Ard Biesheuvel c558a3b18b ArmPkg/ArmGicDxe: Map GIC MMIO regions before use
The GIC driver itself has intimate knowledge of the hardware, and so it
is the best suited to create the mappings of the MMIO control regions,
in case they have not been mapped yet by the platform code.

So call in the the CPU arch protocol to map the CPU interface,
distributor and redistributor regions as they are discovered by the GIC
driver startup code.

Note that creating these mappings has no effect if the regions in
question have already been mapped with the correct attributes.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2025-01-30 13:07:05 +00:00

710 lines
19 KiB
C

/** @file
*
* Copyright (c) 2011-2023, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Library/ArmGicLib.h>
#include "ArmGicDxe.h"
#define ARM_GIC_DEFAULT_PRIORITY 0x80
// In GICv3, there are 2 x 64KB frames:
// Redistributor control frame + SGI Control & Generation frame
#define GIC_V3_REDISTRIBUTOR_GRANULARITY (ARM_GICR_CTLR_FRAME_SIZE \
+ ARM_GICR_SGI_PPI_FRAME_SIZE)
// In GICv4, there are 2 additional 64KB frames:
// VLPI frame + Reserved page frame
#define GIC_V4_REDISTRIBUTOR_GRANULARITY (GIC_V3_REDISTRIBUTOR_GRANULARITY \
+ ARM_GICR_SGI_VLPI_FRAME_SIZE \
+ ARM_GICR_SGI_RESERVED_FRAME_SIZE)
#define GICD_V3_SIZE SIZE_64KB
#define ISENABLER_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GICR_ISENABLER + 4 * (offset))
#define ICENABLER_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GICR_ICENABLER + 4 * (offset))
#define IPRIORITY_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDIPR + 4 * (offset))
extern EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol;
extern EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol;
STATIC UINTN mGicDistributorBase;
STATIC UINTN mGicRedistributorBase;
/**
*
* Return whether the Source interrupt index refers to a shared interrupt (SPI)
*/
STATIC
BOOLEAN
SourceIsSpi (
IN UINTN Source
)
{
return Source >= 32 && Source < 1020;
}
/**
* Return the base address of the GIC redistributor for the current CPU
*
* @retval Base address of the associated GIC Redistributor
*/
STATIC
UINTN
GicGetCpuRedistributorBase (
IN UINTN GicRedistributorBase
)
{
UINTN MpId;
UINTN CpuAffinity;
UINTN Affinity;
UINTN GicCpuRedistributorBase;
UINT64 TypeRegister;
EFI_STATUS Status;
MpId = ArmReadMpidr ();
// Define CPU affinity as:
// Affinity0[0:8], Affinity1[9:15], Affinity2[16:23], Affinity3[24:32]
// whereas Affinity3 is defined at [32:39] in MPIDR
CpuAffinity = (MpId & (ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2)) |
((MpId & ARM_CORE_AFF3) >> 8);
GicCpuRedistributorBase = GicRedistributorBase;
do {
Status = gCpuArch->SetMemoryAttributes (
gCpuArch,
GicCpuRedistributorBase,
GIC_V3_REDISTRIBUTOR_GRANULARITY,
EFI_MEMORY_UC | EFI_MEMORY_XP
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"%a: Failed to map GICv3 redistributor MMIO interface at 0x%lx: %r\n",
__func__,
GicCpuRedistributorBase,
Status
));
ASSERT_EFI_ERROR (Status);
return 0;
}
TypeRegister = MmioRead64 (GicCpuRedistributorBase + ARM_GICR_TYPER);
Affinity = ARM_GICR_TYPER_GET_AFFINITY (TypeRegister);
if (Affinity == CpuAffinity) {
return GicCpuRedistributorBase;
}
// Move to the next GIC Redistributor frame.
// The GIC specification does not forbid a mixture of redistributors
// with or without support for virtual LPIs, so we test Virtual LPIs
// Support (VLPIS) bit for each frame to decide the granularity.
// Note: The assumption here is that the redistributors are adjacent
// for all CPUs. However this may not be the case for NUMA systems.
