audk/MdePkg/Include/Library/BaseLib.h

7235 lines
217 KiB
C

/** @file
Memory-only library functions with no library constructor/destructor
Copyright (c) 2006 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __BASE_LIB__
#define __BASE_LIB__
//
// Definitions for architecture specific types
// These include SPIN_LOCK and BASE_LIBRARY_JUMP_BUFFER
//
///
/// SPIN_LOCK
///
typedef volatile UINTN SPIN_LOCK;
#if defined (MDE_CPU_IA32)
///
/// IA32 context buffer used by SetJump() and LongJump()
///
typedef struct {
UINT32 Ebx;
UINT32 Esi;
UINT32 Edi;
UINT32 Ebp;
UINT32 Esp;
UINT32 Eip;
} BASE_LIBRARY_JUMP_BUFFER;
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4
#elif defined (MDE_CPU_IPF)
///
/// IPF context buffer used by SetJump() and LongJump()
///
typedef struct {
UINT64 F2[2];
UINT64 F3[2];
UINT64 F4[2];
UINT64 F5[2];
UINT64 F16[2];
UINT64 F17[2];
UINT64 F18[2];
UINT64 F19[2];
UINT64 F20[2];
UINT64 F21[2];
UINT64 F22[2];
UINT64 F23[2];
UINT64 F24[2];
UINT64 F25[2];
UINT64 F26[2];
UINT64 F27[2];
UINT64 F28[2];
UINT64 F29[2];
UINT64 F30[2];
UINT64 F31[2];
UINT64 R4;
UINT64 R5;
UINT64 R6;
UINT64 R7;
UINT64 SP;
UINT64 BR0;
UINT64 BR1;
UINT64 BR2;
UINT64 BR3;
UINT64 BR4;
UINT64 BR5;
UINT64 InitialUNAT;
UINT64 AfterSpillUNAT;
UINT64 PFS;
UINT64 BSP;
UINT64 Predicates;
UINT64 LoopCount;
UINT64 FPSR;
} BASE_LIBRARY_JUMP_BUFFER;
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10
#elif defined (MDE_CPU_X64)
///
/// X64 context buffer used by SetJump() and LongJump()
///
typedef struct {
UINT64 Rbx;
UINT64 Rsp;
UINT64 Rbp;
UINT64 Rdi;
UINT64 Rsi;
UINT64 R12;
UINT64 R13;
UINT64 R14;
UINT64 R15;
UINT64 Rip;
} BASE_LIBRARY_JUMP_BUFFER;
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
#elif defined (MDE_CPU_EBC)
///
/// EBC context buffer used by SetJump() and LongJump()
///
typedef struct {
UINT64 R0;
UINT64 R1;
UINT64 R2;
UINT64 R3;
UINT64 IP;
} BASE_LIBRARY_JUMP_BUFFER;
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
#else
#error Unknown Processor Type
#endif
//
// String Services
//
/**
Copies one Null-terminated Unicode string to another Null-terminated Unicode
string and returns the new Unicode string.
This function copies the contents of the Unicode string Source to the Unicode
string Destination, and returns Destination. If Source and Destination
overlap, then the results are undefined.
If Destination is NULL, then ASSERT().
If Destination is not aligned on a 16-bit boundary, then ASSERT().
If Source is NULL, then ASSERT().
If Source is not aligned on a 16-bit boundary, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param Destination Pointer to a Null-terminated Unicode string.
@param Source Pointer to a Null-terminated Unicode string.
@return Destiantion
**/
CHAR16 *
EFIAPI
StrCpy (
OUT CHAR16 *Destination,
IN CONST CHAR16 *Source
);
/**
Copies one Null-terminated Unicode string with a maximum length to another
Null-terminated Unicode string with a maximum length and returns the new
Unicode string.
This function copies the contents of the Unicode string Source to the Unicode
string Destination, and returns Destination. At most, Length Unicode
characters are copied from Source to Destination. If Length is 0, then
Destination is returned unmodified. If Length is greater that the number of
Unicode characters in Source, then Destination is padded with Null Unicode
characters. If Source and Destination overlap, then the results are
undefined.
If Length > 0 and Destination is NULL, then ASSERT().
If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
If Length > 0 and Source is NULL, then ASSERT().
If Length > 0 and Source is not aligned on a 16-bit bounadry, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param Destination Pointer to a Null-terminated Unicode string.
@param Source Pointer to a Null-terminated Unicode string.
@param Length Maximum number of Unicode characters to copy.
@return Destination
**/
CHAR16 *
EFIAPI
StrnCpy (
OUT CHAR16 *Destination,
IN CONST CHAR16 *Source,
IN UINTN Length
);
/**
Returns the length of a Null-terminated Unicode string.
This function returns the number of Unicode characters in the Null-terminated
Unicode string specified by String.
If String is NULL, then ASSERT().
If String is not aligned on a 16-bit boundary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@return The length of String.
**/
UINTN
EFIAPI
StrLen (
IN CONST CHAR16 *String
);
/**
Returns the size of a Null-terminated Unicode string in bytes, including the
Null terminator.
This function returns the size, in bytes, of the Null-terminated Unicode
string specified by String.
If String is NULL, then ASSERT().
If String is not aligned on a 16-bit boundary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@return The size of String.
**/
UINTN
EFIAPI
StrSize (
IN CONST CHAR16 *String
);
/**
Compares two Null-terminated Unicode strings, and returns the difference
between the first mismatched Unicode characters.
This function compares the Null-terminated Unicode string FirstString to the
Null-terminated Unicode string SecondString. If FirstString is identical to
SecondString, then 0 is returned. Otherwise, the value returned is the first
mismatched Unicode character in SecondString subtracted from the first
mismatched Unicode character in FirstString.
If FirstString is NULL, then ASSERT().
If FirstString is not aligned on a 16-bit boundary, then ASSERT().
If SecondString is NULL, then ASSERT().
If SecondString is not aligned on a 16-bit boundary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param FirstString Pointer to a Null-terminated Unicode string.
@param SecondString Pointer to a Null-terminated Unicode string.
@retval 0 FirstString is identical to SecondString.
@retval !=0 FirstString is not identical to SecondString.
**/
INTN
EFIAPI
StrCmp (
IN CONST CHAR16 *FirstString,
IN CONST CHAR16 *SecondString
);
/**
Compares two Null-terminated Unicode strings with maximum lengths, and
returns the difference between the first mismatched Unicode characters.
This function compares the Null-terminated Unicode string FirstString to the
Null-terminated Unicode string SecondString. At most, Length Unicode
characters will be compared. If Length is 0, then 0 is returned. If
FirstString is identical to SecondString, then 0 is returned. Otherwise, the
value returned is the first mismatched Unicode character in SecondString
subtracted from the first mismatched Unicode character in FirstString.
If Length > 0 and FirstString is NULL, then ASSERT().
If Length > 0 and FirstString is not aligned on a 16-bit bounadary, then ASSERT().
If Length > 0 and SecondString is NULL, then ASSERT().
If Length > 0 and SecondString is not aligned on a 16-bit bounadary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param FirstString Pointer to a Null-terminated Unicode string.
@param SecondString Pointer to a Null-terminated Unicode string.
@param Length Maximum number of Unicode characters to compare.
@retval 0 FirstString is identical to SecondString.
@retval !=0 FirstString is not identical to SecondString.
**/
INTN
EFIAPI
StrnCmp (
IN CONST CHAR16 *FirstString,
IN CONST CHAR16 *SecondString,
IN UINTN Length
);
/**
Concatenates one Null-terminated Unicode string to another Null-terminated
Unicode string, and returns the concatenated Unicode string.
This function concatenates two Null-terminated Unicode strings. The contents
of Null-terminated Unicode string Source are concatenated to the end of
Null-terminated Unicode string Destination. The Null-terminated concatenated
Unicode String is returned. If Source and Destination overlap, then the
results are undefined.
If Destination is NULL, then ASSERT().
If Destination is not aligned on a 16-bit bounadary, then ASSERT().
If Source is NULL, then ASSERT().
If Source is not aligned on a 16-bit bounadary, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
and Source results in a Unicode string with more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param Destination Pointer to a Null-terminated Unicode string.
@param Source Pointer to a Null-terminated Unicode string.
@return Destination
**/
CHAR16 *
EFIAPI
StrCat (
IN OUT CHAR16 *Destination,
IN CONST CHAR16 *Source
);
/**
Concatenates one Null-terminated Unicode string with a maximum length to the
end of another Null-terminated Unicode string, and returns the concatenated
Unicode string.
This function concatenates two Null-terminated Unicode strings. The contents
of Null-terminated Unicode string Source are concatenated to the end of
Null-terminated Unicode string Destination, and Destination is returned. At
most, Length Unicode characters are concatenated from Source to the end of
Destination, and Destination is always Null-terminated. If Length is 0, then
Destination is returned unmodified. If Source and Destination overlap, then
the results are undefined.
If Destination is NULL, then ASSERT().
If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
If Length > 0 and Source is NULL, then ASSERT().
If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
than PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
and Source results in a Unicode string with more than
PcdMaximumUnicodeStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param Destination Pointer to a Null-terminated Unicode string.
@param Source Pointer to a Null-terminated Unicode string.
@param Length Maximum number of Unicode characters to concatenate from
Source.
@return Destination
**/
CHAR16 *
EFIAPI
StrnCat (
IN OUT CHAR16 *Destination,
IN CONST CHAR16 *Source,
IN UINTN Length
);
/**
Returns the first occurance of a Null-terminated Unicode sub-string
in a Null-terminated Unicode string.
This function scans the contents of the Null-terminated Unicode string
specified by String and returns the first occurrence of SearchString.
If SearchString is not found in String, then NULL is returned. If
the length of SearchString is zero, then String is
returned.
If String is NULL, then ASSERT().
If String is not aligned on a 16-bit boundary, then ASSERT().
If SearchString is NULL, then ASSERT().
If SearchString is not aligned on a 16-bit boundary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and SearchString
or String contains more than PcdMaximumUnicodeStringLength Unicode
characters not including the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@param SearchString Pointer to a Null-terminated Unicode string to search for.
@retval NULL If the SearchString does not appear in String.
@retval !NULL If there is a match.
**/
CHAR16 *
EFIAPI
StrStr (
IN CONST CHAR16 *String,
IN CONST CHAR16 *SearchString
);
/**
Convert a Null-terminated Unicode decimal string to a value of
type UINTN.
This function returns a value of type UINTN by interpreting the contents
of the Unicode string specified by String as a decimal number. The format
of the input Unicode string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The
function will ignore the pad space, which includes spaces or
tab characters, before [decimal digits]. The running zero in the
beginning of [decimal digits] will be ignored. Then, the function
stops at the first character that is a not a valid decimal character
or a Null-terminator, whichever one comes first.
If String is NULL, then ASSERT().
If String is not aligned in a 16-bit boundary, then ASSERT().
If String has only pad spaces, then 0 is returned.
If String has no pad spaces or valid decimal digits,
then 0 is returned.
If the number represented by String overflows according
to the range defined by UINTN, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains
more than PcdMaximumUnicodeStringLength Unicode characters not including
the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@retval Value translated from String.
**/
UINTN
EFIAPI
StrDecimalToUintn (
IN CONST CHAR16 *String
);
/**
Convert a Null-terminated Unicode decimal string to a value of
type UINT64.
This function returns a value of type UINT64 by interpreting the contents
of the Unicode string specified by String as a decimal number. The format
of the input Unicode string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The
function will ignore the pad space, which includes spaces or
tab characters, before [decimal digits]. The running zero in the
beginning of [decimal digits] will be ignored. Then, the function
stops at the first character that is a not a valid decimal character
or a Null-terminator, whichever one comes first.
If String is NULL, then ASSERT().
If String is not aligned in a 16-bit boundary, then ASSERT().
If String has only pad spaces, then 0 is returned.
If String has no pad spaces or valid decimal digits,
then 0 is returned.
If the number represented by String overflows according
to the range defined by UINT64, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains
more than PcdMaximumUnicodeStringLength Unicode characters not including
the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@retval Value translated from String.
**/
UINT64
EFIAPI
StrDecimalToUint64 (
IN CONST CHAR16 *String
);
/**
Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents
of the Unicode string specified by String as a hexadecimal number.
The format of the input Unicode string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
If "x" appears in the input string, it must be prefixed with at least one 0.
The function will ignore the pad space, which includes spaces or tab characters,
before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
[hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
first valid hexadecimal digit. Then, the function stops at the first character that is
a not a valid hexadecimal character or NULL, whichever one comes first.
If String is NULL, then ASSERT().
If String is not aligned in a 16-bit boundary, then ASSERT().
If String has only pad spaces, then zero is returned.
If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
then zero is returned.
If the number represented by String overflows according to the range defined by
UINTN, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@retval Value translated from String.
**/
UINTN
EFIAPI
StrHexToUintn (
IN CONST CHAR16 *String
);
/**
Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents
of the Unicode string specified by String as a hexadecimal number.
The format of the input Unicode string String is
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
If "x" appears in the input string, it must be prefixed with at least one 0.
The function will ignore the pad space, which includes spaces or tab characters,
before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
[hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
first valid hexadecimal digit. Then, the function stops at the first character that is
a not a valid hexadecimal character or NULL, whichever one comes first.
If String is NULL, then ASSERT().
If String is not aligned in a 16-bit boundary, then ASSERT().
If String has only pad spaces, then zero is returned.
If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
then zero is returned.
If the number represented by String overflows according to the range defined by
UINT64, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than
PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated Unicode string.
@retval Value translated from String.
**/
UINT64
EFIAPI
StrHexToUint64 (
IN CONST CHAR16 *String
);
/**
Convert a nibble in the low 4 bits of a byte to a Unicode hexadecimal character.
This function converts a nibble in the low 4 bits of a byte to a Unicode hexadecimal
character For example, the nibble 0x01 and 0x0A will converted to L'1' and L'A'
respectively.
The upper nibble in the input byte will be masked off.
@param Nibble The nibble which is in the low 4 bits of the input byte.
@retval CHAR16 The Unicode hexadecimal character.
**/
CHAR16
EFIAPI
NibbleToHexChar (
IN UINT8 Nibble
)
;
/**
Convert binary buffer to a Unicode String in a specified sequence.
This function converts bytes in the binary Buffer Buf to a Unicode String Str.
Each byte will be represented by two Unicode characters. For example, byte 0xA1 will
be converted into two Unicode character L'A' and L'1'. In the output String, the Unicode Character
for the Most Significant Nibble will be put before the Unicode Character for the Least Significant
Nibble. The output string for the buffer containing a single byte 0xA1 will be L"A1".
For a buffer with multiple bytes, the Unicode character produced by the first byte will be put into the
the last character in the output string. The one next to first byte will be put into the
character before the last character. This rules applies to the rest of the bytes. The Unicode
character by the last byte will be put into the first character in the output string. For example,
the input buffer for a 64-bits unsigned integrer 0x12345678abcdef1234 will be converted to
a Unicode string equal to L"12345678abcdef1234".
@param String On input, String is pointed to the buffer allocated for the convertion.
@param StringLen The Length of String buffer to hold the output String. The length must include the tailing '\0' character.
The StringLen required to convert a N bytes Buffer will be a least equal to or greater
than 2*N + 1.
@param Buffer The pointer to a input buffer.
@param BufferSizeInBytes Lenth in bytes of the input buffer.
@retval EFI_SUCCESS The convertion is successfull. All bytes in Buffer has been convert to the corresponding
Unicode character and placed into the right place in String.
@retval EFI_BUFFER_TOO_SMALL StringSizeInBytes is smaller than 2 * N + 1the number of bytes required to
complete the convertion.
