audk/BaseTools/Source/C/GenFw/Elf64Convert.c

2032 lines
67 KiB
C

/** @file
Elf64 convert solution
Copyright (c) 2010 - 2021, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2013-2022, ARM Ltd. All rights reserved.<BR>
Portions Copyright (c) 2020, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "WinNtInclude.h"
#ifndef __GNUC__
#include <windows.h>
#include <io.h>
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <Common/UefiBaseTypes.h>
#include <IndustryStandard/PeImage.h>
#include "PeCoffLib.h"
#include "EfiUtilityMsgs.h"
#include "GenFw.h"
#include "ElfConvert.h"
#include "Elf64Convert.h"
STATIC
VOID
ScanSections64 (
VOID
);
STATIC
BOOLEAN
WriteSections64 (
SECTION_FILTER_TYPES FilterType
);
STATIC
VOID
WriteRelocations64 (
VOID
);
STATIC
VOID
WriteDebug64 (
VOID
);
STATIC
VOID
WriteExport64 (
VOID
);
STATIC
VOID
SetImageSize64 (
VOID
);
STATIC
VOID
CleanUp64 (
VOID
);
//
// Rename ELF32 structures to common names to help when porting to ELF64.
//
typedef Elf64_Shdr Elf_Shdr;
typedef Elf64_Ehdr Elf_Ehdr;
typedef Elf64_Rel Elf_Rel;
typedef Elf64_Rela Elf_Rela;
typedef Elf64_Sym Elf_Sym;
typedef Elf64_Phdr Elf_Phdr;
typedef Elf64_Dyn Elf_Dyn;
#define ELFCLASS ELFCLASS64
#define ELF_R_TYPE(r) ELF64_R_TYPE(r)
#define ELF_R_SYM(r) ELF64_R_SYM(r)
//
// Well known ELF structures.
//
STATIC Elf_Ehdr *mEhdr;
STATIC Elf_Shdr *mShdrBase;
STATIC Elf_Phdr *mPhdrBase;
//
// GOT information
//
STATIC Elf_Shdr *mGOTShdr = NULL;
STATIC UINT32 mGOTShindex = 0;
STATIC UINT32 *mGOTCoffEntries = NULL;
STATIC UINT32 mGOTMaxCoffEntries = 0;
STATIC UINT32 mGOTNumCoffEntries = 0;
//
// Coff information
//
STATIC UINT32 mCoffAlignment = 0x20;
//
// PE section alignment.
//
STATIC UINT16 mCoffNbrSections = 4;
//
// ELF sections to offset in Coff file.
//
STATIC UINT32 *mCoffSectionsOffset = NULL;
//
// Offsets in COFF file
//
STATIC UINT32 mNtHdrOffset;
STATIC UINT32 mTextOffset;
STATIC UINT32 mDataOffset;
STATIC UINT32 mHiiRsrcOffset;
STATIC UINT32 mRelocOffset;
STATIC UINT32 mDebugOffset;
STATIC UINT32 mExportOffset;
//
// Used for RISC-V relocations.
//
STATIC UINT8 *mRiscVPass1Targ = NULL;
STATIC Elf_Shdr *mRiscVPass1Sym = NULL;
STATIC Elf64_Half mRiscVPass1SymSecIndex = 0;
STATIC INT32 mRiscVPass1Offset;
STATIC INT32 mRiscVPass1GotFixup;
//
// Used for Export section.
//
STATIC UINT32 mExportSize;
STATIC UINT32 mExportRVA[PRM_MODULE_EXPORT_SYMBOL_NUM];
STATIC UINT32 mExportSymNum;
STATIC CHAR8 mExportSymName[PRM_MODULE_EXPORT_SYMBOL_NUM][PRM_HANDLER_NAME_MAXIMUM_LENGTH];
//
// Initialization Function
//
BOOLEAN
InitializeElf64 (
UINT8 *FileBuffer,
ELF_FUNCTION_TABLE *ElfFunctions
)
{
//
// Initialize data pointer and structures.
//
VerboseMsg ("Set EHDR");
mEhdr = (Elf_Ehdr*) FileBuffer;
//
// Check the ELF64 specific header information.
//
VerboseMsg ("Check ELF64 Header Information");
if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
return FALSE;
}
if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
return FALSE;
}
if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
return FALSE;
}
if (!((mEhdr->e_machine == EM_X86_64) || (mEhdr->e_machine == EM_AARCH64) || (mEhdr->e_machine == EM_RISCV64))) {
Warning (NULL, 0, 3000, "Unsupported", "ELF e_machine is not Elf64 machine.");
}
if (mEhdr->e_version != EV_CURRENT) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
return FALSE;
}
if (mExportFlag) {
if ((mEhdr->e_machine != EM_X86_64) && (mEhdr->e_machine != EM_AARCH64)) {
Error (NULL, 0, 3000, "Unsupported", "--prm option currently only supports X64 and AArch64 archs.");
return FALSE;
}
}
//
// Update section header pointers
//
VerboseMsg ("Update Header Pointers");
mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
//
// Create COFF Section offset buffer and zero.
//
VerboseMsg ("Create COFF Section Offset Buffer");
mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
if (mCoffSectionsOffset == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
return FALSE;
}
memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
//
// Fill in function pointers.
