/** @file Stateful and implicitly initialized fw_cfg library implementation. Copyright (C) 2013 - 2014, Red Hat, Inc. Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include STATIC UINTN mFwCfgSelectorAddress; STATIC UINTN mFwCfgDataAddress; STATIC UINTN mFwCfgDmaAddress; /** Reads firmware configuration bytes into a buffer @param[in] Size Size in bytes to read @param[in] Buffer Buffer to store data into (OPTIONAL if Size is 0) **/ typedef VOID (EFIAPI READ_BYTES_FUNCTION) ( IN UINTN Size, IN VOID *Buffer OPTIONAL ); // // Forward declaration of the two implementations we have. // STATIC READ_BYTES_FUNCTION MmioReadBytes; STATIC READ_BYTES_FUNCTION DmaReadBytes; // // This points to the one we detect at runtime. // STATIC READ_BYTES_FUNCTION *InternalQemuFwCfgReadBytes = MmioReadBytes; /** Returns a boolean indicating if the firmware configuration interface is available or not. This function may change fw_cfg state. @retval TRUE The interface is available @retval FALSE The interface is not available **/ BOOLEAN EFIAPI QemuFwCfgIsAvailable ( VOID ) { return (BOOLEAN)(mFwCfgSelectorAddress != 0 && mFwCfgDataAddress != 0); } RETURN_STATUS EFIAPI QemuFwCfgInitialize ( VOID ) { EFI_STATUS Status; FDT_CLIENT_PROTOCOL *FdtClient; CONST UINT64 *Reg; UINT32 RegSize; UINTN AddressCells, SizeCells; UINT64 FwCfgSelectorAddress; UINT64 FwCfgSelectorSize; UINT64 FwCfgDataAddress; UINT64 FwCfgDataSize; UINT64 FwCfgDmaAddress; UINT64 FwCfgDmaSize; Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL, (VOID **)&FdtClient); ASSERT_EFI_ERROR (Status); Status = FdtClient->FindCompatibleNodeReg (FdtClient, "qemu,fw-cfg-mmio", (CONST VOID **)&Reg, &AddressCells, &SizeCells, &RegSize); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "%a: No 'qemu,fw-cfg-mmio' compatible DT node found (Status == %r)\n", __FUNCTION__, Status)); return EFI_SUCCESS; } ASSERT (AddressCells == 2); ASSERT (SizeCells == 2); ASSERT (RegSize == 2 * sizeof (UINT64)); FwCfgDataAddress = SwapBytes64 (Reg[0]); FwCfgDataSize = 8; FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize; FwCfgSelectorSize = 2; // // The following ASSERT()s express // // Address + Size - 1 <= MAX_UINTN // // for both registers, that is, that the last byte in each MMIO range is // expressible as a MAX_UINTN. The form below is mathematically // equivalent, and it also prevents any unsigned overflow before the // comparison. // ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1); ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1); mFwCfgSelectorAddress = FwCfgSelectorAddress; mFwCfgDataAddress = FwCfgDataAddress; DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress, FwCfgDataAddress)); if (SwapBytes64 (Reg[1]) >= 0x18) { FwCfgDmaAddress = FwCfgDataAddress + 0x10; FwCfgDmaSize = 0x08; // // See explanation above. // ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1); DEBUG ((EFI_D_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress)); } else { FwCfgDmaAddress = 0; } if (QemuFwCfgIsAvailable ()) { UINT32 Signature; QemuFwCfgSelectItem (QemuFwCfgItemSignature); Signature = QemuFwCfgRead32 (); if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) { // // For DMA support, we require the DTB to advertise the register, and the // feature bitmap (which we read without DMA) to confirm the feature. // if (FwCfgDmaAddress != 0) { UINT32 Features; QemuFwCfgSelectItem (QemuFwCfgItemInterfaceVersion); Features = QemuFwCfgRead32 (); if ((Features & FW_CFG_F_DMA) != 0) { mFwCfgDmaAddress = FwCfgDmaAddress; InternalQemuFwCfgReadBytes = DmaReadBytes; } } } else { mFwCfgSelectorAddress = 0; mFwCfgDataAddress = 0; } } return RETURN_SUCCESS; } /** Selects a firmware configuration item for reading. Following this call, any data read from this item will start from the beginning of the configuration item's data. @param[in] QemuFwCfgItem Firmware Configuration item to read **/ VOID EFIAPI QemuFwCfgSelectItem ( IN FIRMWARE_CONFIG_ITEM QemuFwCfgItem ) { if (QemuFwCfgIsAvailable ()) { MmioWrite16 (mFwCfgSelectorAddress, SwapBytes16 ((UINT16)QemuFwCfgItem)); } } /** Slow READ_BYTES_FUNCTION. **/ STATIC VOID EFIAPI MmioReadBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { UINTN Left; UINT8 *Ptr; UINT8 *End; #ifdef MDE_CPU_AARCH64 Left = Size & 7; #else Left = Size & 3; #endif Size -= Left; Ptr = Buffer; End = Ptr + Size; #ifdef MDE_CPU_AARCH64 while (Ptr < End) { *(UINT64 *)Ptr = MmioRead64 (mFwCfgDataAddress); Ptr += 8; } if (Left & 4) { *(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress); Ptr += 4; } #else while (Ptr < End) { *(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress); Ptr += 4; } #endif if (Left & 2) { *(UINT16 *)Ptr = MmioRead16 (mFwCfgDataAddress); Ptr += 2; } if (Left & 1) { *Ptr = MmioRead8 (mFwCfgDataAddress); } } /** Fast READ_BYTES_FUNCTION. **/ STATIC VOID EFIAPI DmaReadBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { volatile FW_CFG_DMA_ACCESS Access; UINT32 Status; if (Size == 0) { return; } ASSERT (Size <= MAX_UINT32); Access.Control = SwapBytes32 (FW_CFG_DMA_CTL_READ); Access.Length = SwapBytes32 ((UINT32)Size); Access.Address = SwapBytes64 ((UINT64)(UINTN)Buffer); // // We shouldn't start the transfer before setting up Access. // MemoryFence (); // // This will fire off the transfer. // #ifdef MDE_CPU_AARCH64 MmioWrite64 (mFwCfgDmaAddress, SwapBytes64 ((UINT64)&Access)); #else MmioWrite32 ((UINT32)(mFwCfgDmaAddress + 4), SwapBytes32 ((UINT32)&Access)); #endif // // We shouldn't look at Access.Control before starting the transfer. // MemoryFence (); do { Status = SwapBytes32 (Access.Control); ASSERT ((Status & FW_CFG_DMA_CTL_ERROR) == 0); } while (Status != 0); // // The caller will want to access the transferred data. // MemoryFence (); } /** Reads firmware configuration bytes into a buffer If called multiple times, then the data read will continue at the offset of the firmware configuration item where the previous read ended. @param[in] Size Size in bytes to read @param[in] Buffer Buffer to store data into **/ VOID EFIAPI QemuFwCfgReadBytes ( IN UINTN Size, IN VOID *Buffer ) { if (QemuFwCfgIsAvailable ()) { InternalQemuFwCfgReadBytes (Size, Buffer); } else { ZeroMem (Buffer, Size); } } /** Write firmware configuration bytes from a buffer If called multiple times, then the data written will continue at the offset of the firmware configuration item where the previous write ended. @param[in] Size Size in bytes to write @param[in] Buffer Buffer to read data from **/ VOID EFIAPI QemuFwCfgWriteBytes ( IN UINTN Size, IN VOID *Buffer ) { if (QemuFwCfgIsAvailable ()) { UINTN Idx; for (Idx = 0; Idx < Size; ++Idx) { MmioWrite8 (mFwCfgDataAddress, ((UINT8 *)Buffer)[Idx]); } } } /** Reads a UINT8 firmware configuration value @return Value of Firmware Configuration item read **/ UINT8 EFIAPI QemuFwCfgRead8 ( VOID ) { UINT8 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT16 firmware configuration value @return Value of Firmware Configuration item read **/ UINT16 EFIAPI QemuFwCfgRead16 ( VOID ) { UINT16 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT32 firmware configuration value @return Value of Firmware Configuration item read **/ UINT32 EFIAPI QemuFwCfgRead32 ( VOID ) { UINT32 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT64 firmware configuration value @return Value of Firmware Configuration item read **/ UINT64 EFIAPI QemuFwCfgRead64 ( VOID ) { UINT64 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Find the configuration item corresponding to the firmware configuration file. @param[in] Name Name of file to look up. @param[out] Item Configuration item corresponding to the file, to be passed to QemuFwCfgSelectItem (). @param[out] Size Number of bytes in the file. @retval RETURN_SUCCESS If file is found. @retval RETURN_NOT_FOUND If file is not found. @retval RETURN_UNSUPPORTED If firmware configuration is unavailable. **/ RETURN_STATUS EFIAPI QemuFwCfgFindFile ( IN CONST CHAR8 *Name, OUT FIRMWARE_CONFIG_ITEM *Item, OUT UINTN *Size ) { UINT32 Count; UINT32 Idx; if (!QemuFwCfgIsAvailable ()) { return RETURN_UNSUPPORTED; } QemuFwCfgSelectItem (QemuFwCfgItemFileDir); Count = SwapBytes32 (QemuFwCfgRead32 ()); for (Idx = 0; Idx < Count; ++Idx) { UINT32 FileSize; UINT16 FileSelect; CHAR8 FName[QEMU_FW_CFG_FNAME_SIZE]; FileSize = QemuFwCfgRead32 (); FileSelect = QemuFwCfgRead16 (); QemuFwCfgRead16 (); // skip the field called "reserved" InternalQemuFwCfgReadBytes (sizeof (FName), FName); if (AsciiStrCmp (Name, FName) == 0) { *Item = (FIRMWARE_CONFIG_ITEM) SwapBytes16 (FileSelect); *Size = SwapBytes32 (FileSize); return RETURN_SUCCESS; } } return RETURN_NOT_FOUND; } /** Determine if S3 support is explicitly enabled. @retval TRUE if S3 support is explicitly enabled. FALSE otherwise. This includes unavailability of the firmware configuration interface. **/ BOOLEAN EFIAPI QemuFwCfgS3Enabled ( VOID ) { return FALSE; }