**/
RETURN_STATUS
EFIAPI
BufToHexString (
IN OUT CHAR16 *String,
IN OUT UINTN *StringLen,
IN CONST UINT8 *Buffer,
IN UINTN BufferSizeInBytes
)
;
/**
Convert a Unicode string consisting of hexadecimal characters to a output byte buffer.
This function converts a Unicode string consisting of characters in the range of Hexadecimal
character (L'0' to L'9', L'A' to L'F' and L'a' to L'f') to a output byte buffer. The function will stop
at the first non-hexadecimal character or the NULL character. The convertion process can be
simply viewed as the reverse operations defined by BufToHexString. Two Unicode characters will be
converted into one byte. The first Unicode character represents the Most Significant Nibble and the
second Unicode character represents the Least Significant Nibble in the output byte.
The first pair of Unicode characters represents the last byte in the output buffer. The second pair of Unicode
characters represent the the byte preceding the last byte. This rule applies to the rest pairs of bytes.
The last pair represent the first byte in the output buffer.
For example, a Unciode String L"12345678" will be converted into a buffer wil the following bytes
(first byte is the byte in the lowest memory address): "0x78, 0x56, 0x34, 0x12".
If String has N valid hexadecimal characters for conversion, the caller must make sure Buffer is at least
N/2 (if N is even) or (N+1)/2 (if N if odd) bytes.
@param Buffer The output buffer allocated by the caller.
@param BufferSizeInBytes On input, the size in bytes of Buffer. On output, it is updated to
contain the size of the Buffer which is actually used for the converstion.
For Unicode string with 2*N hexadecimal characters (not including the
tailing NULL character), N bytes of Buffer will be used for the output.
@param String The input hexadecimal string.
@param ConvertedStrLen The number of hexadecimal characters used to produce content in output
buffer Buffer.
@retval RETURN_BUFFER_TOO_SMALL The input BufferSizeInBytes is too small to hold the output. BufferSizeInBytes
will be updated to the size required for the converstion.
@retval RETURN_SUCCESS The convertion is successful or the first Unicode character from String
is hexadecimal. If ConvertedStrLen is not NULL, it is updated
to the number of hexadecimal character used for the converstion.
**/
RETURN_STATUS
EFIAPI
HexStringToBuf (
OUT UINT8 *Buffer,
IN OUT UINTN *BufferSizeInBytes,
IN CONST CHAR16 *String,
OUT UINTN *ConvertedStrLen OPTIONAL
)
;
/**
Test if a Unicode character is a hexadecimal digit. If true, the input
Unicode character is converted to a byte.
This function tests if a Unicode character is a hexadecimal digit. If true, the input
Unicode character is converted to a byte. For example, Unicode character
L'A' will be converted to 0x0A.
If Digit is NULL, then ASSERT.
@retval TRUE Char is in the range of Hexadecimal number. Digit is updated
to the byte value of the number.
@retval FALSE Char is not in the range of Hexadecimal number. Digit is keep
intact.
**/
BOOLEAN
EFIAPI
IsHexDigit (
OUT UINT8 *Digit,
IN CHAR16 Char
)
;
/**
Convert one Null-terminated Unicode string to a Null-terminated
ASCII string and returns the ASCII string.
This function converts the content of the Unicode string Source
to the ASCII string Destination by copying the lower 8 bits of
each Unicode character. It returns Destination.
If any Unicode characters in Source contain non-zero value in
the upper 8 bits, then ASSERT().
If Destination is NULL, then ASSERT().
If Source is NULL, then ASSERT().
If Source is not aligned on a 16-bit boundary, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains
more than PcdMaximumUnicodeStringLength Unicode characters not including
the Null-terminator, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Source contains more
than PcdMaximumAsciiStringLength Unicode characters not including the
Null-terminator, then ASSERT().
@param Source Pointer to a Null-terminated Unicode string.
@param Destination Pointer to a Null-terminated ASCII string.
@return Destination
**/
CHAR8 *
EFIAPI
UnicodeStrToAsciiStr (
IN CONST CHAR16 *Source,
OUT CHAR8 *Destination
);
/**
Copies one Null-terminated ASCII string to another Null-terminated ASCII
string and returns the new ASCII string.
This function copies the contents of the ASCII string Source to the ASCII
string Destination, and returns Destination. If Source and Destination
overlap, then the results are undefined.
If Destination is NULL, then ASSERT().
If Source is NULL, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and Source contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param Destination Pointer to a Null-terminated ASCII string.
@param Source Pointer to a Null-terminated ASCII string.
@return Destination
**/
CHAR8 *
EFIAPI
AsciiStrCpy (
OUT CHAR8 *Destination,
IN CONST CHAR8 *Source
);
/**
Copies one Null-terminated ASCII string with a maximum length to another
Null-terminated ASCII string with a maximum length and returns the new ASCII
string.
This function copies the contents of the ASCII string Source to the ASCII
string Destination, and returns Destination. At most, Length ASCII characters
are copied from Source to Destination. If Length is 0, then Destination is
returned unmodified. If Length is greater that the number of ASCII characters
in Source, then Destination is padded with Null ASCII characters. If Source
and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT().
If Source is NULL, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Source contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param Destination Pointer to a Null-terminated ASCII string.
@param Source Pointer to a Null-terminated ASCII string.
@param Length Maximum number of ASCII characters to copy.
@return Destination
**/
CHAR8 *
EFIAPI
AsciiStrnCpy (
OUT CHAR8 *Destination,
IN CONST CHAR8 *Source,
IN UINTN Length
);
/**
Returns the length of a Null-terminated ASCII string.
This function returns the number of ASCII characters in the Null-terminated
ASCII string specified by String.
If Length > 0 and Destination is NULL, then ASSERT().
If Length > 0 and Source is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and String contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@return The length of String.
**/
UINTN
EFIAPI
AsciiStrLen (
IN CONST CHAR8 *String
);
/**
Returns the size of a Null-terminated ASCII string in bytes, including the
Null terminator.
This function returns the size, in bytes, of the Null-terminated ASCII string
specified by String.
If String is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and String contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@return The size of String.
**/
UINTN
EFIAPI
AsciiStrSize (
IN CONST CHAR8 *String
);
/**
Compares two Null-terminated ASCII strings, and returns the difference
between the first mismatched ASCII characters.
This function compares the Null-terminated ASCII string FirstString to the
Null-terminated ASCII string SecondString. If FirstString is identical to
SecondString, then 0 is returned. Otherwise, the value returned is the first
mismatched ASCII character in SecondString subtracted from the first
mismatched ASCII character in FirstString.
If FirstString is NULL, then ASSERT().
If SecondString is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero and SecondString contains more
than PcdMaximumAsciiStringLength ASCII characters not including the
Null-terminator, then ASSERT().
@param FirstString Pointer to a Null-terminated ASCII string.
@param SecondString Pointer to a Null-terminated ASCII string.
@retval 0 FirstString is identical to SecondString.
@retval !=0 FirstString is not identical to SecondString.
**/
INTN
EFIAPI
AsciiStrCmp (
IN CONST CHAR8 *FirstString,
IN CONST CHAR8 *SecondString
);
/**
Performs a case insensitive comparison of two Null-terminated ASCII strings,
and returns the difference between the first mismatched ASCII characters.
This function performs a case insensitive comparison of the Null-terminated
ASCII string FirstString to the Null-terminated ASCII string SecondString. If
FirstString is identical to SecondString, then 0 is returned. Otherwise, the
value returned is the first mismatched lower case ASCII character in
SecondString subtracted from the first mismatched lower case ASCII character
in FirstString.
If FirstString is NULL, then ASSERT().
If SecondString is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero and SecondString contains more
than PcdMaximumAsciiStringLength ASCII characters not including the
Null-terminator, then ASSERT().
@param FirstString Pointer to a Null-terminated ASCII string.
@param SecondString Pointer to a Null-terminated ASCII string.
@retval 0 FirstString is identical to SecondString using case insensitive
comparisons.
@retval !=0 FirstString is not identical to SecondString using case
insensitive comparisons.
**/
INTN
EFIAPI
AsciiStriCmp (
IN CONST CHAR8 *FirstString,
IN CONST CHAR8 *SecondString
);
/**
Compares two Null-terminated ASCII strings with maximum lengths, and returns
the difference between the first mismatched ASCII characters.
This function compares the Null-terminated ASCII string FirstString to the
Null-terminated ASCII string SecondString. At most, Length ASCII characters
will be compared. If Length is 0, then 0 is returned. If FirstString is
identical to SecondString, then 0 is returned. Otherwise, the value returned
is the first mismatched ASCII character in SecondString subtracted from the
first mismatched ASCII character in FirstString.
If Length > 0 and FirstString is NULL, then ASSERT().
If Length > 0 and SecondString is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero and SecondString contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param FirstString Pointer to a Null-terminated ASCII string.
@param SecondString Pointer to a Null-terminated ASCII string.
@param Length Maximum number of ASCII characters for compare.
@retval 0 FirstString is identical to SecondString.
@retval !=0 FirstString is not identical to SecondString.
**/
INTN
EFIAPI
AsciiStrnCmp (
IN CONST CHAR8 *FirstString,
IN CONST CHAR8 *SecondString,
IN UINTN Length
);
/**
Concatenates one Null-terminated ASCII string to another Null-terminated
ASCII string, and returns the concatenated ASCII string.
This function concatenates two Null-terminated ASCII strings. The contents of
Null-terminated ASCII string Source are concatenated to the end of Null-
terminated ASCII string Destination. The Null-terminated concatenated ASCII
String is returned.
If Destination is NULL, then ASSERT().
If Source is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero and Destination contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero and Source contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero and concatenating Destination and
Source results in a ASCII string with more than PcdMaximumAsciiStringLength
ASCII characters, then ASSERT().
@param Destination Pointer to a Null-terminated ASCII string.
@param Source Pointer to a Null-terminated ASCII string.
@return Destination
**/
CHAR8 *
EFIAPI
AsciiStrCat (
IN OUT CHAR8 *Destination,
IN CONST CHAR8 *Source
);
/**
Concatenates one Null-terminated ASCII string with a maximum length to the
end of another Null-terminated ASCII string, and returns the concatenated
ASCII string.
This function concatenates two Null-terminated ASCII strings. The contents
of Null-terminated ASCII string Source are concatenated to the end of Null-
terminated ASCII string Destination, and Destination is returned. At most,
Length ASCII characters are concatenated from Source to the end of
Destination, and Destination is always Null-terminated. If Length is 0, then
Destination is returned unmodified. If Source and Destination overlap, then
the results are undefined.
If Length > 0 and Destination is NULL, then ASSERT().
If Length > 0 and Source is NULL, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Destination contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Source contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and
Source results in a ASCII string with more than PcdMaximumAsciiStringLength
ASCII characters not including the Null-terminator, then ASSERT().
@param Destination Pointer to a Null-terminated ASCII string.
@param Source Pointer to a Null-terminated ASCII string.
@param Length Maximum number of ASCII characters to concatenate from
Source.
@return Destination
**/
CHAR8 *
EFIAPI
AsciiStrnCat (
IN OUT CHAR8 *Destination,
IN CONST CHAR8 *Source,
IN UINTN Length
);
/**
Returns the first occurance of a Null-terminated ASCII sub-string
in a Null-terminated ASCII string.
This function scans the contents of the ASCII string specified by String
and returns the first occurrence of SearchString. If SearchString is not
found in String, then NULL is returned. If the length of SearchString is zero,
then String is returned.
If String is NULL, then ASSERT().
If SearchString is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and SearchString or
String contains more than PcdMaximumAsciiStringLength Unicode characters
not including the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@param SearchString Pointer to a Null-terminated ASCII string to search for.
@retval NULL If the SearchString does not appear in String.
@retval !NULL If there is a match.
**/
CHAR8 *
EFIAPI
AsciiStrStr (
IN CONST CHAR8 *String,
IN CONST CHAR8 *SearchString
);
/**
Convert a Null-terminated ASCII decimal string to a value of type
UINTN.
This function returns a value of type UINTN by interpreting the contents
of the ASCII string String as a decimal number. The format of the input
ASCII string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will
ignore the pad space, which includes spaces or tab characters, before the digits.
The running zero in the beginning of [decimal digits] will be ignored. Then, the
function stops at the first character that is a not a valid decimal character or
Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned.
If String has no pad spaces or valid decimal digits, then 0 is returned.
If the number represented by String overflows according to the range defined by
UINTN, then ASSERT().
If String is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and String contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@retval Value translated from String.
**/
UINTN
EFIAPI
AsciiStrDecimalToUintn (
IN CONST CHAR8 *String
);
/**
Convert a Null-terminated ASCII decimal string to a value of type
UINT64.
This function returns a value of type UINT64 by interpreting the contents
of the ASCII string String as a decimal number. The format of the input
ASCII string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will
ignore the pad space, which includes spaces or tab characters, before the digits.
The running zero in the beginning of [decimal digits] will be ignored. Then, the
function stops at the first character that is a not a valid decimal character or
Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned.
If String has no pad spaces or valid decimal digits, then 0 is returned.
If the number represented by String overflows according to the range defined by
UINT64, then ASSERT().
If String is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and String contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@retval Value translated from String.
**/
UINT64
EFIAPI
AsciiStrDecimalToUint64 (
IN CONST CHAR8 *String
);
/**
Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents of
the ASCII string String as a hexadecimal number. The format of the input ASCII
string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
appears in the input string, it must be prefixed with at least one 0. The function
will ignore the pad space, which includes spaces or tab characters, before [zeros],
[x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
digit. Then, the function stops at the first character that is a not a valid
hexadecimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned.
If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
0 is returned.
If the number represented by String overflows according to the range defined by UINTN,
then ASSERT().
If String is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero,
and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@retval Value translated from String.
**/
UINTN
EFIAPI
AsciiStrHexToUintn (
IN CONST CHAR8 *String
);
/**
Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents of
the ASCII string String as a hexadecimal number. The format of the input ASCII
string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
appears in the input string, it must be prefixed with at least one 0. The function
will ignore the pad space, which includes spaces or tab characters, before [zeros],
[x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
digit. Then, the function stops at the first character that is a not a valid
hexadecimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned.
If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
0 is returned.
If the number represented by String overflows according to the range defined by UINT64,
then ASSERT().
If String is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero,
and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
the Null-terminator, then ASSERT().
@param String Pointer to a Null-terminated ASCII string.
@retval Value translated from String.
**/
UINT64
EFIAPI
AsciiStrHexToUint64 (
IN CONST CHAR8 *String
);
/**
Convert one Null-terminated ASCII string to a Null-terminated
Unicode string and returns the Unicode string.
This function converts the contents of the ASCII string Source to the Unicode
string Destination, and returns Destination. The function terminates the
Unicode string Destination by appending a Null-terminator character at the end.
The caller is responsible to make sure Destination points to a buffer with size
equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
If Destination is NULL, then ASSERT().
If Destination is not aligned on a 16-bit boundary, then ASSERT().
If Source is NULL, then ASSERT().
If Source and Destination overlap, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Source contains more than
PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
PcdMaximumUnicodeStringLength ASCII characters not including the
Null-terminator, then ASSERT().
@param Source Pointer to a Null-terminated ASCII string.
@param Destination Pointer to a Null-terminated Unicode string.
@return Destination
**/
CHAR16 *
EFIAPI
AsciiStrToUnicodeStr (
IN CONST CHAR8 *Source,
OUT CHAR16 *Destination
);
/**
Converts an 8-bit value to an 8-bit BCD value.
Converts the 8-bit value specified by Value to BCD. The BCD value is
returned.
If Value >= 100, then ASSERT().
@param Value The 8-bit value to convert to BCD. Range 0..99.
@return The BCD value
**/
UINT8
EFIAPI
DecimalToBcd8 (
IN UINT8 Value
);
/**
Converts an 8-bit BCD value to an 8-bit value.
Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit
value is returned.
If Value >= 0xA0, then ASSERT().
If (Value & 0x0F) >= 0x0A, then ASSERT().
@param Value The 8-bit BCD value to convert to an 8-bit value.
@return The 8-bit value is returned.
**/
UINT8
EFIAPI
BcdToDecimal8 (
IN UINT8 Value
);
//
// Linked List Functions and Macros
//
/**
Initializes the head node of a doubly linked list that is declared as a
global variable in a module.
Initializes the forward and backward links of a new linked list. After
initializing a linked list with this macro, the other linked list functions
may be used to add and remove nodes from the linked list. This macro results
in smaller executables by initializing the linked list in the data section,
instead if calling the InitializeListHead() function to perform the
equivalent operation.
@param ListHead The head note of a list to initiailize.
**/
#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&ListHead, &ListHead}
/**
Initializes the head node of a doubly linked list, and returns the pointer to
the head node of the doubly linked list.
Initializes the forward and backward links of a new linked list. After
initializing a linked list with this function, the other linked list
functions may be used to add and remove nodes from the linked list. It is up
to the caller of this function to allocate the memory for ListHead.
If ListHead is NULL, then ASSERT().
@param ListHead A pointer to the head node of a new doubly linked list.
@return ListHead
**/
LIST_ENTRY *
EFIAPI
InitializeListHead (
IN LIST_ENTRY *ListHead
);
/**
Adds a node to the beginning of a doubly linked list, and returns the pointer
to the head node of the doubly linked list.
Adds the node Entry at the beginning of the doubly linked list denoted by
ListHead, and returns ListHead.
If ListHead is NULL, then ASSERT().
If Entry is NULL, then ASSERT().
If ListHead was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
of nodes in ListHead, including the ListHead node, is greater than or
equal to PcdMaximumLinkedListLength, then ASSERT().
@param ListHead A pointer to the head node of a doubly linked list.
@param Entry A pointer to a node that is to be inserted at the beginning
of a doubly linked list.
@return ListHead
**/
LIST_ENTRY *
EFIAPI
InsertHeadList (
IN LIST_ENTRY *ListHead,
IN LIST_ENTRY *Entry
);
/**
Adds a node to the end of a doubly linked list, and returns the pointer to
the head node of the doubly linked list.
Adds the node Entry to the end of the doubly linked list denoted by ListHead,
and returns ListHead.
If ListHead is NULL, then ASSERT().
If Entry is NULL, then ASSERT().
If ListHead was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
of nodes in ListHead, including the ListHead node, is greater than or
equal to PcdMaximumLinkedListLength, then ASSERT().
@param ListHead A pointer to the head node of a doubly linked list.
@param Entry A pointer to a node that is to be added at the end of the
doubly linked list.
@return ListHead
**/
LIST_ENTRY *
EFIAPI
InsertTailList (
IN LIST_ENTRY *ListHead,
IN LIST_ENTRY *Entry
);
/**
Retrieves the first node of a doubly linked list.
Returns the first node of a doubly linked list. List must have been
initialized with InitializeListHead(). If List is empty, then NULL is
returned.
If List is NULL, then ASSERT().
If List was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and the number of nodes
in List, including the List node, is greater than or equal to
PcdMaximumLinkedListLength, then ASSERT().
@param List A pointer to the head node of a doubly linked list.
@return The first node of a doubly linked list.
@retval NULL The list is empty.
**/
LIST_ENTRY *
EFIAPI
GetFirstNode (
IN CONST LIST_ENTRY *List
);
/**
Retrieves the next node of a doubly linked list.
Returns the node of a doubly linked list that follows Node. List must have
been initialized with InitializeListHead(). If List is empty, then List is
returned.
If List is NULL, then ASSERT().
If Node is NULL, then ASSERT().
If List was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and List contains more than
PcdMaximumLinkedListLenth nodes, then ASSERT().
If Node is not a node in List, then ASSERT().
@param List A pointer to the head node of a doubly linked list.
@param Node A pointer to a node in the doubly linked list.
@return Pointer to the next node if one exists. Otherwise a null value which
is actually List is returned.
**/
LIST_ENTRY *
EFIAPI
GetNextNode (
IN CONST LIST_ENTRY *List,
IN CONST LIST_ENTRY *Node
);
/**
Checks to see if a doubly linked list is empty or not.
Checks to see if the doubly linked list is empty. If the linked list contains
zero nodes, this function returns TRUE. Otherwise, it returns FALSE.
If ListHead is NULL, then ASSERT().
If ListHead was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and the number of nodes
in List, including the List node, is greater than or equal to
PcdMaximumLinkedListLength, then ASSERT().
@param ListHead A pointer to the head node of a doubly linked list.
@retval TRUE The linked list is empty.
@retval FALSE The linked list is not empty.
**/
BOOLEAN
EFIAPI
IsListEmpty (
IN CONST LIST_ENTRY *ListHead
);
/**
Determines if a node in a doubly linked list is null.
Returns FALSE if Node is one of the nodes in the doubly linked list specified
by List. Otherwise, TRUE is returned. List must have been initialized with
InitializeListHead().
If List is NULL, then ASSERT().
If Node is NULL, then ASSERT().
If List was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and the number of nodes
in List, including the List node, is greater than or equal to
PcdMaximumLinkedListLength, then ASSERT().
If Node is not a node in List and Node is not equal to List, then ASSERT().
@param List A pointer to the head node of a doubly linked list.
@param Node A pointer to a node in the doubly linked list.
@retval TRUE Node is one of the nodes in the doubly linked list.
@retval FALSE Node is not one of the nodes in the doubly linked list.
**/
BOOLEAN
EFIAPI
IsNull (
IN CONST LIST_ENTRY *List,
IN CONST LIST_ENTRY *Node
);
/**
Determines if a node the last node in a doubly linked list.
Returns TRUE if Node is the last node in the doubly linked list specified by
List. Otherwise, FALSE is returned. List must have been initialized with
InitializeListHead().
If List is NULL, then ASSERT().
If Node is NULL, then ASSERT().
If List was not initialized with InitializeListHead(), then ASSERT().
If PcdMaximumLinkedListLenth is not zero, and the number of nodes
in List, including the List node, is greater than or equal to
PcdMaximumLinkedListLength, then ASSERT().
If Node is not a node in List, then ASSERT().
@param List A pointer to the head node of a doubly linked list.
@param Node A pointer to a node in the doubly linked list.
@retval TRUE Node is the last node in the linked list.
@retval FALSE Node is not the last node in the linked list.
**/
BOOLEAN
EFIAPI
IsNodeAtEnd (
IN CONST LIST_ENTRY *List,
IN CONST LIST_ENTRY *Node
);
/**
Swaps the location of two nodes in a doubly linked list, and returns the
first node after the swap.
If FirstEntry is identical to SecondEntry, then SecondEntry is returned.
Otherwise, the location of the FirstEntry node is swapped with the location
of the SecondEntry node in a doubly linked list. SecondEntry must be in the
same double linked list as FirstEntry and that double linked list must have
been initialized with InitializeListHead(). SecondEntry is returned after the
nodes are swapped.
If FirstEntry is NULL, then ASSERT().
If SecondEntry is NULL, then ASSERT().
If SecondEntry and FirstEntry are not in the same linked list, then ASSERT().
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
linked list containing the FirstEntry and SecondEntry nodes, including
the FirstEntry and SecondEntry nodes, is greater than or equal to
PcdMaximumLinkedListLength, then ASSERT().
@param FirstEntry A pointer to a node in a linked list.
@param SecondEntry A pointer to another node in the same linked list.
@return SecondEntry
**/
LIST_ENTRY *
EFIAPI
SwapListEntries (
IN LIST_ENTRY *FirstEntry,
IN LIST_ENTRY *SecondEntry
);
/**
Removes a node from a doubly linked list, and returns the node that follows
the removed node.
Removes the node Entry from a doubly linked list. It is up to the caller of
this function to release the memory used by this node if that is required. On
exit, the node following Entry in the doubly linked list is returned. If
Entry is the only node in the linked list, then the head node of the linked
list is returned.
If Entry is NULL, then ASSERT().
If Entry is the head node of an empty list, then ASSERT().
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
linked list containing Entry, including the Entry node, is greater than
or equal to PcdMaximumLinkedListLength, then ASSERT().
@param Entry A pointer to a node in a linked list
@return Entry
**/
LIST_ENTRY *
EFIAPI
RemoveEntryList (
IN CONST LIST_ENTRY *Entry
);
//
// Math Services
//
/**
Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled
with zeros. The shifted value is returned.
This function shifts the 64-bit value Operand to the left by Count bits. The
low Count bits are set to zero. The shifted value is returned.
If Count is greater than 63, then ASSERT().
@param Operand The 64-bit operand to shift left.
@param Count The number of bits to shift left.
@return Operand << Count
**/
UINT64
EFIAPI
LShiftU64 (
IN UINT64 Operand,
IN UINTN Count
);
/**
Shifts a 64-bit integer right between 0 and 63 bits. This high bits are
filled with zeros. The shifted value is returned.
This function shifts the 64-bit value Operand to the right by Count bits. The
high Count bits are set to zero. The shifted value is returned.
If Count is greater than 63, then ASSERT().
@param Operand The 64-bit operand to shift right.
@param Count The number of bits to shift right.
@return Operand >> Count
**/
UINT64
EFIAPI
RShiftU64 (
IN UINT64 Operand,
IN UINTN Count
);
/**
Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled
with original integer's bit 63. The shifted value is returned.
This function shifts the 64-bit value Operand to the right by Count bits. The
high Count bits are set to bit 63 of Operand. The shifted value is returned.
If Count is greater than 63, then ASSERT().
@param Operand The 64-bit operand to shift right.
@param Count The number of bits to shift right.
@return Operand >> Count
**/
UINT64
EFIAPI
ARShiftU64 (
IN UINT64 Operand,
IN UINTN Count
);
/**
Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits
with the high bits that were rotated.
This function rotates the 32-bit value Operand to the left by Count bits. The
low Count bits are fill with the high Count bits of Operand. The rotated
value is returned.
If Count is greater than 31, then ASSERT().
@param Operand The 32-bit operand to rotate left.
@param Count The number of bits to rotate left.
@return Operand <<< Count
**/
UINT32
EFIAPI
LRotU32 (
IN UINT32 Operand,
IN UINTN Count
);
/**
Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits
with the low bits that were rotated.
This function rotates the 32-bit value Operand to the right by Count bits.
The high Count bits are fill with the low Count bits of Operand. The rotated
value is returned.
If Count is greater than 31, then ASSERT().
@param Operand The 32-bit operand to rotate right.
@param Count The number of bits to rotate right.
@return Operand >>> Count
**/
UINT32
EFIAPI
RRotU32 (
IN UINT32 Operand,
IN UINTN Count
);
/**
Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits
with the high bits that were rotated.
This function rotates the 64-bit value Operand to the left by Count bits. The
low Count bits are fill with the high Count bits of Operand. The rotated
value is returned.
If Count is greater than 63, then ASSERT().
@param Operand The 64-bit operand to rotate left.
@param Count The number of bits to rotate left.
@return Operand <<< Count
**/
UINT64
EFIAPI
LRotU64 (
IN UINT64 Operand,
IN UINTN Count
);
/**
Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits
with the high low bits that were rotated.
This function rotates the 64-bit value Operand to the right by Count bits.
The high Count bits are fill with the low Count bits of Operand. The rotated
value is returned.
If Count is greater than 63, then ASSERT().
@param Operand The 64-bit operand to rotate right.
@param Count The number of bits to rotate right.
@return Operand >>> Count
**/
UINT64
EFIAPI
RRotU64 (
IN UINT64 Operand,
IN UINTN Count
);
/**
Returns the bit position of the lowest bit set in a 32-bit value.
This function computes the bit position of the lowest bit set in the 32-bit
value specified by Operand. If Operand is zero, then -1 is returned.
Otherwise, a value between 0 and 31 is returned.
@param Operand The 32-bit operand to evaluate.
@return Position of the lowest bit set in Operand if found.
@retval -1 Operand is zero.
**/
INTN
EFIAPI
LowBitSet32 (
IN UINT32 Operand
);
/**
Returns the bit position of the lowest bit set in a 64-bit value.
This function computes the bit position of the lowest bit set in the 64-bit
value specified by Operand. If Operand is zero, then -1 is returned.
Otherwise, a value between 0 and 63 is returned.
@param Operand The 64-bit operand to evaluate.
@return Position of the lowest bit set in Operand if found.
@retval -1 Operand is zero.
**/
INTN
EFIAPI
LowBitSet64 (
IN UINT64 Operand
);
/**
Returns the bit position of the highest bit set in a 32-bit value. Equivalent
to log2(x).
This function computes the bit position of the highest bit set in the 32-bit
value specified by Operand. If Operand is zero, then -1 is returned.
Otherwise, a value between 0 and 31 is returned.
@param Operand The 32-bit operand to evaluate.
@return Position of the highest bit set in Operand if found.
@retval -1 Operand is zero.
**/
INTN
EFIAPI
HighBitSet32 (
IN UINT32 Operand
);
/**
Returns the bit position of the highest bit set in a 64-bit value. Equivalent
to log2(x).
This function computes the bit position of the highest bit set in the 64-bit
value specified by Operand. If Operand is zero, then -1 is returned.
Otherwise, a value between 0 and 63 is returned.
@param Operand The 64-bit operand to evaluate.
@return Position of the highest bit set in Operand if found.
@retval -1 Operand is zero.
**/
INTN
EFIAPI
HighBitSet64 (
IN UINT64 Operand
);
/**
Returns the value of the highest bit set in a 32-bit value. Equivalent to
1 << HighBitSet32(x).
This function computes the value of the highest bit set in the 32-bit value
specified by Operand. If Operand is zero, then zero is returned.
@param Operand The 32-bit operand to evaluate.
@return 1 << HighBitSet32(Operand)
@retval 0 Operand is zero.
**/
UINT32
EFIAPI
GetPowerOfTwo32 (
IN UINT32 Operand
);
/**
Returns the value of the highest bit set in a 64-bit value. Equivalent to
1 << HighBitSet64(x).
This function computes the value of the highest bit set in the 64-bit value
specified by Operand. If Operand is zero, then zero is returned.
@param Operand The 64-bit operand to evaluate.
@return 1 << HighBitSet64(Operand)
@retval 0 Operand is zero.
**/
UINT64
EFIAPI
GetPowerOfTwo64 (
IN UINT64 Operand
);
/**
Switches the endianess of a 16-bit integer.
This function swaps the bytes in a 16-bit unsigned value to switch the value
from little endian to big endian or vice versa. The byte swapped value is
returned.
@param Value Operand A 16-bit unsigned value.
@return The byte swaped Operand.
**/
UINT16
EFIAPI
SwapBytes16 (
IN UINT16 Value
);
/**
Switches the endianess of a 32-bit integer.
This function swaps the bytes in a 32-bit unsigned value to switch the value
from little endian to big endian or vice versa. The byte swapped value is
returned.
@param Value Operand A 32-bit unsigned value.
@return The byte swaped Operand.
**/
UINT32
EFIAPI
SwapBytes32 (
IN UINT32 Value
);
/**
Switches the endianess of a 64-bit integer.
This function swaps the bytes in a 64-bit unsigned value to switch the value
from little endian to big endian or vice versa. The byte swapped value is
returned.
@param Value Operand A 64-bit unsigned value.
@return The byte swaped Operand.
**/
UINT64
EFIAPI
SwapBytes64 (
IN UINT64 Value
);
/**
Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and
generates a 64-bit unsigned result.
This function multiples the 64-bit unsigned value Multiplicand by the 32-bit
unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
bit unsigned result is returned.
If the result overflows, then ASSERT().