//
VerboseMsg ("Fill in Function Pointers");
ElfFunctions->ScanSections = ScanSections64;
ElfFunctions->WriteSections = WriteSections64;
ElfFunctions->WriteRelocations = WriteRelocations64;
ElfFunctions->WriteDebug = WriteDebug64;
ElfFunctions->SetImageSize = SetImageSize64;
ElfFunctions->CleanUp = CleanUp64;
if (mExportFlag) {
mCoffNbrSections ++;
ElfFunctions->WriteExport = WriteExport64;
}
return TRUE;
}
//
// Header by Index functions
//
STATIC
Elf_Shdr*
GetShdrByIndex (
UINT32 Num
)
{
if (Num >= mEhdr->e_shnum) {
Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
exit(EXIT_FAILURE);
}
return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
}
STATIC
UINT32
CoffAlign (
UINT32 Offset
)
{
return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
}
STATIC
UINT32
DebugRvaAlign (
UINT32 Offset
)
{
return (Offset + 3) & ~3;
}
//
// filter functions
//
STATIC
BOOLEAN
IsTextShdr (
Elf_Shdr *Shdr
)
{
return (BOOLEAN) (((Shdr->sh_flags & (SHF_EXECINSTR | SHF_ALLOC)) == (SHF_EXECINSTR | SHF_ALLOC)) ||
((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC));
}
STATIC
BOOLEAN
IsHiiRsrcShdr (
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
}
STATIC
BOOLEAN
IsSymbolShdr (
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namehdr = GetShdrByIndex(mEhdr->e_shstrndx);
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namehdr->sh_offset + Shdr->sh_name, ELF_SYMBOL_SECTION_NAME) == 0);
}
STATIC
BOOLEAN
IsDataShdr (
Elf_Shdr *Shdr
)
{
if (IsHiiRsrcShdr(Shdr)) {
return FALSE;
}
return (BOOLEAN) (Shdr->sh_flags & (SHF_EXECINSTR | SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
}
STATIC
BOOLEAN
IsStrtabShdr (
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
}
STATIC
Elf_Shdr *
FindStrtabShdr (
VOID
)
{
UINT32 i;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsStrtabShdr(shdr)) {
return shdr;
}
}
return NULL;
}
STATIC
const UINT8 *
GetSymName (
Elf_Sym *Sym
)
{
Elf_Shdr *StrtabShdr;
UINT8 *StrtabContents;
BOOLEAN foundEnd;
UINT32 i;
if (Sym->st_name == 0) {
return NULL;
}
StrtabShdr = FindStrtabShdr();
if (StrtabShdr == NULL) {
return NULL;
}
assert(Sym->st_name < StrtabShdr->sh_size);
StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
foundEnd = FALSE;
for (i= Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
foundEnd = (BOOLEAN)(StrtabContents[i] == 0);
}
assert(foundEnd);
return StrtabContents + Sym->st_name;
}
//
// Get Prm Handler number and name
//
STATIC
VOID
FindPrmHandler (
UINT64 Offset
)
{
PRM_MODULE_EXPORT_DESCRIPTOR_STRUCT_HEADER *PrmExport;
PRM_HANDLER_EXPORT_DESCRIPTOR_STRUCT *PrmHandler;
UINT32 HandlerNum;
PrmExport = (PRM_MODULE_EXPORT_DESCRIPTOR_STRUCT_HEADER*)((UINT8*)mEhdr + Offset);
PrmHandler = (PRM_HANDLER_EXPORT_DESCRIPTOR_STRUCT *)(PrmExport + 1);
for (HandlerNum = 0; HandlerNum < PrmExport->NumberPrmHandlers; HandlerNum++) {
strcpy(mExportSymName[mExportSymNum], PrmHandler->PrmHandlerName);
mExportSymNum ++;
PrmHandler += 1;
//
// Check if PRM handler number is larger than (PRM_MODULE_EXPORT_SYMBOL_NUM - 1)
//
if (mExportSymNum >= (PRM_MODULE_EXPORT_SYMBOL_NUM - 1)) {
Error (NULL, 0, 3000, "Invalid", "FindPrmHandler: Number %u is too high.", mExportSymNum);
exit(EXIT_FAILURE);
}
}
}
//
// Find the ELF section hosting the GOT from an ELF Rva
// of a single GOT entry. Normally, GOT is placed in
// ELF .text section, so assume once we find in which
// section the GOT is, all GOT entries are there, and
// just verify this.
//
STATIC
VOID
FindElfGOTSectionFromGOTEntryElfRva (
Elf64_Addr GOTEntryElfRva
)
{
UINT32 i;
if (mGOTShdr != NULL) {
if (GOTEntryElfRva >= mGOTShdr->sh_addr &&
GOTEntryElfRva < mGOTShdr->sh_addr + mGOTShdr->sh_size) {
return;
}
Error (NULL, 0, 3000, "Unsupported", "FindElfGOTSectionFromGOTEntryElfRva: GOT entries found in multiple sections.");
exit(EXIT_FAILURE);
}
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (GOTEntryElfRva >= shdr->sh_addr &&
GOTEntryElfRva < shdr->sh_addr + shdr->sh_size) {
mGOTShdr = shdr;
mGOTShindex = i;
return;
}
}
Error (NULL, 0, 3000, "Invalid", "FindElfGOTSectionFromGOTEntryElfRva: ElfRva 0x%016LX for GOT entry not found in any section.", GOTEntryElfRva);
exit(EXIT_FAILURE);
}
//
// Stores locations of GOT entries in COFF image.
// Returns TRUE if GOT entry is new.
// Simple implementation as number of GOT
// entries is expected to be low.
//
STATIC
BOOLEAN
AccumulateCoffGOTEntries (
UINT32 GOTCoffEntry
)
{
UINT32 i;
if (mGOTCoffEntries != NULL) {
for (i = 0; i < mGOTNumCoffEntries; i++) {
if (mGOTCoffEntries[i] == GOTCoffEntry) {
return FALSE;
}
}
}
if (mGOTCoffEntries == NULL) {
mGOTCoffEntries = (UINT32*)malloc(5 * sizeof *mGOTCoffEntries);
if (mGOTCoffEntries == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
}
assert (mGOTCoffEntries != NULL);
mGOTMaxCoffEntries = 5;
mGOTNumCoffEntries = 0;
} else if (mGOTNumCoffEntries == mGOTMaxCoffEntries) {
mGOTCoffEntries = (UINT32*)realloc(mGOTCoffEntries, 2 * mGOTMaxCoffEntries * sizeof *mGOTCoffEntries);
if (mGOTCoffEntries == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
}
assert (mGOTCoffEntries != NULL);
mGOTMaxCoffEntries += mGOTMaxCoffEntries;
}
mGOTCoffEntries[mGOTNumCoffEntries++] = GOTCoffEntry;
return TRUE;
}
//
// 32-bit Unsigned integer comparator for qsort.
//
STATIC
int
UINT32Comparator (
const void* lhs,
const void* rhs
)
{
if (*(const UINT32*)lhs < *(const UINT32*)rhs) {
return -1;
}
return *(const UINT32*)lhs > *(const UINT32*)rhs;
}
//
// Emit accumulated Coff GOT entry relocations into
// Coff image. This function performs its job
// once and then releases the entry list, so
// it can safely be called multiple times.
//
STATIC
VOID
EmitGOTRelocations (
VOID
)
{
UINT32 i;
if (mGOTCoffEntries == NULL) {
return;
}
//
// Emit Coff relocations with Rvas ordered.
//
qsort(
mGOTCoffEntries,
mGOTNumCoffEntries,
sizeof *mGOTCoffEntries,
UINT32Comparator);
for (i = 0; i < mGOTNumCoffEntries; i++) {
VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X", mGOTCoffEntries[i]);
CoffAddFixup(
mGOTCoffEntries[i],
EFI_IMAGE_REL_BASED_DIR64);
}
free(mGOTCoffEntries);
mGOTCoffEntries = NULL;
mGOTMaxCoffEntries = 0;
mGOTNumCoffEntries = 0;
}
//
// RISC-V 64 specific Elf WriteSection function.