GicCpuRedistributorBase += (((ARM_GICR_TYPER_VLPIS & TypeRegister) != 0)
? GIC_V4_REDISTRIBUTOR_GRANULARITY
: GIC_V3_REDISTRIBUTOR_GRANULARITY);
} while ((TypeRegister & ARM_GICR_TYPER_LAST) == 0);
// The Redistributor has not been found for the current CPU
ASSERT_EFI_ERROR (EFI_NOT_FOUND);
return 0;
}
STATIC
VOID
ArmGicSetInterruptPriority (
IN UINTN Source,
IN UINT32 Priority
)
{
UINT32 RegOffset;
UINT8 RegShift;
// Calculate register offset and bit position
RegOffset = (UINT32)(Source / 4);
RegShift = (UINT8)((Source % 4) * 8);
if (SourceIsSpi (Source)) {
MmioAndThenOr32 (
mGicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset),
~(0xff << RegShift),
Priority << RegShift
);
} else {
MmioAndThenOr32 (
IPRIORITY_ADDRESS (mGicRedistributorBase, RegOffset),
~(0xff << RegShift),
Priority << RegShift
);
}
}
STATIC
VOID
ArmGicEnableInterrupt (
IN UINTN Source
)
{
UINT32 RegOffset;
UINT8 RegShift;
// Calculate enable register offset and bit position
RegOffset = (UINT32)(Source / 32);
RegShift = (UINT8)(Source % 32);
if (SourceIsSpi (Source)) {
// Write set-enable register
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDISER + (4 * RegOffset),
1 << RegShift
);
} else {
// Write set-enable register
MmioWrite32 (
ISENABLER_ADDRESS (mGicRedistributorBase, RegOffset),
1 << RegShift
);
}
}
STATIC
VOID
ArmGicDisableInterrupt (
IN UINTN Source
)
{
UINT32 RegOffset;
UINT8 RegShift;
// Calculate enable register offset and bit position
RegOffset = (UINT32)(Source / 32);
RegShift = (UINT8)(Source % 32);
if (SourceIsSpi (Source)) {
// Write clear-enable register
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDICER + (4 * RegOffset),
1 << RegShift
);
} else {
// Write clear-enable register
MmioWrite32 (
ICENABLER_ADDRESS (mGicRedistributorBase, RegOffset),
1 << RegShift
);
}
}
STATIC
BOOLEAN
ArmGicIsInterruptEnabled (
IN UINTN Source
)
{
UINT32 RegOffset;
UINT8 RegShift;
UINT32 Interrupts;
// Calculate enable register offset and bit position
RegOffset = (UINT32)(Source / 32);
RegShift = (UINT8)(Source % 32);
if (SourceIsSpi (Source)) {
Interrupts = MmioRead32 (
mGicDistributorBase + ARM_GIC_ICDISER + (4 * RegOffset)
);
} else {
// Read set-enable register
Interrupts = MmioRead32 (
ISENABLER_ADDRESS (mGicRedistributorBase, RegOffset)
);
}
return ((Interrupts & (1 << RegShift)) != 0);
}
/**
Enable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt enabled.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3EnableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicEnableInterrupt (Source);
return EFI_SUCCESS;
}
/**
Disable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt disabled.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3DisableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicDisableInterrupt (Source);
return EFI_SUCCESS;
}
/**
Return current state of interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@param InterruptState TRUE: source enabled, FALSE: source disabled.
@retval EFI_SUCCESS InterruptState is valid
@retval EFI_DEVICE_ERROR InterruptState is not valid
**/
STATIC
EFI_STATUS
EFIAPI
GicV3GetInterruptSourceState (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN BOOLEAN *InterruptState
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
*InterruptState = ArmGicIsInterruptEnabled (Source);
return EFI_SUCCESS;
}
/**
Signal to the hardware that the End Of Interrupt state
has been reached.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt ended successfully.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3EndOfInterrupt (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicV3EndOfInterrupt (Source);
return EFI_SUCCESS;
}
/**
EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs.