@param Multiplicand A 64-bit unsigned value.
@param Multiplier A 32-bit unsigned value.
@return Multiplicand * Multiplier
**/
UINT64
EFIAPI
MultU64x32 (
IN UINT64 Multiplicand,
IN UINT32 Multiplier
);
/**
Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and
generates a 64-bit unsigned result.
This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
bit unsigned result is returned.
If the result overflows, then ASSERT().
@param Multiplicand A 64-bit unsigned value.
@param Multiplier A 64-bit unsigned value.
@return Multiplicand * Multiplier
**/
UINT64
EFIAPI
MultU64x64 (
IN UINT64 Multiplicand,
IN UINT64 Multiplier
);
/**
Multiples a 64-bit signed integer by a 64-bit signed integer and generates a
64-bit signed result.
This function multiples the 64-bit signed value Multiplicand by the 64-bit
signed value Multiplier and generates a 64-bit signed result. This 64-bit
signed result is returned.
If the result overflows, then ASSERT().
@param Multiplicand A 64-bit signed value.
@param Multiplier A 64-bit signed value.
@return Multiplicand * Multiplier
**/
INT64
EFIAPI
MultS64x64 (
IN INT64 Multiplicand,
IN INT64 Multiplier
);
/**
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
a 64-bit unsigned result.
This function divides the 64-bit unsigned value Dividend by the 32-bit
unsigned value Divisor and generates a 64-bit unsigned quotient. This
function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
@param Dividend A 64-bit unsigned value.
@param Divisor A 32-bit unsigned value.
@return Dividend / Divisor
**/
UINT64
EFIAPI
DivU64x32 (
IN UINT64 Dividend,
IN UINT32 Divisor
);
/**
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
a 32-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 32-bit
unsigned value Divisor and generates a 32-bit remainder. This function
returns the 32-bit unsigned remainder.
If Divisor is 0, then ASSERT().
@param Dividend A 64-bit unsigned value.
@param Divisor A 32-bit unsigned value.
@return Dividend % Divisor
**/
UINT32
EFIAPI
ModU64x32 (
IN UINT64 Dividend,
IN UINT32 Divisor
);
/**
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
a 64-bit unsigned result and an optional 32-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 32-bit
unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
is not NULL, then the 32-bit unsigned remainder is returned in Remainder.
This function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
@param Dividend A 64-bit unsigned value.
@param Divisor A 32-bit unsigned value.
@param Remainder A pointer to a 32-bit unsigned value. This parameter is
optional and may be NULL.
@return Dividend / Divisor
**/
UINT64
EFIAPI
DivU64x32Remainder (
IN UINT64 Dividend,
IN UINT32 Divisor,
OUT UINT32 *Remainder OPTIONAL
);
/**
Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates
a 64-bit unsigned result and an optional 64-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 64-bit
unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
is not NULL, then the 64-bit unsigned remainder is returned in Remainder.
This function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
@param Dividend A 64-bit unsigned value.
@param Divisor A 64-bit unsigned value.
@param Remainder A pointer to a 64-bit unsigned value. This parameter is
optional and may be NULL.
@return Dividend / Divisor
**/
UINT64
EFIAPI
DivU64x64Remainder (
IN UINT64 Dividend,
IN UINT64 Divisor,
OUT UINT64 *Remainder OPTIONAL
);
/**
Divides a 64-bit signed integer by a 64-bit signed integer and generates a
64-bit signed result and a optional 64-bit signed remainder.
This function divides the 64-bit signed value Dividend by the 64-bit signed
value Divisor and generates a 64-bit signed quotient. If Remainder is not
NULL, then the 64-bit signed remainder is returned in Remainder. This
function returns the 64-bit signed quotient.
If Divisor is 0, then ASSERT().
@param Dividend A 64-bit signed value.
@param Divisor A 64-bit signed value.
@param Remainder A pointer to a 64-bit signed value. This parameter is
optional and may be NULL.
@return Dividend / Divisor
**/
INT64
EFIAPI
DivS64x64Remainder (
IN INT64 Dividend,
IN INT64 Divisor,
OUT INT64 *Remainder OPTIONAL
);
/**
Reads a 16-bit value from memory that may be unaligned.
This function returns the 16-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint16 Pointer to a 16-bit value that may be unaligned.
@return *Uint16
**/
UINT16
EFIAPI
ReadUnaligned16 (
IN CONST UINT16 *Uint16
);
/**
Writes a 16-bit value to memory that may be unaligned.
This function writes the 16-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint16 Pointer to a 16-bit value that may be unaligned.
@param Value 16-bit value to write to Buffer.
@return Value
**/
UINT16
EFIAPI
WriteUnaligned16 (
OUT UINT16 *Uint16,
IN UINT16 Value
);
/**
Reads a 24-bit value from memory that may be unaligned.
This function returns the 24-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer Pointer to a 24-bit value that may be unaligned.
@return The value read from Buffer.
**/
UINT32
EFIAPI
ReadUnaligned24 (
IN CONST UINT32 *Buffer
);
/**
Writes a 24-bit value to memory that may be unaligned.
This function writes the 24-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer Pointer to a 24-bit value that may be unaligned.
@param Value 24-bit value to write to Buffer.
@return The value written to Buffer.
**/
UINT32
EFIAPI
WriteUnaligned24 (
OUT UINT32 *Buffer,
IN UINT32 Value
);
/**
Reads a 32-bit value from memory that may be unaligned.
This function returns the 32-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint32 Pointer to a 32-bit value that may be unaligned.
@return Value read from Uint32
**/
UINT32
EFIAPI
ReadUnaligned32 (
IN CONST UINT32 *Uint32
);
/**
Writes a 32-bit value to memory that may be unaligned.
This function writes the 32-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint32 Pointer to a 32-bit value that may be unaligned.
@param Value 32-bit value to write to Buffer.
@return Value written to Uint32.
**/
UINT32
EFIAPI
WriteUnaligned32 (
OUT UINT32 *Uint32,
IN UINT32 Value
);
/**
Reads a 64-bit value from memory that may be unaligned.
This function returns the 64-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint64 Pointer to a 64-bit value that may be unaligned.
@return Value read from Uint64.
**/
UINT64
EFIAPI
ReadUnaligned64 (
IN CONST UINT64 *Uint64
);
/**
Writes a 64-bit value to memory that may be unaligned.
This function writes the 64-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Uint64 Pointer to a 64-bit value that may be unaligned.
@param Value 64-bit value to write to Buffer.
@return Value written to Uint64.
**/
UINT64
EFIAPI
WriteUnaligned64 (
OUT UINT64 *Uint64,
IN UINT64 Value
);
//
// Bit Field Functions
//
/**
Returns a bit field from an 8-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 8-bit operations are not supported, then ASSERT().
If StartBit is greater than 7, then ASSERT().
If EndBit is greater than 7, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..7.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..7.
@return The bit field read.
**/
UINT8
EFIAPI
BitFieldRead8 (
IN UINT8 Operand,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to an 8-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in
Operand. All other bits in Operand are preserved. The new 8-bit value is
returned.
If 8-bit operations are not supported, then ASSERT().
If StartBit is greater than 7, then ASSERT().
If EndBit is greater than 7, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..7.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..7.
@param Value New value of the bit field.
@return The new 8-bit value.
**/
UINT8
EFIAPI
BitFieldWrite8 (
IN UINT8 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 Value
);
/**
Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the
result.
Performs a bitwise inclusive OR between the bit field specified by StartBit
and EndBit in Operand and the value specified by OrData. All other bits in
Operand are preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT().
If StartBit is greater than 7, then ASSERT().
If EndBit is greater than 7, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..7.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..7.
@param OrData The value to OR with the read value from the value
@return The new 8-bit value.
**/
UINT8
EFIAPI
BitFieldOr8 (
IN UINT8 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 OrData
);
/**
Reads a bit field from an 8-bit value, performs a bitwise AND, and returns
the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData. All other bits in Operand are
preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT().
If StartBit is greater than 7, then ASSERT().
If EndBit is greater than 7, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..7.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..7.
@param AndData The value to AND with the read value from the value.
@return The new 8-bit value.
**/
UINT8
EFIAPI
BitFieldAnd8 (
IN UINT8 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData
);
/**
Reads a bit field from an 8-bit value, performs a bitwise AND followed by a
bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData, followed by a bitwise
inclusive OR with value specified by OrData. All other bits in Operand are
preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT().
If StartBit is greater than 7, then ASSERT().
If EndBit is greater than 7, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..7.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..7.
@param AndData The value to AND with the read value from the value.
@param OrData The value to OR with the result of the AND operation.
@return The new 8-bit value.
**/
UINT8
EFIAPI
BitFieldAndThenOr8 (
IN UINT8 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT8 AndData,
IN UINT8 OrData
);
/**
Returns a bit field from a 16-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 16-bit operations are not supported, then ASSERT().
If StartBit is greater than 15, then ASSERT().
If EndBit is greater than 15, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..15.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..15.
@return The bit field read.
**/
UINT16
EFIAPI
BitFieldRead16 (
IN UINT16 Operand,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to a 16-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in
Operand. All other bits in Operand are preserved. The new 16-bit value is
returned.
If 16-bit operations are not supported, then ASSERT().
If StartBit is greater than 15, then ASSERT().
If EndBit is greater than 15, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..15.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..15.
@param Value New value of the bit field.
@return The new 16-bit value.
**/
UINT16
EFIAPI
BitFieldWrite16 (
IN UINT16 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 Value
);
/**
Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the
result.
Performs a bitwise inclusive OR between the bit field specified by StartBit
and EndBit in Operand and the value specified by OrData. All other bits in
Operand are preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT().
If StartBit is greater than 15, then ASSERT().
If EndBit is greater than 15, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..15.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..15.
@param OrData The value to OR with the read value from the value
@return The new 16-bit value.
**/
UINT16
EFIAPI
BitFieldOr16 (
IN UINT16 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 OrData
);
/**
Reads a bit field from a 16-bit value, performs a bitwise AND, and returns
the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData. All other bits in Operand are
preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT().
If StartBit is greater than 15, then ASSERT().
If EndBit is greater than 15, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..15.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..15.
@param AndData The value to AND with the read value from the value
@return The new 16-bit value.
**/
UINT16
EFIAPI
BitFieldAnd16 (
IN UINT16 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData
);
/**
Reads a bit field from a 16-bit value, performs a bitwise AND followed by a
bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData, followed by a bitwise
inclusive OR with value specified by OrData. All other bits in Operand are
preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT().
If StartBit is greater than 15, then ASSERT().
If EndBit is greater than 15, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..15.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..15.
@param AndData The value to AND with the read value from the value.
@param OrData The value to OR with the result of the AND operation.
@return The new 16-bit value.
**/
UINT16
EFIAPI
BitFieldAndThenOr16 (
IN UINT16 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT16 AndData,
IN UINT16 OrData
);
/**
Returns a bit field from a 32-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 32-bit operations are not supported, then ASSERT().
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@return The bit field read.
**/
UINT32
EFIAPI
BitFieldRead32 (
IN UINT32 Operand,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to a 32-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in
Operand. All other bits in Operand are preserved. The new 32-bit value is
returned.
If 32-bit operations are not supported, then ASSERT().
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param Value New value of the bit field.
@return The new 32-bit value.
**/
UINT32
EFIAPI
BitFieldWrite32 (
IN UINT32 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 Value
);
/**
Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the
result.
Performs a bitwise inclusive OR between the bit field specified by StartBit
and EndBit in Operand and the value specified by OrData. All other bits in
Operand are preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT().
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param OrData The value to OR with the read value from the value
@return The new 32-bit value.
**/
UINT32
EFIAPI
BitFieldOr32 (
IN UINT32 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 OrData
);
/**
Reads a bit field from a 32-bit value, performs a bitwise AND, and returns
the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData. All other bits in Operand are
preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT().
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param AndData The value to AND with the read value from the value
@return The new 32-bit value.
**/
UINT32
EFIAPI
BitFieldAnd32 (
IN UINT32 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData
);
/**
Reads a bit field from a 32-bit value, performs a bitwise AND followed by a
bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData, followed by a bitwise
inclusive OR with value specified by OrData. All other bits in Operand are
preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT().
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param AndData The value to AND with the read value from the value.
@param OrData The value to OR with the result of the AND operation.
@return The new 32-bit value.
**/
UINT32
EFIAPI
BitFieldAndThenOr32 (
IN UINT32 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData,
IN UINT32 OrData
);
/**
Returns a bit field from a 64-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 64-bit operations are not supported, then ASSERT().
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@return The bit field read.
**/
UINT64
EFIAPI
BitFieldRead64 (
IN UINT64 Operand,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to a 64-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in
Operand. All other bits in Operand are preserved. The new 64-bit value is
returned.
If 64-bit operations are not supported, then ASSERT().
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param Value New value of the bit field.
@return The new 64-bit value.
**/
UINT64
EFIAPI
BitFieldWrite64 (
IN UINT64 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 Value
);
/**
Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the
result.
Performs a bitwise inclusive OR between the bit field specified by StartBit
and EndBit in Operand and the value specified by OrData. All other bits in
Operand are preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT().
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param OrData The value to OR with the read value from the value
@return The new 64-bit value.
**/
UINT64
EFIAPI
BitFieldOr64 (
IN UINT64 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 OrData
);
/**
Reads a bit field from a 64-bit value, performs a bitwise AND, and returns
the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData. All other bits in Operand are
preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT().
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param AndData The value to AND with the read value from the value
@return The new 64-bit value.
**/
UINT64
EFIAPI
BitFieldAnd64 (
IN UINT64 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 AndData
);
/**
Reads a bit field from a 64-bit value, performs a bitwise AND followed by a
bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit
in Operand and the value specified by AndData, followed by a bitwise
inclusive OR with value specified by OrData. All other bits in Operand are
preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT().
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Operand Operand on which to perform the bitfield operation.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param AndData The value to AND with the read value from the value.
@param OrData The value to OR with the result of the AND operation.
@return The new 64-bit value.
**/
UINT64
EFIAPI
BitFieldAndThenOr64 (
IN UINT64 Operand,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 AndData,
IN UINT64 OrData
);
//
// Base Library Synchronization Functions
//
/**
Retrieves the architecture specific spin lock alignment requirements for
optimal spin lock performance.
This function retrieves the spin lock alignment requirements for optimal
performance on a given CPU architecture. The spin lock alignment must be a
power of two and is returned by this function. If there are no alignment
requirements, then 1 must be returned. The spin lock synchronization
functions must function correctly if the spin lock size and alignment values
returned by this function are not used at all. These values are hints to the
consumers of the spin lock synchronization functions to obtain optimal spin
lock performance.
@return The architecture specific spin lock alignment.
**/
UINTN
EFIAPI
GetSpinLockProperties (
VOID
);
/**
Initializes a spin lock to the released state and returns the spin lock.
This function initializes the spin lock specified by SpinLock to the released
state, and returns SpinLock. Optimal performance can be achieved by calling
GetSpinLockProperties() to determine the size and alignment requirements for
SpinLock.
If SpinLock is NULL, then ASSERT().
@param SpinLock A pointer to the spin lock to initialize to the released
state.
@return SpinLock in release state.
**/
SPIN_LOCK *
EFIAPI
InitializeSpinLock (
IN SPIN_LOCK *SpinLock
);
/**
Waits until a spin lock can be placed in the acquired state.
This function checks the state of the spin lock specified by SpinLock. If
SpinLock is in the released state, then this function places SpinLock in the
acquired state and returns SpinLock. Otherwise, this function waits
indefinitely for the spin lock to be released, and then places it in the
acquired state and returns SpinLock. All state transitions of SpinLock must
be performed using MP safe mechanisms.
If SpinLock is NULL, then ASSERT().