//
STATIC
VOID
WriteSectionRiscV64 (
Elf_Rela *Rel,
UINT8 *Targ,
Elf_Shdr *SymShdr,
Elf_Sym *Sym
)
{
UINT32 Value;
UINT32 Value2;
Elf64_Addr GOTEntryRva;
switch (ELF_R_TYPE(Rel->r_info)) {
case R_RISCV_NONE:
break;
case R_RISCV_32:
*(UINT64 *)Targ = Sym->st_value + Rel->r_addend;
break;
case R_RISCV_64:
*(UINT64 *)Targ = Sym->st_value + Rel->r_addend;
break;
case R_RISCV_HI20:
mRiscVPass1Targ = Targ;
mRiscVPass1Sym = SymShdr;
mRiscVPass1SymSecIndex = Sym->st_shndx;
break;
case R_RISCV_LO12_I:
if (mRiscVPass1Sym == SymShdr && mRiscVPass1Targ != NULL && mRiscVPass1SymSecIndex == Sym->st_shndx && mRiscVPass1SymSecIndex != 0) {
Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20) << 12);
Value2 = (UINT32)(RV_X(*(UINT32 *)Targ, 20, 12));
if (Value2 & (RISCV_IMM_REACH/2)) {
Value2 |= ~(RISCV_IMM_REACH-1);
}
Value += Value2;
Value = Value - (UINT32)SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
Value2 = RISCV_CONST_HIGH_PART (Value);
*(UINT32 *)mRiscVPass1Targ = (RV_X (Value2, 12, 20) << 12) | \
(RV_X (*(UINT32 *)mRiscVPass1Targ, 0, 12));
*(UINT32 *)Targ = (RV_X (Value, 0, 12) << 20) | \
(RV_X (*(UINT32 *)Targ, 0, 20));
}
mRiscVPass1Sym = NULL;
mRiscVPass1Targ = NULL;
mRiscVPass1SymSecIndex = 0;
break;
case R_RISCV_LO12_S:
if (mRiscVPass1Sym == SymShdr && mRiscVPass1Targ != NULL && mRiscVPass1SymSecIndex == Sym->st_shndx && mRiscVPass1SymSecIndex != 0) {
Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20) << 12);
Value2 = (UINT32)(RV_X(*(UINT32 *)Targ, 7, 5) | (RV_X(*(UINT32 *)Targ, 25, 7) << 5));
if (Value2 & (RISCV_IMM_REACH/2)) {
Value2 |= ~(RISCV_IMM_REACH-1);
}
Value += Value2;
Value = Value - (UINT32)SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
Value2 = RISCV_CONST_HIGH_PART (Value);
*(UINT32 *)mRiscVPass1Targ = (RV_X (Value2, 12, 20) << 12) | \
(RV_X (*(UINT32 *)mRiscVPass1Targ, 0, 12));
Value2 = *(UINT32 *)Targ & 0x01fff07f;
Value &= RISCV_IMM_REACH - 1;
*(UINT32 *)Targ = Value2 | (UINT32)(((RV_X(Value, 0, 5) << 7) | (RV_X(Value, 5, 7) << 25)));
}
mRiscVPass1Sym = NULL;
mRiscVPass1Targ = NULL;
mRiscVPass1SymSecIndex = 0;
break;
case R_RISCV_GOT_HI20:
GOTEntryRva = (Sym->st_value - Rel->r_offset);
mRiscVPass1Offset = RV_X(GOTEntryRva, 0, 12);
Value = (UINT32)RV_X(GOTEntryRva, 12, 20);
*(UINT32 *)Targ = (Value << 12) | (RV_X(*(UINT32*)Targ, 0, 12));
mRiscVPass1Targ = Targ;
mRiscVPass1Sym = SymShdr;
mRiscVPass1SymSecIndex = Sym->st_shndx;
mRiscVPass1GotFixup = 1;
break;
case R_RISCV_PCREL_HI20:
mRiscVPass1Targ = Targ;
mRiscVPass1Sym = SymShdr;
mRiscVPass1SymSecIndex = Sym->st_shndx;
Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20));
break;
case R_RISCV_PCREL_LO12_S:
if (mRiscVPass1Targ != NULL && mRiscVPass1Sym != NULL && mRiscVPass1SymSecIndex != 0) {
int i;
Value2 = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20));
Value = ((UINT32)(RV_X(*(UINT32 *)Targ, 25, 7)) << 5);
Value = (Value | (UINT32)(RV_X(*(UINT32 *)Targ, 7, 5)));
if(Value & (RISCV_IMM_REACH/2)) {
Value |= ~(RISCV_IMM_REACH-1);
}
Value = Value - (UINT32)mRiscVPass1Sym->sh_addr + mCoffSectionsOffset[mRiscVPass1SymSecIndex];
if(-2048 > (INT32)Value) {
i = (((INT32)Value * -1) / 4096);
Value2 -= i;
Value += 4096 * i;
if(-2048 > (INT32)Value) {
Value2 -= 1;
Value += 4096;
}
}
else if( 2047 < (INT32)Value) {
i = (Value / 4096);
Value2 += i;
Value -= 4096 * i;
if(2047 < (INT32)Value) {
Value2 += 1;
Value -= 4096;
}
}
// Update the IMM of SD instruction
//
// |31 25|24 20|19 15|14 12 |11 7|6 0|
// |-------------------------------------------|-------|
// |imm[11:5] | rs2 | rs1 | funct3 |imm[4:0] | opcode|
// ---------------------------------------------------
// First Zero out current IMM
*(UINT32 *)Targ &= ~0xfe000f80;
// Update with new IMM
*(UINT32 *)Targ |= (RV_X(Value, 5, 7) << 25);
*(UINT32 *)Targ |= (RV_X(Value, 0, 5) << 7);
// Update previous instruction
*(UINT32 *)mRiscVPass1Targ = (RV_X(Value2, 0, 20)<<12) | (RV_X(*(UINT32 *)mRiscVPass1Targ, 0, 12));
}
mRiscVPass1Sym = NULL;
mRiscVPass1Targ = NULL;
mRiscVPass1SymSecIndex = 0;
break;
case R_RISCV_PCREL_LO12_I:
if (mRiscVPass1Targ != NULL && mRiscVPass1Sym != NULL && mRiscVPass1SymSecIndex != 0) {
int i;
Value2 = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20));
if(mRiscVPass1GotFixup) {
Value = (UINT32)(mRiscVPass1Offset);
} else {
Value = (UINT32)(RV_X(*(UINT32 *)Targ, 20, 12));
if(Value & (RISCV_IMM_REACH/2)) {
Value |= ~(RISCV_IMM_REACH-1);
}
}
Value = Value - (UINT32)mRiscVPass1Sym->sh_addr + mCoffSectionsOffset[mRiscVPass1SymSecIndex];
if(-2048 > (INT32)Value) {
i = (((INT32)Value * -1) / 4096);
Value2 -= i;
Value += 4096 * i;
if(-2048 > (INT32)Value) {
Value2 -= 1;
Value += 4096;
}
}
else if( 2047 < (INT32)Value) {
i = (Value / 4096);
Value2 += i;
Value -= 4096 * i;
if(2047 < (INT32)Value) {
Value2 += 1;
Value -= 4096;
}
}
if(mRiscVPass1GotFixup) {
*(UINT32 *)Targ = (RV_X((UINT32)Value, 0, 12) << 20)
| (RV_X(*(UINT32*)Targ, 0, 20));
// Convert LD instruction to ADDI
//
// |31 20|19 15|14 12|11 7|6 0|
// |-----------------------------------------|
// |imm[11:0] | rs1 | 011 | rd | 0000011 | LD
// -----------------------------------------
// |-----------------------------------------|
// |imm[11:0] | rs1 | 000 | rd | 0010011 | ADDI
// -----------------------------------------
// To convert, let's first reset bits 12-14 and 0-6 using ~0x707f
// Then modify the opcode to ADDI (0010011)
// All other fields will remain same.