@param InterruptType Defines the type of interrupt or exception that
occurred on the processor. This parameter is
processor architecture specific.
@param SystemContext A pointer to the processor context when
the interrupt occurred on the processor.
@return None
**/
STATIC
VOID
EFIAPI
GicV3IrqInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINTN GicInterrupt;
HARDWARE_INTERRUPT_HANDLER InterruptHandler;
GicInterrupt = ArmGicV3AcknowledgeInterrupt ();
// Special Interrupts (ID1020-ID1023) have an Interrupt ID greater than the
// number of interrupt (ie: Spurious interrupt).
if ((GicInterrupt & ARM_GIC_ICCIAR_ACKINTID) >= mGicNumInterrupts) {
// The special interrupt do not need to be acknowledge
return;
}
InterruptHandler = gRegisteredInterruptHandlers[GicInterrupt];
if (InterruptHandler != NULL) {
// Call the registered interrupt handler.
InterruptHandler (GicInterrupt, SystemContext);
} else {
DEBUG ((DEBUG_ERROR, "Spurious GIC interrupt: 0x%x\n", (UINT32)GicInterrupt));
GicV3EndOfInterrupt (&gHardwareInterruptV3Protocol, GicInterrupt);
}
}
// The protocol instance produced by this driver
EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol = {
RegisterInterruptSource,
GicV3EnableInterruptSource,
GicV3DisableInterruptSource,
GicV3GetInterruptSourceState,
GicV3EndOfInterrupt
};
/**
Get interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Returns interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3GetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE *TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
EFI_STATUS Status;
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((MmioRead32 (RegAddress) & (1 << Config1Bit)) == 0) {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH;
} else {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING;
}
return EFI_SUCCESS;
}
/**
Set interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3SetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
UINT32 Value;
EFI_STATUS Status;
BOOLEAN SourceEnabled;
if ( (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
&& (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH))
{
DEBUG ((
DEBUG_ERROR,
"Invalid interrupt trigger type: %d\n", \
TriggerType
));
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = GicV3GetInterruptSourceState (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source,
&SourceEnabled
);
if (EFI_ERROR (Status)) {
return Status;
}
Value = (TriggerType == EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
? ARM_GIC_ICDICFR_EDGE_TRIGGERED
: ARM_GIC_ICDICFR_LEVEL_TRIGGERED;
// Before changing the value, we must disable the interrupt,
// otherwise GIC behavior is UNPREDICTABLE.
if (SourceEnabled) {
GicV3DisableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
MmioAndThenOr32 (
RegAddress,
~(0x1 << Config1Bit),
Value << Config1Bit
);
// Restore interrupt state
if (SourceEnabled) {
GicV3EnableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
return EFI_SUCCESS;
}
STATIC
VOID
ArmGicEnableDistributor (
IN UINTN GicDistributorBase
)
{
UINT32 GicDistributorCtl;
GicDistributorCtl = MmioRead32 (GicDistributorBase + ARM_GIC_ICDDCR);
if ((GicDistributorCtl & ARM_GIC_ICDDCR_ARE) != 0) {
MmioOr32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x2);
} else {
MmioOr32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x1);
}
}
EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol = {
(HARDWARE_INTERRUPT2_REGISTER)RegisterInterruptSource,
(HARDWARE_INTERRUPT2_ENABLE)GicV3EnableInterruptSource,
(HARDWARE_INTERRUPT2_DISABLE)GicV3DisableInterruptSource,
(HARDWARE_INTERRUPT2_INTERRUPT_STATE)GicV3GetInterruptSourceState,
(HARDWARE_INTERRUPT2_END_OF_INTERRUPT)GicV3EndOfInterrupt,
GicV3GetTriggerType,
GicV3SetTriggerType
};
/**
Shutdown our hardware
DXE Core will disable interrupts and turn off the timer and disable interrupts
after all the event handlers have run.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
GicV3ExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
// Acknowledge all pending interrupts
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index);
}
// Disable Gic Interface
ArmGicV3DisableInterruptInterface ();
// Disable Gic Distributor
ArmGicDisableDistributor (mGicDistributorBase);
}
/**
Initialize the state information for the CPU Architectural Protocol
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
**/
EFI_STATUS
GicV3DxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINTN Index;
UINT64 MpId;
UINT64 CpuTarget;
UINT64 RegValue;
// Make sure the Interrupt Controller Protocol is not already installed in
// the system.