If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
If PcdSpinLockTimeout is not zero, and SpinLock is can not be acquired in
PcdSpinLockTimeout microseconds, then ASSERT().
@param SpinLock A pointer to the spin lock to place in the acquired state.
@return SpinLock accquired lock.
**/
SPIN_LOCK *
EFIAPI
AcquireSpinLock (
IN SPIN_LOCK *SpinLock
);
/**
Attempts to place a spin lock in the acquired state.
This function checks the state of the spin lock specified by SpinLock. If
SpinLock is in the released state, then this function places SpinLock in the
acquired state and returns TRUE. Otherwise, FALSE is returned. All state
transitions of SpinLock must be performed using MP safe mechanisms.
If SpinLock is NULL, then ASSERT().
If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
@param SpinLock A pointer to the spin lock to place in the acquired state.
@retval TRUE SpinLock was placed in the acquired state.
@retval FALSE SpinLock could not be acquired.
**/
BOOLEAN
EFIAPI
AcquireSpinLockOrFail (
IN SPIN_LOCK *SpinLock
);
/**
Releases a spin lock.
This function places the spin lock specified by SpinLock in the release state
and returns SpinLock.
If SpinLock is NULL, then ASSERT().
If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
@param SpinLock A pointer to the spin lock to release.
@return SpinLock released lock.
**/
SPIN_LOCK *
EFIAPI
ReleaseSpinLock (
IN SPIN_LOCK *SpinLock
);
/**
Performs an atomic increment of an 32-bit unsigned integer.
Performs an atomic increment of the 32-bit unsigned integer specified by
Value and returns the incremented value. The increment operation must be
performed using MP safe mechanisms. The state of the return value is not
guaranteed to be MP safe.
If Value is NULL, then ASSERT().
@param Value A pointer to the 32-bit value to increment.
@return The incremented value.
**/
UINT32
EFIAPI
InterlockedIncrement (
IN UINT32 *Value
);
/**
Performs an atomic decrement of an 32-bit unsigned integer.
Performs an atomic decrement of the 32-bit unsigned integer specified by
Value and returns the decremented value. The decrement operation must be
performed using MP safe mechanisms. The state of the return value is not
guaranteed to be MP safe.
If Value is NULL, then ASSERT().
@param Value A pointer to the 32-bit value to decrement.
@return The decremented value.
**/
UINT32
EFIAPI
InterlockedDecrement (
IN UINT32 *Value
);
/**
Performs an atomic compare exchange operation on a 32-bit unsigned integer.
Performs an atomic compare exchange operation on the 32-bit unsigned integer
specified by Value. If Value is equal to CompareValue, then Value is set to
ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,
then Value is returned. The compare exchange operation must be performed using
MP safe mechanisms.
If Value is NULL, then ASSERT().
@param Value A pointer to the 32-bit value for the compare exchange
operation.
@param CompareValue 32-bit value used in compare operation.
@param ExchangeValue 32-bit value used in exchange operation.
@return The original *Value before exchange.
**/
UINT32
EFIAPI
InterlockedCompareExchange32 (
IN OUT UINT32 *Value,
IN UINT32 CompareValue,
IN UINT32 ExchangeValue
);
/**
Performs an atomic compare exchange operation on a 64-bit unsigned integer.
Performs an atomic compare exchange operation on the 64-bit unsigned integer specified
by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and
CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.
The compare exchange operation must be performed using MP safe mechanisms.
If Value is NULL, then ASSERT().
@param Value A pointer to the 64-bit value for the compare exchange
operation.
@param CompareValue 64-bit value used in compare operation.
@param ExchangeValue 64-bit value used in exchange operation.
@return The original *Value before exchange.
**/
UINT64
EFIAPI
InterlockedCompareExchange64 (
IN OUT UINT64 *Value,
IN UINT64 CompareValue,
IN UINT64 ExchangeValue
);
/**
Performs an atomic compare exchange operation on a pointer value.
Performs an atomic compare exchange operation on the pointer value specified
by Value. If Value is equal to CompareValue, then Value is set to
ExchangeValue and CompareValue is returned. If Value is not equal to
CompareValue, then Value is returned. The compare exchange operation must be
performed using MP safe mechanisms.
If Value is NULL, then ASSERT().
@param Value A pointer to the pointer value for the compare exchange
operation.
@param CompareValue Pointer value used in compare operation.
@param ExchangeValue Pointer value used in exchange operation.
@return The original *Value before exchange.
**/
VOID *
EFIAPI
InterlockedCompareExchangePointer (
IN OUT VOID **Value,
IN VOID *CompareValue,
IN VOID *ExchangeValue
);
//
// Base Library Checksum Functions
//
/**
Calculate the sum of all elements in a buffer in unit of UINT8.
During calculation, the carry bits are dropped.
This function calculates the sum of all elements in a buffer
in unit of UINT8. The carry bits in result of addition are dropped.
The result is returned as UINT8. If Length is Zero, then Zero is
returned.
If Buffer is NULL, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer .
@return Sum The sum of Buffer with carry bits dropped during additions.
**/
UINT8
EFIAPI
CalculateSum8 (
IN CONST UINT8 *Buffer,
IN UINTN Length
);
/**
Returns the two's complement checksum of all elements in a buffer
of 8-bit values.
This function first calculates the sum of the 8-bit values in the
buffer specified by Buffer and Length. The carry bits in the result
of addition are dropped. Then, the two's complement of the sum is
returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the checksum operation.
@param Length The size, in bytes, of Buffer.
@return Checksum The 2's complement checksum of Buffer.
**/
UINT8
EFIAPI
CalculateCheckSum8 (
IN CONST UINT8 *Buffer,
IN UINTN Length
);
/**
Returns the sum of all elements in a buffer of 16-bit values. During
calculation, the carry bits are dropped.
This function calculates the sum of the 16-bit values in the buffer
specified by Buffer and Length. The carry bits in result of addition are dropped.
The 16-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 16-bit boundary, then ASSERT().
If Length is not aligned on a 16-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer.
@return Sum The sum of Buffer with carry bits dropped during additions.
**/
UINT16
EFIAPI
CalculateSum16 (
IN CONST UINT16 *Buffer,
IN UINTN Length
);
/**
Returns the two's complement checksum of all elements in a buffer of
16-bit values.
This function first calculates the sum of the 16-bit values in the buffer
specified by Buffer and Length. The carry bits in the result of addition
are dropped. Then, the two's complement of the sum is returned. If Length
is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 16-bit boundary, then ASSERT().
If Length is not aligned on a 16-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the checksum operation.
@param Length The size, in bytes, of Buffer.
@return Checksum The 2's complement checksum of Buffer.
**/
UINT16
EFIAPI
CalculateCheckSum16 (
IN CONST UINT16 *Buffer,
IN UINTN Length
);
/**
Returns the sum of all elements in a buffer of 32-bit values. During
calculation, the carry bits are dropped.
This function calculates the sum of the 32-bit values in the buffer
specified by Buffer and Length. The carry bits in result of addition are dropped.
The 32-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 32-bit boundary, then ASSERT().
If Length is not aligned on a 32-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer.
@return Sum The sum of Buffer with carry bits dropped during additions.
**/
UINT32
EFIAPI
CalculateSum32 (
IN CONST UINT32 *Buffer,
IN UINTN Length
);
/**
Returns the two's complement checksum of all elements in a buffer of
32-bit values.
This function first calculates the sum of the 32-bit values in the buffer
specified by Buffer and Length. The carry bits in the result of addition
are dropped. Then, the two's complement of the sum is returned. If Length
is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 32-bit boundary, then ASSERT().
If Length is not aligned on a 32-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the checksum operation.
@param Length The size, in bytes, of Buffer.
@return Checksum The 2's complement checksum of Buffer.
**/
UINT32
EFIAPI
CalculateCheckSum32 (
IN CONST UINT32 *Buffer,
IN UINTN Length
);
/**
Returns the sum of all elements in a buffer of 64-bit values. During
calculation, the carry bits are dropped.
This function calculates the sum of the 64-bit values in the buffer
specified by Buffer and Length. The carry bits in result of addition are dropped.
The 64-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 64-bit boundary, then ASSERT().
If Length is not aligned on a 64-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer.
@return Sum The sum of Buffer with carry bits dropped during additions.
**/
UINT64
EFIAPI
CalculateSum64 (
IN CONST UINT64 *Buffer,
IN UINTN Length
);
/**
Returns the two's complement checksum of all elements in a buffer of
64-bit values.
This function first calculates the sum of the 64-bit values in the buffer
specified by Buffer and Length. The carry bits in the result of addition
are dropped. Then, the two's complement of the sum is returned. If Length
is 0, then 0 is returned.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 64-bit boundary, then ASSERT().
If Length is not aligned on a 64-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param Buffer Pointer to the buffer to carry out the checksum operation.
@param Length The size, in bytes, of Buffer.
@return Checksum The 2's complement checksum of Buffer.
**/
UINT64
EFIAPI
CalculateCheckSum64 (
IN CONST UINT64 *Buffer,
IN UINTN Length
);
//
// Base Library CPU Functions
//
typedef
VOID
(EFIAPI *SWITCH_STACK_ENTRY_POINT)(
IN VOID *Context1, OPTIONAL
IN VOID *Context2 OPTIONAL
);
/**
Used to serialize load and store operations.
All loads and stores that proceed calls to this function are guaranteed to be
globally visible when this function returns.
**/
VOID
EFIAPI
MemoryFence (
VOID
);
/**
Saves the current CPU context that can be restored with a call to LongJump()
and returns 0.
Saves the current CPU context in the buffer specified by JumpBuffer and
returns 0. The initial call to SetJump() must always return 0. Subsequent
calls to LongJump() cause a non-zero value to be returned by SetJump().
If JumpBuffer is NULL, then ASSERT().
For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
@param JumpBuffer A pointer to CPU context buffer.
@retval 0 Indicates a return from SetJump().
**/
UINTN
EFIAPI
SetJump (
OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer
);
/**
Restores the CPU context that was saved with SetJump().
Restores the CPU context from the buffer specified by JumpBuffer. This
function never returns to the caller. Instead is resumes execution based on
the state of JumpBuffer.
If JumpBuffer is NULL, then ASSERT().
For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
If Value is 0, then ASSERT().
@param JumpBuffer A pointer to CPU context buffer.
@param Value The value to return when the SetJump() context is
restored and must be non-zero.
**/
VOID
EFIAPI
LongJump (
IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
IN UINTN Value
);
/**
Enables CPU interrupts.
**/
VOID
EFIAPI
EnableInterrupts (
VOID
);
/**
Disables CPU interrupts.
**/
VOID
EFIAPI
DisableInterrupts (
VOID
);
/**
Disables CPU interrupts and returns the interrupt state prior to the disable
operation.
@retval TRUE CPU interrupts were enabled on entry to this call.
@retval FALSE CPU interrupts were disabled on entry to this call.
**/
BOOLEAN
EFIAPI
SaveAndDisableInterrupts (
VOID
);
/**
Enables CPU interrupts for the smallest window required to capture any
pending interrupts.
**/
VOID
EFIAPI
EnableDisableInterrupts (
VOID
);
/**
Retrieves the current CPU interrupt state.
Returns TRUE is interrupts are currently enabled. Otherwise
returns FALSE.
@retval TRUE CPU interrupts are enabled.
@retval FALSE CPU interrupts are disabled.
**/
BOOLEAN
EFIAPI
GetInterruptState (
VOID
);
/**
Set the current CPU interrupt state.
Sets the current CPU interrupt state to the state specified by
InterruptState. If InterruptState is TRUE, then interrupts are enabled. If
InterruptState is FALSE, then interrupts are disabled. InterruptState is
returned.
@param InterruptState TRUE if interrupts should enabled. FALSE if
interrupts should be disabled.
@return InterruptState
**/
BOOLEAN
EFIAPI
SetInterruptState (
IN BOOLEAN InterruptState
);
/**
Requests CPU to pause for a short period of time.
Requests CPU to pause for a short period of time. Typically used in MP
systems to prevent memory starvation while waiting for a spin lock.
**/
VOID
EFIAPI
CpuPause (
VOID
);
/**
Transfers control to a function starting with a new stack.
Transfers control to the function specified by EntryPoint using the
new stack specified by NewStack and passing in the parameters specified
by Context1 and Context2. Context1 and Context2 are optional and may
be NULL. The function EntryPoint must never return. This function
supports a variable number of arguments following the NewStack parameter.
These additional arguments are ignored on IA-32, x64, and EBC.
IPF CPUs expect one additional parameter of type VOID * that specifies
the new backing store pointer.
If EntryPoint is NULL, then ASSERT().
If NewStack is NULL, then ASSERT().
@param EntryPoint A pointer to function to call with the new stack.
@param Context1 A pointer to the context to pass into the EntryPoint
function.
@param Context2 A pointer to the context to pass into the EntryPoint
function.
@param NewStack A pointer to the new stack to use for the EntryPoint
function.
@param ... Extended parameters.
**/
VOID
EFIAPI
SwitchStack (
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
IN VOID *Context1, OPTIONAL
IN VOID *Context2, OPTIONAL
IN VOID *NewStack,
...
);
/**
Generates a breakpoint on the CPU.
Generates a breakpoint on the CPU. The breakpoint must be implemented such
that code can resume normal execution after the breakpoint.
**/
VOID
EFIAPI
CpuBreakpoint (
VOID
);
/**
Executes an infinite loop.
Forces the CPU to execute an infinite loop. A debugger may be used to skip
past the loop and the code that follows the loop must execute properly. This
implies that the infinite loop must not cause the code that follow it to be
optimized away.
**/
VOID
EFIAPI
CpuDeadLoop (
VOID
);
#if defined (MDE_CPU_IPF)
/**
Flush a range of cache lines in the cache coherency domain of the calling
CPU.
Invalidates the cache lines specified by Address and Length. If Address is
not aligned on a cache line boundary, then entire cache line containing
Address is invalidated. If Address + Length is not aligned on a cache line
boundary, then the entire instruction cache line containing Address + Length
-1 is invalidated. This function may choose to invalidate the entire
instruction cache if that is more efficient than invalidating the specified
range. If Length is 0, the no instruction cache lines are invalidated.
Address is returned.
If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().
@param Address The base address of the instruction lines to invalidate. If
the CPU is in a physical addressing mode, then Address is a
physical address. If the CPU is in a virtual addressing mode,
then Address is a virtual address.
@param Length The number of bytes to invalidate from the instruction cache.
@return Address
**/
VOID *
EFIAPI
IpfFlushCacheRange (
IN VOID *Address,
IN UINTN Length
);
/**
Executes a FC instruction
Executes a FC instruction on the cache line specified by Address.
The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
An implementation may flush a larger region. This function is only available on IPF.
@param Address The Address of cache line to be flushed.
@return The address of FC instruction executed.
**/
UINT64
EFIAPI
AsmFc (
IN UINT64 Address
);
/**
Executes a FC.I instruction.
Executes a FC.I instruction on the cache line specified by Address.
The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
An implementation may flush a larger region. This function is only available on IPF.
@param Address The Address of cache line to be flushed.
@return The address of FC.I instruction executed.
**/
UINT64
EFIAPI
AsmFci (
IN UINT64 Address
);
/**
Reads the current value of a Processor Identifier Register (CPUID).
The Index of largest implemented CPUID (One less than the number of implemented CPUID
registers) is determined by CPUID [3] bits {7:0}.
No parameter checking is performed on Index. If the Index value is beyond the
implemented CPUID register range, a Reserved Register/Field fault may occur. The caller
must either guarantee that Index is valid, or the caller must set up fault handlers to
catch the faults. This function is only available on IPF.
@param Index The 8-bit Processor Identifier Register index to read.
@return The current value of Processor Identifier Register specified by Index.