*(UINT32 *)Targ = ((*(UINT32 *)Targ & ~0x707f) | 0x13);
} else {
*(UINT32 *)Targ = (RV_X(Value, 0, 12) << 20) | (RV_X(*(UINT32*)Targ, 0, 20));
}
*(UINT32 *)mRiscVPass1Targ = (RV_X(Value2, 0, 20)<<12) | (RV_X(*(UINT32 *)mRiscVPass1Targ, 0, 12));
}
mRiscVPass1Sym = NULL;
mRiscVPass1Targ = NULL;
mRiscVPass1SymSecIndex = 0;
mRiscVPass1Offset = 0;
mRiscVPass1GotFixup = 0;
break;
case R_RISCV_ADD64:
case R_RISCV_SUB64:
case R_RISCV_ADD32:
case R_RISCV_SUB32:
case R_RISCV_BRANCH:
case R_RISCV_JAL:
case R_RISCV_GPREL_I:
case R_RISCV_GPREL_S:
case R_RISCV_CALL:
case R_RISCV_CALL_PLT:
case R_RISCV_RVC_BRANCH:
case R_RISCV_RVC_JUMP:
case R_RISCV_RELAX:
case R_RISCV_SUB6:
case R_RISCV_SET6:
case R_RISCV_SET8:
case R_RISCV_SET16:
case R_RISCV_SET32:
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_RISCV64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
}
//
// Elf functions interface implementation
//
STATIC
VOID
ScanSections64 (
VOID
)
{
UINT32 i;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
UINT32 CoffEntry;
UINT32 SectionCount;
BOOLEAN FoundSection;
UINT32 Offset;
CoffEntry = 0;
mCoffOffset = 0;
//
// Coff file start with a DOS header.
//
mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
mNtHdrOffset = mCoffOffset;
switch (mEhdr->e_machine) {
case EM_X86_64:
case EM_AARCH64:
case EM_RISCV64:
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
break;
default:
VerboseMsg ("%s unknown e_machine type %hu. Assume X64", mInImageName, mEhdr->e_machine);
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
break;
}
mTableOffset = mCoffOffset;
mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
//
// Set mCoffAlignment to the maximum alignment of the input sections
// we care about
//
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (shdr->sh_addralign <= mCoffAlignment) {
continue;
}
if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
mCoffAlignment = (UINT32)shdr->sh_addralign;
}
}
//
// Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT
//
if (mCoffAlignment > MAX_COFF_ALIGNMENT) {
Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT.");
assert (FALSE);
}
//
// Move the PE/COFF header right before the first section. This will help us
// save space when converting to TE.
//
if (mCoffAlignment > mCoffOffset) {
mNtHdrOffset += mCoffAlignment - mCoffOffset;
mTableOffset += mCoffAlignment - mCoffOffset;
mCoffOffset = mCoffAlignment;
}
//
// First text sections.
//
mCoffOffset = CoffAlign(mCoffOffset);
mTextOffset = mCoffOffset;
FoundSection = FALSE;
SectionCount = 0;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsTextShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
/* Relocate entry. */
if ((mEhdr->e_entry >= shdr->sh_addr) &&
(mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
CoffEntry = (UINT32) (mCoffOffset + mEhdr->e_entry - shdr->sh_addr);
}
//
// Set mTextOffset with the offset of the first '.text' section
//
if (!FoundSection) {
mTextOffset = mCoffOffset;
FoundSection = TRUE;
}
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += (UINT32) shdr->sh_size;
SectionCount ++;
}
}
if (!FoundSection && mOutImageType != FW_ACPI_IMAGE) {
Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
assert (FALSE);
}
mDebugOffset = DebugRvaAlign(mCoffOffset);
mCoffOffset = CoffAlign(mCoffOffset);
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
}
//
// Then data sections.
//
mDataOffset = mCoffOffset;
FoundSection = FALSE;
SectionCount = 0;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsDataShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
//
// Set mDataOffset with the offset of the first '.data' section
//
if (!FoundSection) {
mDataOffset = mCoffOffset;
FoundSection = TRUE;
}
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += (UINT32) shdr->sh_size;
SectionCount ++;
}
}
//
// Make room for .debug data in .data (or .text if .data is empty) instead of
// putting it in a section of its own. This is explicitly allowed by the
// PE/COFF spec, and prevents bloat in the binary when using large values for
// section alignment.
//
if (SectionCount > 0) {
mDebugOffset = DebugRvaAlign(mCoffOffset);
}
mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
strlen(mInImageName) + 1;
mCoffOffset = CoffAlign(mCoffOffset);
if (SectionCount == 0) {
mDataOffset = mCoffOffset;
}
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
}
//
// The Symbol sections.
//
if (mExportFlag) {
UINT32 SymIndex;
Elf_Sym *Sym;
UINT64 SymNum;
const UINT8 *SymName;
mExportOffset = mCoffOffset;
mExportSize = sizeof(EFI_IMAGE_EXPORT_DIRECTORY) + strlen(mInImageName) + 1;
for (i = 0; i < mEhdr->e_shnum; i++) {
//
// Determine if this is a symbol section.
