBuffer; UINTN HandleCount; UINTN Index; EFI_PHYSICAL_ADDRESS FvbBaseAddress; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FVB_ATTRIBUTES_2 Attributes; // // Get all FVB handles. // Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer); if (EFI_ERROR (Status)) { return EFI_NOT_FOUND; } // // Get the FVB to access variable store. // Fvb = NULL; for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) { Status = GetFvbByHandle (HandleBuffer[Index], &Fvb); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; break; } // // Ensure this FVB protocol supported Write operation. // Status = Fvb->GetAttributes (Fvb, &Attributes); if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) { continue; } // // Compare the address and select the right one. // Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress); if (EFI_ERROR (Status)) { continue; } FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress); if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) { if (FvbHandle != NULL) { *FvbHandle = HandleBuffer[Index]; } if (FvbProtocol != NULL) { *FvbProtocol = Fvb; } Status = EFI_SUCCESS; break; } } FreePool (HandleBuffer); if (Fvb == NULL) { Status = EFI_NOT_FOUND; } return Status; }