**/
UINT64
EFIAPI
AsmReadCpuid (
IN UINT8 Index
);
/**
Reads the current value of 64-bit Processor Status Register (PSR).
This function is only available on IPF.
@return The current value of PSR.
**/
UINT64
EFIAPI
AsmReadPsr (
VOID
);
/**
Writes the current value of 64-bit Processor Status Register (PSR).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to PSR.
@return The 64-bit value written to the PSR.
**/
UINT64
EFIAPI
AsmWritePsr (
IN UINT64 Value
);
/**
Reads the current value of 64-bit Kernel Register #0 (KR0).
This function is only available on IPF.
@return The current value of KR0.
**/
UINT64
EFIAPI
AsmReadKr0 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #1 (KR1).
This function is only available on IPF.
@return The current value of KR1.
**/
UINT64
EFIAPI
AsmReadKr1 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #2 (KR2).
This function is only available on IPF.
@return The current value of KR2.
**/
UINT64
EFIAPI
AsmReadKr2 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #3 (KR3).
This function is only available on IPF.
@return The current value of KR3.
**/
UINT64
EFIAPI
AsmReadKr3 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #4 (KR4).
This function is only available on IPF.
@return The current value of KR4.
**/
UINT64
EFIAPI
AsmReadKr4 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #5 (KR5).
This function is only available on IPF.
@return The current value of KR5.
**/
UINT64
EFIAPI
AsmReadKr5 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #6 (KR6).
This function is only available on IPF.
@return The current value of KR6.
**/
UINT64
EFIAPI
AsmReadKr6 (
VOID
);
/**
Reads the current value of 64-bit Kernel Register #7 (KR7).
This function is only available on IPF.
@return The current value of KR7.
**/
UINT64
EFIAPI
AsmReadKr7 (
VOID
);
/**
Write the current value of 64-bit Kernel Register #0 (KR0).
This function is only available on IPF.
@param Value The 64-bit value to write to KR0.
@return The 64-bit value written to the KR0.
**/
UINT64
EFIAPI
AsmWriteKr0 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #1 (KR1).
This function is only available on IPF.
@param Value The 64-bit value to write to KR1.
@return The 64-bit value written to the KR1.
**/
UINT64
EFIAPI
AsmWriteKr1 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #2 (KR2).
This function is only available on IPF.
@param Value The 64-bit value to write to KR2.
@return The 64-bit value written to the KR2.
**/
UINT64
EFIAPI
AsmWriteKr2 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #3 (KR3).
This function is only available on IPF.
@param Value The 64-bit value to write to KR3.
@return The 64-bit value written to the KR3.
**/
UINT64
EFIAPI
AsmWriteKr3 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #4 (KR4).
This function is only available on IPF.
@param Value The 64-bit value to write to KR4.
@return The 64-bit value written to the KR4.
**/
UINT64
EFIAPI
AsmWriteKr4 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #5 (KR5).
This function is only available on IPF.
@param Value The 64-bit value to write to KR5.
@return The 64-bit value written to the KR5.
**/
UINT64
EFIAPI
AsmWriteKr5 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #6 (KR6).
This function is only available on IPF.
@param Value The 64-bit value to write to KR6.
@return The 64-bit value written to the KR6.
**/
UINT64
EFIAPI
AsmWriteKr6 (
IN UINT64 Value
);
/**
Write the current value of 64-bit Kernel Register #7 (KR7).
This function is only available on IPF.
@param Value The 64-bit value to write to KR7.
@return The 64-bit value written to the KR7.
**/
UINT64
EFIAPI
AsmWriteKr7 (
IN UINT64 Value
);
/**
Reads the current value of Interval Timer Counter Register (ITC).
This function is only available on IPF.
@return The current value of ITC.
**/
UINT64
EFIAPI
AsmReadItc (
VOID
);
/**
Reads the current value of Interval Timer Vector Register (ITV).
This function is only available on IPF.
@return The current value of ITV.
**/
UINT64
EFIAPI
AsmReadItv (
VOID
);
/**
Reads the current value of Interval Timer Match Register (ITM).
This function is only available on IPF.
@return The current value of ITM.
**/
UINT64
EFIAPI
AsmReadItm (
VOID
);
/**
Writes the current value of 64-bit Interval Timer Counter Register (ITC).
This function is only available on IPF.
@param Value The 64-bit value to write to ITC.
@return The 64-bit value written to the ITC.
**/
UINT64
EFIAPI
AsmWriteItc (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Interval Timer Match Register (ITM).
This function is only available on IPF.
@param Value The 64-bit value to write to ITM.
@return The 64-bit value written to the ITM.
**/
UINT64
EFIAPI
AsmWriteItm (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Interval Timer Vector Register (ITV).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to ITV.
@return The 64-bit value written to the ITV.
**/
UINT64
EFIAPI
AsmWriteItv (
IN UINT64 Value
);
/**
Reads the current value of Default Control Register (DCR).
This function is only available on IPF.
@return The current value of DCR.
**/
UINT64
EFIAPI
AsmReadDcr (
VOID
);
/**
Reads the current value of Interruption Vector Address Register (IVA).
This function is only available on IPF.
@return The current value of IVA.
**/
UINT64
EFIAPI
AsmReadIva (
VOID
);
/**
Reads the current value of Page Table Address Register (PTA).
This function is only available on IPF.
@return The current value of PTA.
**/
UINT64
EFIAPI
AsmReadPta (
VOID
);
/**
Writes the current value of 64-bit Default Control Register (DCR).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to DCR.
@return The 64-bit value written to the DCR.
**/
UINT64
EFIAPI
AsmWriteDcr (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Interruption Vector Address Register (IVA).
The size of vector table is 32 K bytes and is 32 K bytes aligned
the low 15 bits of Value is ignored when written.
This function is only available on IPF.
@param Value The 64-bit value to write to IVA.
@return The 64-bit value written to the IVA.
**/
UINT64
EFIAPI
AsmWriteIva (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Page Table Address Register (PTA).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to PTA.
@return The 64-bit value written to the PTA.
**/
UINT64
EFIAPI
AsmWritePta (
IN UINT64 Value
);
/**
Reads the current value of Local Interrupt ID Register (LID).
This function is only available on IPF.
@return The current value of LID.
**/
UINT64
EFIAPI
AsmReadLid (
VOID
);
/**
Reads the current value of External Interrupt Vector Register (IVR).
This function is only available on IPF.
@return The current value of IVR.
**/
UINT64
EFIAPI
AsmReadIvr (
VOID
);
/**
Reads the current value of Task Priority Register (TPR).
This function is only available on IPF.
@return The current value of TPR.
**/
UINT64
EFIAPI
AsmReadTpr (
VOID
);
/**
Reads the current value of External Interrupt Request Register #0 (IRR0).
This function is only available on IPF.
@return The current value of IRR0.
**/
UINT64
EFIAPI
AsmReadIrr0 (
VOID
);
/**
Reads the current value of External Interrupt Request Register #1 (IRR1).
This function is only available on IPF.
@return The current value of IRR1.
**/
UINT64
EFIAPI
AsmReadIrr1 (
VOID
);
/**
Reads the current value of External Interrupt Request Register #2 (IRR2).
This function is only available on IPF.
@return The current value of IRR2.
**/
UINT64
EFIAPI
AsmReadIrr2 (
VOID
);
/**
Reads the current value of External Interrupt Request Register #3 (IRR3).
This function is only available on IPF.
@return The current value of IRR3.
**/
UINT64
EFIAPI
AsmReadIrr3 (
VOID
);
/**
Reads the current value of Performance Monitor Vector Register (PMV).
This function is only available on IPF.
@return The current value of PMV.
**/
UINT64
EFIAPI
AsmReadPmv (
VOID
);
/**
Reads the current value of Corrected Machine Check Vector Register (CMCV).
This function is only available on IPF.
@return The current value of CMCV.
**/
UINT64
EFIAPI
AsmReadCmcv (
VOID
);
/**
Reads the current value of Local Redirection Register #0 (LRR0).
This function is only available on IPF.
@return The current value of LRR0.
**/
UINT64
EFIAPI
AsmReadLrr0 (
VOID
);
/**
Reads the current value of Local Redirection Register #1 (LRR1).
This function is only available on IPF.
@return The current value of LRR1.
**/
UINT64
EFIAPI
AsmReadLrr1 (
VOID
);
/**
Writes the current value of 64-bit Page Local Interrupt ID Register (LID).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to LID.
@return The 64-bit value written to the LID.
**/
UINT64
EFIAPI
AsmWriteLid (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Task Priority Register (TPR).
No parameter checking is performed on Value. All bits of Value corresponding to
reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to TPR.
@return The 64-bit value written to the TPR.
**/
UINT64
EFIAPI
AsmWriteTpr (
IN UINT64 Value
);
/**
Performs a write operation on End OF External Interrupt Register (EOI).
Writes a value of 0 to the EOI Register. This function is only available on IPF.
**/
VOID
EFIAPI
AsmWriteEoi (
VOID
);
/**
Writes the current value of 64-bit Performance Monitor Vector Register (PMV).
No parameter checking is performed on Value. All bits of Value corresponding
to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to PMV.
@return The 64-bit value written to the PMV.
**/
UINT64
EFIAPI
AsmWritePmv (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).
No parameter checking is performed on Value. All bits of Value corresponding
to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to CMCV.
@return The 64-bit value written to the CMCV.
**/
UINT64
EFIAPI
AsmWriteCmcv (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Local Redirection Register #0 (LRR0).
No parameter checking is performed on Value. All bits of Value corresponding
to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to LRR0.
@return The 64-bit value written to the LRR0.
**/
UINT64
EFIAPI
AsmWriteLrr0 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit Local Redirection Register #1 (LRR1).
No parameter checking is performed on Value. All bits of Value corresponding
to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.
The caller must either guarantee that Value is valid, or the caller must
set up fault handlers to catch the faults.
This function is only available on IPF.
@param Value The 64-bit value to write to LRR1.
@return The 64-bit value written to the LRR1.
**/
UINT64
EFIAPI
AsmWriteLrr1 (
IN UINT64 Value
);
/**
Reads the current value of Instruction Breakpoint Register (IBR).
The Instruction Breakpoint Registers are used in pairs. The even numbered
registers contain breakpoint addresses, and the odd numbered registers contain
breakpoint mask conditions. At least 4 instruction registers pairs are implemented
on all processor models. Implemented registers are contiguous starting with
register 0. No parameter checking is performed on Index, and if the Index value
is beyond the implemented IBR register range, a Reserved Register/Field fault may
occur. The caller must either guarantee that Index is valid, or the caller must
set up fault handlers to catch the faults.
This function is only available on IPF.
@param Index The 8-bit Instruction Breakpoint Register index to read.
@return The current value of Instruction Breakpoint Register specified by Index.
**/
UINT64
EFIAPI
AsmReadIbr (
IN UINT8 Index
);
/**
Reads the current value of Data Breakpoint Register (DBR).
The Data Breakpoint Registers are used in pairs. The even numbered registers
contain breakpoint addresses, and odd numbered registers contain breakpoint
mask conditions. At least 4 data registers pairs are implemented on all processor
models. Implemented registers are contiguous starting with register 0.
No parameter checking is performed on Index. If the Index value is beyond
the implemented DBR register range, a Reserved Register/Field fault may occur.
The caller must either guarantee that Index is valid, or the caller must set up
fault handlers to catch the faults.
This function is only available on IPF.
@param Index The 8-bit Data Breakpoint Register index to read.
@return The current value of Data Breakpoint Register specified by Index.
**/
UINT64
EFIAPI
AsmReadDbr (
IN UINT8 Index
);
/**
Reads the current value of Performance Monitor Configuration Register (PMC).
All processor implementations provide at least 4 performance counters
(PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow
status registers (PMC [0]... PMC [3]). Processor implementations may provide
additional implementation-dependent PMC and PMD to increase the number of
'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD
register set is implementation dependent. No parameter checking is performed
on Index. If the Index value is beyond the implemented PMC register range,
zero value will be returned.
This function is only available on IPF.
@param Index The 8-bit Performance Monitor Configuration Register index to read.
@return The current value of Performance Monitor Configuration Register
specified by Index.
**/
UINT64
EFIAPI
AsmReadPmc (
IN UINT8 Index
);
/**
Reads the current value of Performance Monitor Data Register (PMD).
All processor implementations provide at least 4 performance counters
(PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter
overflow status registers (PMC [0]... PMC [3]). Processor implementations may
provide additional implementation-dependent PMC and PMD to increase the number
of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD
register set is implementation dependent. No parameter checking is performed
on Index. If the Index value is beyond the implemented PMD register range,
zero value will be returned.
This function is only available on IPF.
@param Index The 8-bit Performance Monitor Data Register index to read.
@return The current value of Performance Monitor Data Register specified by Index.
**/
UINT64
EFIAPI
AsmReadPmd (
IN UINT8 Index
);
/**
Writes the current value of 64-bit Instruction Breakpoint Register (IBR).
Writes current value of Instruction Breakpoint Register specified by Index.
The Instruction Breakpoint Registers are used in pairs. The even numbered
registers contain breakpoint addresses, and odd numbered registers contain
breakpoint mask conditions. At least 4 instruction registers pairs are implemented
on all processor models. Implemented registers are contiguous starting with
register 0. No parameter checking is performed on Index. If the Index value
is beyond the implemented IBR register range, a Reserved Register/Field fault may
occur. The caller must either guarantee that Index is valid, or the caller must
set up fault handlers to catch the faults.
This function is only available on IPF.
@param Index The 8-bit Instruction Breakpoint Register index to write.
@param Value The 64-bit value to write to IBR.
@return The 64-bit value written to the IBR.
**/
UINT64
EFIAPI
AsmWriteIbr (
IN UINT8 Index,
IN UINT64 Value
);
/**
Writes the current value of 64-bit Data Breakpoint Register (DBR).
Writes current value of Data Breakpoint Register specified by Index.
The Data Breakpoint Registers are used in pairs. The even numbered registers
contain breakpoint addresses, and odd numbered registers contain breakpoint
mask conditions. At least 4 data registers pairs are implemented on all processor
models. Implemented registers are contiguous starting with register 0. No parameter
checking is performed on Index. If the Index value is beyond the implemented
DBR register range, a Reserved Register/Field fault may occur. The caller must
either guarantee that Index is valid, or the caller must set up fault handlers to
catch the faults.
This function is only available on IPF.
@param Index The 8-bit Data Breakpoint Register index to write.
@param Value The 64-bit value to write to DBR.
@return The 64-bit value written to the DBR.
**/
UINT64
EFIAPI
AsmWriteDbr (
IN UINT8 Index,
IN UINT64 Value
);
/**
Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).
Writes current value of Performance Monitor Configuration Register specified by Index.
All processor implementations provide at least 4 performance counters
(PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status
registers (PMC [0]... PMC [3]). Processor implementations may provide additional
implementation-dependent PMC and PMD to increase the number of 'generic' performance
counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation
dependent. No parameter checking is performed on Index. If the Index value is
beyond the implemented PMC register range, the write is ignored.
This function is only available on IPF.
@param Index The 8-bit Performance Monitor Configuration Register index to write.
@param Value The 64-bit value to write to PMC.
@return The 64-bit value written to the PMC.
**/
UINT64
EFIAPI
AsmWritePmc (
IN UINT8 Index,
IN UINT64 Value
);
/**
Writes the current value of 64-bit Performance Monitor Data Register (PMD).
Writes current value of Performance Monitor Data Register specified by Index.
All processor implementations provide at least 4 performance counters
(PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow
status registers (PMC [0]... PMC [3]). Processor implementations may provide
additional implementation-dependent PMC and PMD to increase the number of 'generic'
performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set
is implementation dependent. No parameter checking is performed on Index. If the
Index value is beyond the implemented PMD register range, the write is ignored.