//
Elf_Shdr *shdr = GetShdrByIndex(i);
if (!IsSymbolShdr(shdr)) {
continue;
}
UINT8 *Symtab = (UINT8*)mEhdr + shdr->sh_offset;
SymNum = (shdr->sh_size) / (shdr->sh_entsize);
//
// First Get PrmModuleExportDescriptor
//
for (SymIndex = 0; SymIndex < SymNum; SymIndex++) {
Sym = (Elf_Sym *)(Symtab + SymIndex * shdr->sh_entsize);
SymName = GetSymName(Sym);
if (SymName == NULL) {
continue;
}
if (strcmp((CHAR8*)SymName, PRM_MODULE_EXPORT_DESCRIPTOR_NAME) == 0) {
//
// Find PrmHandler Number and Name
//
FindPrmHandler(Sym->st_value);
strcpy(mExportSymName[mExportSymNum], (CHAR8*)SymName);
mExportRVA[mExportSymNum] = (UINT32)(Sym->st_value);
mExportSize += 2 * EFI_IMAGE_EXPORT_ADDR_SIZE + EFI_IMAGE_EXPORT_ORDINAL_SIZE + strlen((CHAR8 *)SymName) + 1;
mExportSymNum ++;
break;
}
}
//
// Second Get PrmHandler
//
for (SymIndex = 0; SymIndex < SymNum; SymIndex++) {
UINT32 ExpIndex;
Sym = (Elf_Sym *)(Symtab + SymIndex * shdr->sh_entsize);
SymName = GetSymName(Sym);
if (SymName == NULL) {
continue;
}
for (ExpIndex = 0; ExpIndex < (mExportSymNum -1); ExpIndex++) {
if (strcmp((CHAR8*)SymName, mExportSymName[ExpIndex]) != 0) {
continue;
}
mExportRVA[ExpIndex] = (UINT32)(Sym->st_value);
mExportSize += 2 * EFI_IMAGE_EXPORT_ADDR_SIZE + EFI_IMAGE_EXPORT_ORDINAL_SIZE + strlen((CHAR8 *)SymName) + 1;
}
}
break;
}
mCoffOffset += mExportSize;
mCoffOffset = CoffAlign(mCoffOffset);
}
//
// The HII resource sections.
//
mHiiRsrcOffset = mCoffOffset;
for (i = 0; i < mEhdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsHiiRsrcShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
} else {
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
}
}
if (shdr->sh_size != 0) {
mHiiRsrcOffset = mCoffOffset;
mCoffSectionsOffset[i] = mCoffOffset;
mCoffOffset += (UINT32) shdr->sh_size;
mCoffOffset = CoffAlign(mCoffOffset);
SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
}
break;
}
}
mRelocOffset = mCoffOffset;
//
// Allocate base Coff file. Will be expanded later for relocations.
//
mCoffFile = (UINT8 *)malloc(mCoffOffset);
if (mCoffFile == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
}
assert (mCoffFile != NULL);
memset(mCoffFile, 0, mCoffOffset);
//
// Fill headers.
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
DosHdr->e_lfanew = mNtHdrOffset;
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
NtHdr->Pe32Plus.Signature = EFI_IMAGE_NT_SIGNATURE;
switch (mEhdr->e_machine) {
case EM_X86_64:
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
break;
case EM_AARCH64:
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_AARCH64;
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
break;
case EM_RISCV64:
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_RISCV64;
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
break;
default:
VerboseMsg ("%s unknown e_machine type. Assume X64", (UINTN)mEhdr->e_machine);
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
}
NtHdr->Pe32Plus.FileHeader.NumberOfSections = mCoffNbrSections;
NtHdr->Pe32Plus.FileHeader.TimeDateStamp = (UINT32) time(NULL);
mImageTimeStamp = NtHdr->Pe32Plus.FileHeader.TimeDateStamp;
NtHdr->Pe32Plus.FileHeader.PointerToSymbolTable = 0;
NtHdr->Pe32Plus.FileHeader.NumberOfSymbols = 0;
NtHdr->Pe32Plus.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32Plus.OptionalHeader);
NtHdr->Pe32Plus.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
| EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
| EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
| EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE;
NtHdr->Pe32Plus.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
NtHdr->Pe32Plus.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
NtHdr->Pe32Plus.OptionalHeader.SizeOfUninitializedData = 0;
NtHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint = CoffEntry;
NtHdr->Pe32Plus.OptionalHeader.BaseOfCode = mTextOffset;
NtHdr->Pe32Plus.OptionalHeader.ImageBase = 0;
NtHdr->Pe32Plus.OptionalHeader.SectionAlignment = mCoffAlignment;
NtHdr->Pe32Plus.OptionalHeader.FileAlignment = mCoffAlignment;
NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = 0;
NtHdr->Pe32Plus.OptionalHeader.SizeOfHeaders = mTextOffset;
NtHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
//
// Section headers.
//
if ((mDataOffset - mTextOffset) > 0) {
CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
EFI_IMAGE_SCN_CNT_CODE
| EFI_IMAGE_SCN_MEM_EXECUTE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
}
//
// If found symbol, add edata section between data and rsrc section
//
if(mExportFlag) {
Offset = mExportOffset;
} else {
Offset = mHiiRsrcOffset;
}
if ((mHiiRsrcOffset - mDataOffset) > 0) {
CreateSectionHeader (".data", mDataOffset, Offset - mDataOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_WRITE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
}
if(mExportFlag) {
if ((mHiiRsrcOffset - mExportOffset) > 0) {
CreateSectionHeader (".edata", mExportOffset, mHiiRsrcOffset - mExportOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_READ);
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].Size = mHiiRsrcOffset - mExportOffset;
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress = mExportOffset;
} else {
// Don't make a section of size 0.
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
}
}
if ((mRelocOffset - mHiiRsrcOffset) > 0) {
CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_READ);
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
} else {
// Don't make a section of size 0.
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
}
}
STATIC
BOOLEAN
WriteSections64 (
SECTION_FILTER_TYPES FilterType
)
{
UINT32 Idx;
Elf_Shdr *SecShdr;
UINT32 SecOffset;
BOOLEAN (*Filter)(Elf_Shdr *);
Elf64_Addr GOTEntryRva;
//
// Initialize filter pointer
//
switch (FilterType) {
case SECTION_TEXT:
Filter = IsTextShdr;
break;
case SECTION_HII:
Filter = IsHiiRsrcShdr;
break;
case SECTION_DATA:
Filter = IsDataShdr;
break;
default:
return FALSE;
}
//
// First: copy sections.