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);
// Locate the CPU arch protocol - cannot fail because of DEPEX
Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&gCpuArch);
ASSERT_EFI_ERROR (Status);
mGicDistributorBase = (UINTN)PcdGet64 (PcdGicDistributorBase);
Status = gCpuArch->SetMemoryAttributes (gCpuArch, mGicDistributorBase, GICD_V3_SIZE, EFI_MEMORY_UC | EFI_MEMORY_XP);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Failed to map GICv3 distributor MMIO interface: %r\n", __func__, Status));
ASSERT_EFI_ERROR (Status);
return Status;
}
mGicRedistributorBase = GicGetCpuRedistributorBase (PcdGet64 (PcdGicRedistributorsBase));
mGicNumInterrupts = ArmGicGetMaxNumInterrupts (mGicDistributorBase);
RegValue = ArmGicV3GetControlSystemRegisterEnable ();
if ((RegValue & ICC_SRE_EL2_SRE) == 0) {
ArmGicV3SetControlSystemRegisterEnable (RegValue | ICC_SRE_EL2_SRE);
ASSERT ((ArmGicV3GetControlSystemRegisterEnable () & ICC_SRE_EL2_SRE) != 0);
}
// We will be driving this GIC in native v3 mode, i.e., with Affinity
// Routing enabled. So ensure that the ARE bit is set.
MmioOr32 (mGicDistributorBase + ARM_GIC_ICDDCR, ARM_GIC_ICDDCR_ARE);
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index);
// Set Priority
ArmGicSetInterruptPriority (Index, ARM_GIC_DEFAULT_PRIORITY);
}
// Targets the interrupts to the Primary Cpu
MpId = ArmReadMpidr ();
CpuTarget = MpId &
(ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2 | ARM_CORE_AFF3);
if ((MmioRead32 (
mGicDistributorBase + ARM_GIC_ICDDCR
) & ARM_GIC_ICDDCR_DS) != 0)
{
// If the Disable Security (DS) control bit is set, we are dealing with a
// GIC that has only one security state. In this case, let's assume we are
// executing in non-secure state (which is appropriate for DXE modules)
// and that no other firmware has performed any configuration on the GIC.
// This means we need to reconfigure all interrupts to non-secure Group 1
// first.
MmioWrite32 (
mGicRedistributorBase + ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDISR,
0xffffffff
);
for (Index = 32; Index < mGicNumInterrupts; Index += 32) {
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDISR + Index / 8,
0xffffffff
);
}
// Route the SPIs to the primary CPU. SPIs start at the INTID 32
for (Index = 0; Index < (mGicNumInterrupts - 32); Index++) {
MmioWrite64 (
mGicDistributorBase + ARM_GICD_IROUTER + (Index * 8),
CpuTarget
);
}
}
// Set binary point reg to 0x7 (no preemption)
ArmGicV3SetBinaryPointer (0x7);
// Set priority mask reg to 0xff to allow all priorities through
ArmGicV3SetPriorityMask (0xff);
// Use combined priority drop and deactivate (EOImode == 0)
RegValue = ArmGicV3GetControlRegister ();
RegValue &= ~(UINT64)ICC_CTLR_EOImode;
ArmGicV3SetControlRegister (RegValue);
// Enable gic cpu interface
ArmGicV3EnableInterruptInterface ();
// Enable gic distributor
ArmGicEnableDistributor (mGicDistributorBase);
Status = InstallAndRegisterInterruptService (
&gHardwareInterruptV3Protocol,
&gHardwareInterrupt2V3Protocol,
GicV3IrqInterruptHandler,
GicV3ExitBootServicesEvent
);
return Status;
}