This function is only available on IPF.
@param Index The 8-bit Performance Monitor Data Register index to write.
@param Value The 64-bit value to write to PMD.
@return The 64-bit value written to the PMD.
**/
UINT64
EFIAPI
AsmWritePmd (
IN UINT8 Index,
IN UINT64 Value
);
/**
Reads the current value of 64-bit Global Pointer (GP).
Reads and returns the current value of GP.
This function is only available on IPF.
@return The current value of GP.
**/
UINT64
EFIAPI
AsmReadGp (
VOID
);
/**
Write the current value of 64-bit Global Pointer (GP).
Writes the current value of GP. The 64-bit value written to the GP is returned.
No parameter checking is performed on Value.
This function is only available on IPF.
@param Value The 64-bit value to write to GP.
@return The 64-bit value written to the GP.
**/
UINT64
EFIAPI
AsmWriteGp (
IN UINT64 Value
);
/**
Reads the current value of 64-bit Stack Pointer (SP).
Reads and returns the current value of SP.
This function is only available on IPF.
@return The current value of SP.
**/
UINT64
EFIAPI
AsmReadSp (
VOID
);
/**
Determines if the CPU is currently executing in virtual, physical, or mixed mode.
Determines the current execution mode of the CPU.
If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.
If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.
If the CPU is not in physical mode or virtual mode, then it is in mixed mode,
and -1 is returned.
This function is only available on IPF.
@return 1 The CPU is in virtual mode.
@return 0 The CPU is in physical mode.
@return -1 The CPU is in mixed mode.
**/
INT64
EFIAPI
AsmCpuVirtual (
VOID
);
/**
Makes a PAL procedure call.
This is a wrapper function to make a PAL procedure call. Based on the Index
value this API will make static or stacked PAL call. The following table
describes the usage of PAL Procedure Index Assignment. Architected procedures
may be designated as required or optional. If a PAL procedure is specified
as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the
Status field of the PAL_CALL_RETURN structure.
This indicates that the procedure is not present in this PAL implementation.
It is the caller's responsibility to check for this return code after calling
any optional PAL procedure.
No parameter checking is performed on the 5 input parameters, but there are
some common rules that the caller should follow when making a PAL call. Any
address passed to PAL as buffers for return parameters must be 8-byte aligned.
Unaligned addresses may cause undefined results. For those parameters defined
as reserved or some fields defined as reserved must be zero filled or the invalid
argument return value may be returned or undefined result may occur during the
execution of the procedure. If the PalEntryPoint does not point to a valid
PAL entry point then the system behavior is undefined. This function is only
available on IPF.
@param PalEntryPoint The PAL procedure calls entry point.
@param Index The PAL procedure Index number.
@param Arg2 The 2nd parameter for PAL procedure calls.
@param Arg3 The 3rd parameter for PAL procedure calls.
@param Arg4 The 4th parameter for PAL procedure calls.
@return structure returned from the PAL Call procedure, including the status and return value.
**/
PAL_CALL_RETURN
EFIAPI
AsmPalCall (
IN UINT64 PalEntryPoint,
IN UINT64 Index,
IN UINT64 Arg2,
IN UINT64 Arg3,
IN UINT64 Arg4
);
/**
Transfers control to a function starting with a new stack.
Transfers control to the function specified by EntryPoint using the new stack
specified by NewStack and passing in the parameters specified by Context1 and
Context2. Context1 and Context2 are optional and may be NULL. The function
EntryPoint must never return.
If EntryPoint is NULL, then ASSERT().
If NewStack is NULL, then ASSERT().
@param EntryPoint A pointer to function to call with the new stack.
@param Context1 A pointer to the context to pass into the EntryPoint
function.
@param Context2 A pointer to the context to pass into the EntryPoint
function.
@param NewStack A pointer to the new stack to use for the EntryPoint
function.
@param NewBsp A pointer to the new memory location for RSE backing
store.
**/
VOID
EFIAPI
AsmSwitchStackAndBackingStore (
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
IN VOID *Context1, OPTIONAL
IN VOID *Context2, OPTIONAL
IN VOID *NewStack,
IN VOID *NewBsp
);
//
// Bugbug: This call should be removed after
// the PalCall Instance issue has been fixed.
//
/**
Performs a PAL call using static calling convention.
An internal function to perform a PAL call using static calling convention.
@param PalEntryPoint The entry point address of PAL. The address in ar.kr5
would be used if this parameter were NULL on input.
@param Arg1 The first argument of a PAL call.
@param Arg2 The second argument of a PAL call.
@param Arg3 The third argument of a PAL call.
@param Arg4 The fourth argument of a PAL call.
@return The values returned in r8, r9, r10 and r11.
**/
PAL_CALL_RETURN
PalCallStatic (
IN CONST VOID *PalEntryPoint,
IN UINT64 Arg1,
IN UINT64 Arg2,
IN UINT64 Arg3,
IN UINT64 Arg4
);
#elif defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)
//
// IA32 and X64 Specific Functions
//
//
// Byte packed structure for 16-bit Real Mode EFLAGS
//
typedef union {
struct {
UINT32 CF:1; // Carry Flag
UINT32 Reserved_0:1; // Reserved
UINT32 PF:1; // Parity Flag
UINT32 Reserved_1:1; // Reserved
UINT32 AF:1; // Auxiliary Carry Flag
UINT32 Reserved_2:1; // Reserved
UINT32 ZF:1; // Zero Flag
UINT32 SF:1; // Sign Flag
UINT32 TF:1; // Trap Flag
UINT32 IF:1; // Interrupt Enable Flag
UINT32 DF:1; // Direction Flag
UINT32 OF:1; // Overflow Flag
UINT32 IOPL:2; // I/O Privilege Level
UINT32 NT:1; // Nested Task
UINT32 Reserved_3:1; // Reserved
} Bits;
UINT16 Uint16;
} IA32_FLAGS16;
//
// Byte packed structure for EFLAGS/RFLAGS
// 32-bits on IA-32
// 64-bits on X64. The upper 32-bits on X64 are reserved
//
typedef union {
struct {
UINT32 CF:1; // Carry Flag
UINT32 Reserved_0:1; // Reserved
UINT32 PF:1; // Parity Flag
UINT32 Reserved_1:1; // Reserved
UINT32 AF:1; // Auxiliary Carry Flag
UINT32 Reserved_2:1; // Reserved
UINT32 ZF:1; // Zero Flag
UINT32 SF:1; // Sign Flag
UINT32 TF:1; // Trap Flag
UINT32 IF:1; // Interrupt Enable Flag
UINT32 DF:1; // Direction Flag
UINT32 OF:1; // Overflow Flag
UINT32 IOPL:2; // I/O Privilege Level
UINT32 NT:1; // Nested Task
UINT32 Reserved_3:1; // Reserved
UINT32 RF:1; // Resume Flag
UINT32 VM:1; // Virtual 8086 Mode
UINT32 AC:1; // Alignment Check
UINT32 VIF:1; // Virtual Interrupt Flag
UINT32 VIP:1; // Virtual Interrupt Pending
UINT32 ID:1; // ID Flag
UINT32 Reserved_4:10; // Reserved
} Bits;
UINTN UintN;
} IA32_EFLAGS32;
//
// Byte packed structure for Control Register 0 (CR0)
// 32-bits on IA-32
// 64-bits on X64. The upper 32-bits on X64 are reserved
//
typedef union {
struct {
UINT32 PE:1; // Protection Enable
UINT32 MP:1; // Monitor Coprocessor
UINT32 EM:1; // Emulation
UINT32 TS:1; // Task Switched
UINT32 ET:1; // Extension Type
UINT32 NE:1; // Numeric Error
UINT32 Reserved_0:10; // Reserved
UINT32 WP:1; // Write Protect
UINT32 Reserved_1:1; // Reserved
UINT32 AM:1; // Alignment Mask
UINT32 Reserved_2:10; // Reserved
UINT32 NW:1; // Mot Write-through
UINT32 CD:1; // Cache Disable
UINT32 PG:1; // Paging
} Bits;
UINTN UintN;
} IA32_CR0;
//
// Byte packed structure for Control Register 4 (CR4)
// 32-bits on IA-32
// 64-bits on X64. The upper 32-bits on X64 are reserved
//
typedef union {
struct {
UINT32 VME:1; // Virtual-8086 Mode Extensions
UINT32 PVI:1; // Protected-Mode Virtual Interrupts
UINT32 TSD:1; // Time Stamp Disable
UINT32 DE:1; // Debugging Extensions
UINT32 PSE:1; // Page Size Extensions
UINT32 PAE:1; // Physical Address Extension
UINT32 MCE:1; // Machine Check Enable
UINT32 PGE:1; // Page Global Enable
UINT32 PCE:1; // Performance Monitoring Counter
// Enable
UINT32 OSFXSR:1; // Operating System Support for
// FXSAVE and FXRSTOR instructions
UINT32 OSXMMEXCPT:1; // Operating System Support for
// Unmasked SIMD Floating Point
// Exceptions
UINT32 Reserved_0:2; // Reserved
UINT32 VMXE:1; // VMX Enable
UINT32 Reserved_1:18; // Reseved
} Bits;
UINTN UintN;
} IA32_CR4;
//
// Byte packed structure for an IDTR, GDTR, LDTR descriptor
/// @bug How to make this structure byte-packed in a compiler independent way?
//
#pragma pack (1)
typedef struct {
UINT16 Limit;
UINTN Base;
} IA32_DESCRIPTOR;
#pragma pack ()
#define IA32_IDT_GATE_TYPE_TASK 0x85
#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86
#define IA32_IDT_GATE_TYPE_TRAP_16 0x87
#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E
#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F
//
// Byte packed structure for an Interrupt Gate Descriptor
//
typedef union {
struct {
UINT32 OffsetLow:16; // Offset bits 15..0
UINT32 Selector:16; // Selector
UINT32 Reserved_0:8; // Reserved
UINT32 GateType:8; // Gate Type. See #defines above
UINT32 OffsetHigh:16; // Offset bits 31..16
} Bits;
UINT64 Uint64;
} IA32_IDT_GATE_DESCRIPTOR;
//
// Byte packed structure for an FP/SSE/SSE2 context
//
typedef struct {
UINT8 Buffer[512];
} IA32_FX_BUFFER;
//
// Structures for the 16-bit real mode thunks
//
typedef struct {
UINT32 Reserved1;
UINT32 Reserved2;
UINT32 Reserved3;
UINT32 Reserved4;
UINT8 BL;
UINT8 BH;
UINT16 Reserved5;
UINT8 DL;
UINT8 DH;
UINT16 Reserved6;
UINT8 CL;
UINT8 CH;
UINT16 Reserved7;
UINT8 AL;
UINT8 AH;
UINT16 Reserved8;
} IA32_BYTE_REGS;
typedef struct {
UINT16 DI;
UINT16 Reserved1;
UINT16 SI;
UINT16 Reserved2;
UINT16 BP;
UINT16 Reserved3;
UINT16 SP;
UINT16 Reserved4;
UINT16 BX;
UINT16 Reserved5;
UINT16 DX;
UINT16 Reserved6;
UINT16 CX;
UINT16 Reserved7;
UINT16 AX;
UINT16 Reserved8;
} IA32_WORD_REGS;
typedef struct {
UINT32 EDI;
UINT32 ESI;
UINT32 EBP;
UINT32 ESP;
UINT32 EBX;
UINT32 EDX;
UINT32 ECX;
UINT32 EAX;
UINT16 DS;
UINT16 ES;
UINT16 FS;
UINT16 GS;
IA32_EFLAGS32 EFLAGS;
UINT32 Eip;
UINT16 CS;
UINT16 SS;
} IA32_DWORD_REGS;
typedef union {
IA32_DWORD_REGS E;
IA32_WORD_REGS X;
IA32_BYTE_REGS H;
} IA32_REGISTER_SET;
//
// Byte packed structure for an 16-bit real mode thunks
//
typedef struct {
IA32_REGISTER_SET *RealModeState;
VOID *RealModeBuffer;
UINT32 RealModeBufferSize;
UINT32 ThunkAttributes;
} THUNK_CONTEXT;
#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001
#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002
#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004
/**
Retrieves CPUID information.
Executes the CPUID instruction with EAX set to the value specified by Index.
This function always returns Index.
If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.
If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.
If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.
If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.
This function is only available on IA-32 and X64.
@param Index The 32-bit value to load into EAX prior to invoking the CPUID
instruction.
@param Eax Pointer to the 32-bit EAX value returned by the CPUID
instruction. This is an optional parameter that may be NULL.
@param Ebx Pointer to the 32-bit EBX value returned by the CPUID
instruction. This is an optional parameter that may be NULL.
@param Ecx Pointer to the 32-bit ECX value returned by the CPUID
instruction. This is an optional parameter that may be NULL.
@param Edx Pointer to the 32-bit EDX value returned by the CPUID
instruction. This is an optional parameter that may be NULL.
@return Index
**/
UINT32
EFIAPI
AsmCpuid (
IN UINT32 Index,
OUT UINT32 *Eax, OPTIONAL
OUT UINT32 *Ebx, OPTIONAL
OUT UINT32 *Ecx, OPTIONAL
OUT UINT32 *Edx OPTIONAL
);
/**
Retrieves CPUID information using an extended leaf identifier.
Executes the CPUID instruction with EAX set to the value specified by Index
and ECX set to the value specified by SubIndex. This function always returns
Index. This function is only available on IA-32 and x64.
If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.
If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.
If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.
If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.
@param Index The 32-bit value to load into EAX prior to invoking the
CPUID instruction.
@param SubIndex The 32-bit value to load into ECX prior to invoking the
CPUID instruction.
@param Eax Pointer to the 32-bit EAX value returned by the CPUID
instruction. This is an optional parameter that may be
NULL.
@param Ebx Pointer to the 32-bit EBX value returned by the CPUID
instruction. This is an optional parameter that may be
NULL.
@param Ecx Pointer to the 32-bit ECX value returned by the CPUID
instruction. This is an optional parameter that may be
NULL.
@param Edx Pointer to the 32-bit EDX value returned by the CPUID
instruction. This is an optional parameter that may be
NULL.
@return Index
**/
UINT32
EFIAPI
AsmCpuidEx (
IN UINT32 Index,
IN UINT32 SubIndex,
OUT UINT32 *Eax, OPTIONAL
OUT UINT32 *Ebx, OPTIONAL
OUT UINT32 *Ecx, OPTIONAL
OUT UINT32 *Edx OPTIONAL
);
/**
Returns the lower 32-bits of a Machine Specific Register(MSR).
Reads and returns the lower 32-bits of the MSR specified by Index.
No parameter checking is performed on Index, and some Index values may cause
CPU exceptions. The caller must either guarantee that Index is valid, or the
caller must set up exception handlers to catch the exceptions. This function
is only available on IA-32 and X64.
@param Index The 32-bit MSR index to read.
@return The lower 32 bits of the MSR identified by Index.
**/
UINT32
EFIAPI
AsmReadMsr32 (
IN UINT32 Index
);
/**
Zero-extend a 32-bit value and writes it to a Machine Specific Register(MSR).
Writes the 32-bit value specified by Value to the MSR specified by Index. The
upper 32-bits of the MSR write are set to zero. The 32-bit value written to
the MSR is returned. No parameter checking is performed on Index or Value,
and some of these may cause CPU exceptions. The caller must either guarantee
that Index and Value are valid, or the caller must establish proper exception
handlers. This function is only available on IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param Value The 32-bit value to write to the MSR.