//
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
Elf_Shdr *Shdr = GetShdrByIndex(Idx);
if ((*Filter)(Shdr)) {
switch (Shdr->sh_type) {
case SHT_PROGBITS:
/* Copy. */
if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) {
return FALSE;
}
memcpy(mCoffFile + mCoffSectionsOffset[Idx],
(UINT8*)mEhdr + Shdr->sh_offset,
(size_t) Shdr->sh_size);
break;
case SHT_NOBITS:
memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
break;
default:
//
// Ignore for unknown section type.
//
VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type);
break;
}
}
}
//
// Second: apply relocations.
//
VerboseMsg ("Applying Relocations...");
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
//
// Determine if this is a relocation section.
//
Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
continue;
}
//
// If this is a ET_DYN (PIE) executable, we will encounter a dynamic SHT_RELA
// section that applies to the entire binary, and which will have its section
// index set to #0 (which is a NULL section with the SHF_ALLOC bit cleared).
//
// In the absence of GOT based relocations,
// this RELA section will contain redundant R_xxx_RELATIVE relocations, one
// for every R_xxx_xx64 relocation appearing in the per-section RELA sections.
// (i.e., .rela.text and .rela.data)
//
if (RelShdr->sh_info == 0) {
continue;
}
//
// Relocation section found. Now extract section information that the relocations
// apply to in the ELF data and the new COFF data.
//
SecShdr = GetShdrByIndex(RelShdr->sh_info);
SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
//
// Only process relocations for the current filter type.
//
if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
UINT64 RelIdx;
//
// Determine the symbol table referenced by the relocation data.
//
Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
//
// Process all relocation entries for this section.
//
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {
//
// Set pointer to relocation entry
//
Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
//
// Set pointer to symbol table entry associated with the relocation entry.
//
Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
Elf_Shdr *SymShdr;
UINT8 *Targ;
//
// The _GLOBAL_OFFSET_TABLE_ symbol is not actually an absolute symbol,
// but carries the SHN_ABS section index for historical reasons.
// It must be accompanied by a R_*_GOT_* type relocation on a
// subsequent instruction, which we handle below, specifically to avoid
// the GOT indirection, and to refer to the symbol directly. This means
// we can simply disregard direct references to the GOT symbol itself,
// as the resulting value will never be used.
//
if (Sym->st_shndx == SHN_ABS) {
const UINT8 *SymName = GetSymName (Sym);
if (strcmp ((CHAR8 *)SymName, "_GLOBAL_OFFSET_TABLE_") == 0) {
continue;
}
}
//
// Check section header index found in symbol table and get the section
// header location.
//
if (Sym->st_shndx == SHN_UNDEF
|| Sym->st_shndx >= mEhdr->e_shnum) {
const UINT8 *SymName = GetSymName(Sym);
if (SymName == NULL) {
SymName = (const UINT8 *)"<unknown>";
}
//
// Skip error on EM_RISCV64 becasue no symble name is built
// from RISC-V toolchain.
//
if (mEhdr->e_machine != EM_RISCV64) {
Error (NULL, 0, 3000, "Invalid",
"%s: Bad definition for symbol '%s'@%#llx or unsupported symbol type. "
"For example, absolute and undefined symbols are not supported.",
mInImageName, SymName, Sym->st_value);
exit(EXIT_FAILURE);
}
continue;
}
SymShdr = GetShdrByIndex(Sym->st_shndx);
//
// Convert the relocation data to a pointer into the coff file.
//
// Note:
// r_offset is the virtual address of the storage unit to be relocated.
// sh_addr is the virtual address for the base of the section.
//
// r_offset in a memory address.
// Convert it to a pointer in the coff file.
//
Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
//
// Determine how to handle each relocation type based on the machine type.
//
if (mEhdr->e_machine == EM_X86_64) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_X86_64_NONE:
break;
case R_X86_64_64:
//
// Absolute relocation.
//
VerboseMsg ("R_X86_64_64");
VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
*(UINT64 *)Targ);
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ);
break;
case R_X86_64_32:
VerboseMsg ("R_X86_64_32");
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
*(UINT32 *)Targ);
*(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
break;
case R_X86_64_32S:
VerboseMsg ("R_X86_64_32S");
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
*(UINT32 *)Targ);
*(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
break;
case R_X86_64_PLT32:
//
// Treat R_X86_64_PLT32 relocations as R_X86_64_PC32: this is
// possible since we know all code symbol references resolve to
// definitions in the same module (UEFI has no shared libraries),
// and so there is never a reason to jump via a PLT entry,
// allowing us to resolve the reference using the symbol directly.
//
VerboseMsg ("Treating R_X86_64_PLT32 as R_X86_64_PC32 ...");
/* fall through */
case R_X86_64_PC32:
//
// Relative relocation: Symbol - Ip + Addend
//
VerboseMsg ("R_X86_64_PC32");
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
*(UINT32 *)Targ);
*(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
+ (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
- (SecOffset - SecShdr->sh_addr));
VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ);
break;
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
VerboseMsg ("R_X86_64_GOTPCREL family");
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
*(UINT32 *)Targ);
GOTEntryRva = Rel->r_offset - Rel->r_addend + *(INT32 *)Targ;
FindElfGOTSectionFromGOTEntryElfRva(GOTEntryRva);
*(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
+ (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr)
- (SecOffset - SecShdr->sh_addr));
VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ);
GOTEntryRva += (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr); // ELF Rva -> COFF Rva
if (AccumulateCoffGOTEntries((UINT32)GOTEntryRva)) {
//
// Relocate GOT entry if it's the first time we run into it
//
Targ = mCoffFile + GOTEntryRva;
//
// Limitation: The following three statements assume memory
// at *Targ is valid because the section containing the GOT
// has already been copied from the ELF image to the Coff image.
// This pre-condition presently holds because the GOT is placed
// in section .text, and the ELF text sections are all copied
// prior to reaching this point.
// If the pre-condition is violated in the future, this fixup
// either needs to be deferred after the GOT section is copied
// to the Coff image, or the fixup should be performed on the
// source Elf image instead of the destination Coff image.
//
VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
(UINT32)GOTEntryRva,
*(UINT64 *)Targ);
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ);
}
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_AARCH64) {
switch (ELF_R_TYPE(Rel->r_info)) {
INT64 Offset;
case R_AARCH64_LD64_GOTOFF_LO15:
case R_AARCH64_LD64_GOTPAGE_LO15:
//
// Convert into an ADR instruction that refers to the symbol directly.
//
Offset = Sym->st_value - Rel->r_offset;
*(UINT32 *)Targ &= 0x1000001f;
*(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
if (Offset < -0x100000 || Offset > 0xfffff) {
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s failed to relax GOT based symbol reference - image is too big (>1 MiB).",
mInImageName);
break;
}
break;
case R_AARCH64_LD64_GOT_LO12_NC:
//
// Convert into an ADD instruction - see R_AARCH64_ADR_GOT_PAGE below.
//
*(UINT32 *)Targ &= 0x3ff;
*(UINT32 *)Targ |= 0x91000000 | ((Sym->st_value & 0xfff) << 10);
break;
case R_AARCH64_ADR_GOT_PAGE:
//
// This relocation points to the GOT entry that contains the absolute
// address of the symbol we are referring to. Since EDK2 only uses
// fully linked binaries, we can avoid the indirection, and simply
// refer to the symbol directly. This implies having to patch the
// subsequent LDR instruction (covered by a R_AARCH64_LD64_GOT_LO12_NC
// relocation) into an ADD instruction - this is handled above.
//
Offset = (Sym->st_value - (Rel->r_offset & ~0xfff)) >> 12;
*(UINT32 *)Targ &= 0x9000001f;
*(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
/* fall through */
case R_AARCH64_ADR_PREL_PG_HI21:
//
// In order to handle Cortex-A53 erratum #843419, the LD linker may
// convert ADRP instructions into ADR instructions, but without
// updating the static relocation type, and so we may end up here
// while the instruction in question is actually ADR. So let's
// just disregard it: the section offset check we apply below to
// ADR instructions will trigger for its R_AARCH64_xxx_ABS_LO12_NC
// companion instruction as well, so it is safe to omit it here.
//
if ((*(UINT32 *)Targ & BIT31) == 0) {
break;
}
//
// AArch64 PG_H21 relocations are typically paired with ABS_LO12
// relocations, where a PC-relative reference with +/- 4 GB range is
// split into a relative high part and an absolute low part. Since
// the absolute low part represents the offset into a 4 KB page, we
// either have to convert the ADRP into an ADR instruction, or we
// need to use a section alignment of at least 4 KB, so that the
// binary appears at a correct offset at runtime. In any case, we
// have to make sure that the 4 KB relative offsets of both the
// section containing the reference as well as the section to which
// it refers have not been changed during PE/COFF conversion (i.e.,
// in ScanSections64() above).
//
if (mCoffAlignment < 0x1000) {
//
// Attempt to convert the ADRP into an ADR instruction.
// This is only possible if the symbol is within +/- 1 MB.
//
// Decode the ADRP instruction
Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8);
Offset = (Offset << (6 - 5)) | ((*(UINT32 *)Targ & 0x60000000) >> (29 - 12));
//
// ADRP offset is relative to the previous page boundary,
// whereas ADR offset is relative to the instruction itself.
// So fix up the offset so it points to the page containing
// the symbol.
//
Offset -= (UINTN)(Targ - mCoffFile) & 0xfff;
if (Offset < -0x100000 || Offset > 0xfffff) {
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s due to its size (> 1 MB), this module requires 4 KB section alignment.",
mInImageName);
break;
}
// Re-encode the offset as an ADR instruction
*(UINT32 *)Targ &= 0x1000001f;
*(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
}
/* fall through */
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0) {
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires identical ELF and PE/COFF section offsets modulo 4 KB.",
mInImageName);
break;
}
/* fall through */
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_CONDBR19:
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
case R_AARCH64_PREL64:
case R_AARCH64_PREL32:
case R_AARCH64_PREL16:
//
// The GCC toolchains (i.e., binutils) may corrupt section relative
// relocations when emitting relocation sections into fully linked
// binaries. More specifically, they tend to fail to take into
// account the fact that a '.rodata + XXX' relocation needs to have
// its addend recalculated once .rodata is merged into the .text
// section, and the relocation emitted into the .rela.text section.
//
// We cannot really recover from this loss of information, so the
// only workaround is to prevent having to recalculate any relative
// relocations at all, by using a linker script that ensures that
// the offset between the Place and the Symbol is the same in both
// the ELF and the PE/COFF versions of the binary.
//
if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
(mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
mInImageName);
}
break;
// Absolute relocations.
case R_AARCH64_ABS64:
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_RISCV64) {
//
// Write section for RISC-V 64 architecture.
//
WriteSectionRiscV64 (Rel, Targ, SymShdr, Sym);
} else {
Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
}
}
}
}
return TRUE;
}
STATIC
VOID
WriteRelocations64 (
VOID
)
{
UINT32 Index;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *Dir;
UINT32 RiscVRelType;
for (Index = 0; Index < mEhdr->e_shnum; Index++) {
Elf_Shdr *RelShdr = GetShdrByIndex(Index);
if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
UINT64 RelIdx;
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
if (mEhdr->e_machine == EM_X86_64) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_X86_64_NONE:
case R_X86_64_PC32:
case R_X86_64_PLT32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
break;
case R_X86_64_64:
VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X",
mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_DIR64);
break;
//
// R_X86_64_32 and R_X86_64_32S are ELF64 relocations emitted when using
// the SYSV X64 ABI small non-position-independent code model.
// R_X86_64_32 is used for unsigned 32-bit immediates with a 32-bit operand
// size. The value is either not extended, or zero-extended to 64 bits.
// R_X86_64_32S is used for either signed 32-bit non-rip-relative displacements
// or signed 32-bit immediates with a 64-bit operand size. The value is
// sign-extended to 64 bits.
// EFI_IMAGE_REL_BASED_HIGHLOW is a PE relocation that uses 32-bit arithmetic
// for rebasing an image.
// EFI PE binaries declare themselves EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE and
// may load above 2GB. If an EFI PE binary with a converted R_X86_64_32S
// relocation is loaded above 2GB, the value will get sign-extended to the
// negative part of the 64-bit address space. The negative part of the 64-bit
// address space is unmapped, so accessing such an address page-faults.
// In order to support R_X86_64_32S, it is necessary to unset
// EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE, and the EFI PE loader must implement
// this flag and abstain from loading such a PE binary above 2GB.
// Since this feature is not supported, support for R_X86_64_32S (and hence
// the small non-position-independent code model) is disabled.
//
// case R_X86_64_32S:
case R_X86_64_32:
VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X",
mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_AARCH64) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_CONDBR19:
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
case R_AARCH64_PREL64:
case R_AARCH64_PREL32:
case R_AARCH64_PREL16:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_LD64_GOTOFF_LO15:
case R_AARCH64_LD64_GOTPAGE_LO15:
//
// No fixups are required for relative relocations, provided that
// the relative offsets between sections have been preserved in
// the ELF to PE/COFF conversion. We have already asserted that
// this is the case in WriteSections64 ().
//
break;
case R_AARCH64_ABS64:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_DIR64);
break;
case R_AARCH64_ABS32:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (mEhdr->e_machine == EM_RISCV64) {
RiscVRelType = ELF_R_TYPE(Rel->r_info);
switch (RiscVRelType) {
case R_RISCV_NONE:
break;
case R_RISCV_32:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_HIGHLOW);
break;
case R_RISCV_64:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_DIR64);
break;
case R_RISCV_HI20:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_RISCV_HI20);
break;
case R_RISCV_LO12_I:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_RISCV_LOW12I);
break;
case R_RISCV_LO12_S:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_RISCV_LOW12S);
break;
case R_RISCV_ADD64:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_SUB64:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_ADD32:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_SUB32:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_BRANCH:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_JAL:
CoffAddFixup(
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr)),
EFI_IMAGE_REL_BASED_ABSOLUTE);
break;
case R_RISCV_GPREL_I:
case R_RISCV_GPREL_S:
case R_RISCV_CALL:
case R_RISCV_CALL_PLT:
case R_RISCV_RVC_BRANCH:
case R_RISCV_RVC_JUMP:
case R_RISCV_RELAX:
case R_RISCV_SUB6:
case R_RISCV_SET6:
case R_RISCV_SET8:
case R_RISCV_SET16:
case R_RISCV_SET32:
case R_RISCV_PCREL_HI20:
case R_RISCV_GOT_HI20:
case R_RISCV_PCREL_LO12_I:
case R_RISCV_PCREL_LO12_S:
break;
default:
Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_RISCV64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else {
Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
}
}
if (mEhdr->e_machine == EM_X86_64 && RelShdr->sh_info == mGOTShindex) {
//
// Tack relocations for GOT entries after other relocations for
// the section the GOT is in, as it's usually found at the end
// of the section. This is done in order to maintain Rva order
// of Coff relocations.
//
EmitGOTRelocations();
}
}
}
}
if (mEhdr->e_machine == EM_X86_64) {
//
// This is a safety net just in case the GOT is in a section
// with no other relocations and the first invocation of
// EmitGOTRelocations() above was skipped. This invocation
// does not maintain Rva order of Coff relocations.
// At present, with a single text section, all references to
// the GOT and the GOT itself reside in section .text, so
// if there's a GOT at all, the first invocation above
// is executed.
//
EmitGOTRelocations();
}
//
// Pad by adding empty entries.
//
while (mCoffOffset & (mCoffAlignment - 1)) {
CoffAddFixupEntry(0);
}
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
Dir->Size = mCoffOffset - mRelocOffset;
if (Dir->Size == 0) {
// If no relocations, null out the directory entry and don't add the .reloc section
Dir->VirtualAddress = 0;
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
} else {
Dir->VirtualAddress = mRelocOffset;
CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_DISCARDABLE
| EFI_IMAGE_SCN_MEM_READ);
}
}
STATIC
VOID
WriteDebug64 (
VOID
)
{
UINT32 Len;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *DataDir;
EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
Len = strlen(mInImageName) + 1;
Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
strcpy ((char *)(Nb10 + 1), mInImageName);
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
DataDir->VirtualAddress = mDebugOffset;
DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
}
STATIC
VOID
SetImageSize64 (
VOID
)
{
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
//
// Set image size
//
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = mCoffOffset;
}
STATIC
VOID
CleanUp64 (
VOID
)
{
if (mCoffSectionsOffset != NULL) {
free (mCoffSectionsOffset);
}
}
STATIC
VOID
WriteExport64 (
VOID
)
{
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_EXPORT_DIRECTORY *ExportDir;
EFI_IMAGE_DATA_DIRECTORY *DataDir;
UINT32 FileNameOffset;
UINT32 NameOffset;
UINT16 Index;
UINT8 *Tdata = NULL;
ExportDir = (EFI_IMAGE_EXPORT_DIRECTORY*)(mCoffFile + mExportOffset);
ExportDir->Characteristics = 0;
ExportDir->TimeDateStamp = 0;
ExportDir->MajorVersion = 0;
ExportDir->MinorVersion =0;
ExportDir->Name = 0;
ExportDir->NumberOfFunctions = mExportSymNum;
ExportDir->NumberOfNames = mExportSymNum;
ExportDir->Base = EFI_IMAGE_EXPORT_ORDINAL_BASE;
ExportDir->AddressOfFunctions = mExportOffset + sizeof(EFI_IMAGE_EXPORT_DIRECTORY);
ExportDir->AddressOfNames = ExportDir->AddressOfFunctions + EFI_IMAGE_EXPORT_ADDR_SIZE * mExportSymNum;
ExportDir->AddressOfNameOrdinals = ExportDir->AddressOfNames + EFI_IMAGE_EXPORT_ADDR_SIZE * mExportSymNum;
FileNameOffset = ExportDir->AddressOfNameOrdinals + EFI_IMAGE_EXPORT_ORDINAL_SIZE * mExportSymNum;
NameOffset = FileNameOffset + strlen(mInImageName) + 1;
// Write Input image Name RVA
ExportDir->Name = FileNameOffset;
// Write Input image Name
strcpy((char *)(mCoffFile + FileNameOffset), mInImageName);
for (Index = 0; Index < mExportSymNum; Index++) {
//
// Write Export Address Table
//
Tdata = mCoffFile + ExportDir->AddressOfFunctions + Index * EFI_IMAGE_EXPORT_ADDR_SIZE;
*(UINT32 *)Tdata = mExportRVA[Index];
//
// Write Export Name Pointer Table
//
Tdata = mCoffFile + ExportDir->AddressOfNames + Index * EFI_IMAGE_EXPORT_ADDR_SIZE;
*(UINT32 *)Tdata = NameOffset;
//
// Write Export Ordinal table
//
Tdata = mCoffFile + ExportDir->AddressOfNameOrdinals + Index * EFI_IMAGE_EXPORT_ORDINAL_SIZE;
*(UINT16 *)Tdata = Index;
//
// Write Export Name Table
//
strcpy((char *)(mCoffFile + NameOffset), mExportSymName[Index]);
NameOffset += strlen(mExportSymName[Index]) + 1;
}
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT];
DataDir->VirtualAddress = mExportOffset;
DataDir->Size = mExportSize;
}