@return Value
**/
UINT32
EFIAPI
AsmWriteMsr32 (
IN UINT32 Index,
IN UINT32 Value
);
/**
Reads a 64-bit MSR, performs a bitwise inclusive OR on the lower 32-bits, and
writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR
between the lower 32-bits of the read result and the value specified by
OrData, and writes the result to the 64-bit MSR specified by Index. The lower
32-bits of the value written to the MSR is returned. No parameter checking is
performed on Index or OrData, and some of these may cause CPU exceptions. The
caller must either guarantee that Index and OrData are valid, or the caller
must establish proper exception handlers. This function is only available on
IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param OrData The value to OR with the read value from the MSR.
@return The lower 32-bit value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrOr32 (
IN UINT32 Index,
IN UINT32 OrData
);
/**
Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes
the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the
lower 32-bits of the read result and the value specified by AndData, and
writes the result to the 64-bit MSR specified by Index. The lower 32-bits of
the value written to the MSR is returned. No parameter checking is performed
on Index or AndData, and some of these may cause CPU exceptions. The caller
must either guarantee that Index and AndData are valid, or the caller must
establish proper exception handlers. This function is only available on IA-32
and X64.
@param Index The 32-bit MSR index to write.
@param AndData The value to AND with the read value from the MSR.
@return The lower 32-bit value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrAnd32 (
IN UINT32 Index,
IN UINT32 AndData
);
/**
Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive OR
on the lower 32-bits, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the
lower 32-bits of the read result and the value specified by AndData
preserving the upper 32-bits, performs a bitwise inclusive OR between the
result of the AND operation and the value specified by OrData, and writes the
result to the 64-bit MSR specified by Address. The lower 32-bits of the value
written to the MSR is returned. No parameter checking is performed on Index,
AndData, or OrData, and some of these may cause CPU exceptions. The caller
must either guarantee that Index, AndData, and OrData are valid, or the
caller must establish proper exception handlers. This function is only
available on IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param AndData The value to AND with the read value from the MSR.
@param OrData The value to OR with the result of the AND operation.
@return The lower 32-bit value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrAndThenOr32 (
IN UINT32 Index,
IN UINT32 AndData,
IN UINT32 OrData
);
/**
Reads a bit field of an MSR.
Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is
specified by the StartBit and the EndBit. The value of the bit field is
returned. The caller must either guarantee that Index is valid, or the caller
must set up exception handlers to catch the exceptions. This function is only
available on IA-32 and X64.
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to read.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@return The bit field read from the MSR.
**/
UINT32
EFIAPI
AsmMsrBitFieldRead32 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to an MSR.
Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit
field is specified by the StartBit and the EndBit. All other bits in the
destination MSR are preserved. The lower 32-bits of the MSR written is
returned. Extra left bits in Value are stripped. The caller must either
guarantee that Index and the data written is valid, or the caller must set up
exception handlers to catch the exceptions. This function is only available
on IA-32 and X64.
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param Value New value of the bit field.
@return The lower 32-bit of the value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrBitFieldWrite32 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 Value
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the
result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR
between the read result and the value specified by OrData, and writes the
result to the 64-bit MSR specified by Index. The lower 32-bits of the value
written to the MSR are returned. Extra left bits in OrData are stripped. The
caller must either guarantee that Index and the data written is valid, or
the caller must set up exception handlers to catch the exceptions. This
function is only available on IA-32 and X64.
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param OrData The value to OR with the read value from the MSR.
@return The lower 32-bit of the value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrBitFieldOr32 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 OrData
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the
result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the
read result and the value specified by AndData, and writes the result to the
64-bit MSR specified by Index. The lower 32-bits of the value written to the
MSR are returned. Extra left bits in AndData are stripped. The caller must
either guarantee that Index and the data written is valid, or the caller must
set up exception handlers to catch the exceptions. This function is only
available on IA-32 and X64.
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param AndData The value to AND with the read value from the MSR.
@return The lower 32-bit of the value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrBitFieldAnd32 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a
bitwise inclusive OR, and writes the result back to the bit field in the
64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a
bitwise inclusive OR between the read result and the value specified by
AndData, and writes the result to the 64-bit MSR specified by Index. The
lower 32-bits of the value written to the MSR are returned. Extra left bits
in both AndData and OrData are stripped. The caller must either guarantee
that Index and the data written is valid, or the caller must set up exception
handlers to catch the exceptions. This function is only available on IA-32
and X64.
If StartBit is greater than 31, then ASSERT().
If EndBit is greater than 31, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..31.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..31.
@param AndData The value to AND with the read value from the MSR.
@param OrData The value to OR with the result of the AND operation.
@return The lower 32-bit of the value written to the MSR.
**/
UINT32
EFIAPI
AsmMsrBitFieldAndThenOr32 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT32 AndData,
IN UINT32 OrData
);
/**
Returns a 64-bit Machine Specific Register(MSR).
Reads and returns the 64-bit MSR specified by Index. No parameter checking is
performed on Index, and some Index values may cause CPU exceptions. The
caller must either guarantee that Index is valid, or the caller must set up
exception handlers to catch the exceptions. This function is only available
on IA-32 and X64.
@param Index The 32-bit MSR index to read.
@return The value of the MSR identified by Index.
**/
UINT64
EFIAPI
AsmReadMsr64 (
IN UINT32 Index
);
/**
Writes a 64-bit value to a Machine Specific Register(MSR), and returns the
value.
Writes the 64-bit value specified by Value to the MSR specified by Index. The
64-bit value written to the MSR is returned. No parameter checking is
performed on Index or Value, and some of these may cause CPU exceptions. The
caller must either guarantee that Index and Value are valid, or the caller
must establish proper exception handlers. This function is only available on
IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param Value The 64-bit value to write to the MSR.
@return Value
**/
UINT64
EFIAPI
AsmWriteMsr64 (
IN UINT32 Index,
IN UINT64 Value
);
/**
Reads a 64-bit MSR, performs a bitwise inclusive OR, and writes the result
back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR
between the read result and the value specified by OrData, and writes the
result to the 64-bit MSR specified by Index. The value written to the MSR is
returned. No parameter checking is performed on Index or OrData, and some of
these may cause CPU exceptions. The caller must either guarantee that Index
and OrData are valid, or the caller must establish proper exception handlers.
This function is only available on IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param OrData The value to OR with the read value from the MSR.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrOr64 (
IN UINT32 Index,
IN UINT64 OrData
);
/**
Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the
64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the
read result and the value specified by OrData, and writes the result to the
64-bit MSR specified by Index. The value written to the MSR is returned. No
parameter checking is performed on Index or OrData, and some of these may
cause CPU exceptions. The caller must either guarantee that Index and OrData
are valid, or the caller must establish proper exception handlers. This
function is only available on IA-32 and X64.
@param Index The 32-bit MSR index to write.
@param AndData The value to AND with the read value from the MSR.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrAnd64 (
IN UINT32 Index,
IN UINT64 AndData
);
/**
Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive
OR, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between read
result and the value specified by AndData, performs a bitwise inclusive OR
between the result of the AND operation and the value specified by OrData,
and writes the result to the 64-bit MSR specified by Index. The value written
to the MSR is returned. No parameter checking is performed on Index, AndData,
or OrData, and some of these may cause CPU exceptions. The caller must either
guarantee that Index, AndData, and OrData are valid, or the caller must
establish proper exception handlers. This function is only available on IA-32
and X64.
@param Index The 32-bit MSR index to write.
@param AndData The value to AND with the read value from the MSR.
@param OrData The value to OR with the result of the AND operation.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrAndThenOr64 (
IN UINT32 Index,
IN UINT64 AndData,
IN UINT64 OrData
);
/**
Reads a bit field of an MSR.
Reads the bit field in the 64-bit MSR. The bit field is specified by the
StartBit and the EndBit. The value of the bit field is returned. The caller
must either guarantee that Index is valid, or the caller must set up
exception handlers to catch the exceptions. This function is only available
on IA-32 and X64.
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to read.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@return The value read from the MSR.
**/
UINT64
EFIAPI
AsmMsrBitFieldRead64 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit
);
/**
Writes a bit field to an MSR.
Writes Value to a bit field in a 64-bit MSR. The bit field is specified by
the StartBit and the EndBit. All other bits in the destination MSR are
preserved. The MSR written is returned. Extra left bits in Value are
stripped. The caller must either guarantee that Index and the data written is
valid, or the caller must set up exception handlers to catch the exceptions.
This function is only available on IA-32 and X64.
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param Value New value of the bit field.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrBitFieldWrite64 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 Value
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise inclusive OR, and
writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR
between the read result and the value specified by OrData, and writes the
result to the 64-bit MSR specified by Index. The value written to the MSR is
returned. Extra left bits in OrData are stripped. The caller must either
guarantee that Index and the data written is valid, or the caller must set up
exception handlers to catch the exceptions. This function is only available
on IA-32 and X64.
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param OrData The value to OR with the read value from the bit field.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrBitFieldOr64 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 OrData
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the
result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the
read result and the value specified by AndData, and writes the result to the
64-bit MSR specified by Index. The value written to the MSR is returned.
Extra left bits in AndData are stripped. The caller must either guarantee
that Index and the data written is valid, or the caller must set up exception
handlers to catch the exceptions. This function is only available on IA-32
and X64.
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param AndData The value to AND with the read value from the bit field.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrBitFieldAnd64 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 AndData
);
/**
Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a
bitwise inclusive OR, and writes the result back to the bit field in the
64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by
a bitwise inclusive OR between the read result and the value specified by
AndData, and writes the result to the 64-bit MSR specified by Index. The
value written to the MSR is returned. Extra left bits in both AndData and
OrData are stripped. The caller must either guarantee that Index and the data
written is valid, or the caller must set up exception handlers to catch the
exceptions. This function is only available on IA-32 and X64.
If StartBit is greater than 63, then ASSERT().
If EndBit is greater than 63, then ASSERT().
If EndBit is less than StartBit, then ASSERT().
@param Index The 32-bit MSR index to write.
@param StartBit The ordinal of the least significant bit in the bit field.
Range 0..63.
@param EndBit The ordinal of the most significant bit in the bit field.
Range 0..63.
@param AndData The value to AND with the read value from the bit field.
@param OrData The value to OR with the result of the AND operation.
@return The value written back to the MSR.
**/
UINT64
EFIAPI
AsmMsrBitFieldAndThenOr64 (
IN UINT32 Index,
IN UINTN StartBit,
IN UINTN EndBit,
IN UINT64 AndData,
IN UINT64 OrData
);
/**
Reads the current value of the EFLAGS register.
Reads and returns the current value of the EFLAGS register. This function is
only available on IA-32 and X64. This returns a 32-bit value on IA-32 and a
64-bit value on X64.
@return EFLAGS on IA-32 or RFLAGS on X64.
**/
UINTN
EFIAPI
AsmReadEflags (
VOID
);
/**
Reads the current value of the Control Register 0 (CR0).
Reads and returns the current value of CR0. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of the Control Register 0 (CR0).
**/
UINTN
EFIAPI
AsmReadCr0 (
VOID
);
/**
Reads the current value of the Control Register 2 (CR2).
Reads and returns the current value of CR2. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of the Control Register 2 (CR2).
**/
UINTN
EFIAPI
AsmReadCr2 (
VOID
);
/**
Reads the current value of the Control Register 3 (CR3).
Reads and returns the current value of CR3. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of the Control Register 3 (CR3).
**/
UINTN
EFIAPI
AsmReadCr3 (
VOID
);
/**
Reads the current value of the Control Register 4 (CR4).
Reads and returns the current value of CR4. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of the Control Register 4 (CR4).
**/
UINTN
EFIAPI
AsmReadCr4 (
VOID
);
/**
Writes a value to Control Register 0 (CR0).
Writes and returns a new value to CR0. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Cr0 The value to write to CR0.
@return The value written to CR0.
**/
UINTN
EFIAPI
AsmWriteCr0 (
UINTN Cr0
);
/**
Writes a value to Control Register 2 (CR2).
Writes and returns a new value to CR2. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Cr2 The value to write to CR2.
@return The value written to CR2.
**/
UINTN
EFIAPI
AsmWriteCr2 (
UINTN Cr2
);
/**
Writes a value to Control Register 3 (CR3).
Writes and returns a new value to CR3. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Cr3 The value to write to CR3.
@return The value written to CR3.
**/
UINTN
EFIAPI
AsmWriteCr3 (
UINTN Cr3
);
/**
Writes a value to Control Register 4 (CR4).
Writes and returns a new value to CR4. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Cr4 The value to write to CR4.
@return The value written to CR4.
**/
UINTN
EFIAPI
AsmWriteCr4 (
UINTN Cr4
);
/**
Reads the current value of Debug Register 0 (DR0).
Reads and returns the current value of DR0. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 0 (DR0).
**/
UINTN
EFIAPI
AsmReadDr0 (
VOID
);
/**
Reads the current value of Debug Register 1 (DR1).
Reads and returns the current value of DR1. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 1 (DR1).
**/
UINTN
EFIAPI
AsmReadDr1 (
VOID
);
/**
Reads the current value of Debug Register 2 (DR2).
Reads and returns the current value of DR2. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 2 (DR2).
**/
UINTN
EFIAPI
AsmReadDr2 (
VOID
);
/**
Reads the current value of Debug Register 3 (DR3).
Reads and returns the current value of DR3. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 3 (DR3).
**/
UINTN
EFIAPI
AsmReadDr3 (
VOID
);
/**
Reads the current value of Debug Register 4 (DR4).
Reads and returns the current value of DR4. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 4 (DR4).
**/
UINTN
EFIAPI
AsmReadDr4 (
VOID
);
/**
Reads the current value of Debug Register 5 (DR5).
Reads and returns the current value of DR5. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 5 (DR5).
**/
UINTN
EFIAPI
AsmReadDr5 (
VOID
);
/**
Reads the current value of Debug Register 6 (DR6).
Reads and returns the current value of DR6. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 6 (DR6).
**/
UINTN
EFIAPI
AsmReadDr6 (
VOID
);
/**
Reads the current value of Debug Register 7 (DR7).
Reads and returns the current value of DR7. This function is only available
on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on
X64.
@return The value of Debug Register 7 (DR7).
**/
UINTN
EFIAPI
AsmReadDr7 (
VOID
);
/**
Writes a value to Debug Register 0 (DR0).
Writes and returns a new value to DR0. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr0 The value to write to Dr0.
@return The value written to Debug Register 0 (DR0).
**/
UINTN
EFIAPI
AsmWriteDr0 (
UINTN Dr0
);
/**
Writes a value to Debug Register 1 (DR1).
Writes and returns a new value to DR1. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr1 The value to write to Dr1.
@return The value written to Debug Register 1 (DR1).
**/
UINTN
EFIAPI
AsmWriteDr1 (
UINTN Dr1
);
/**
Writes a value to Debug Register 2 (DR2).
Writes and returns a new value to DR2. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr2 The value to write to Dr2.
@return The value written to Debug Register 2 (DR2).
**/
UINTN
EFIAPI
AsmWriteDr2 (
UINTN Dr2
);
/**
Writes a value to Debug Register 3 (DR3).
Writes and returns a new value to DR3. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr3 The value to write to Dr3.
@return The value written to Debug Register 3 (DR3).
**/
UINTN
EFIAPI
AsmWriteDr3 (
UINTN Dr3
);
/**
Writes a value to Debug Register 4 (DR4).
Writes and returns a new value to DR4. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr4 The value to write to Dr4.
@return The value written to Debug Register 4 (DR4).
**/
UINTN
EFIAPI
AsmWriteDr4 (
UINTN Dr4
);
/**
Writes a value to Debug Register 5 (DR5).
Writes and returns a new value to DR5. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr5 The value to write to Dr5.
@return The value written to Debug Register 5 (DR5).
**/
UINTN
EFIAPI
AsmWriteDr5 (
UINTN Dr5
);
/**
Writes a value to Debug Register 6 (DR6).
Writes and returns a new value to DR6. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr6 The value to write to Dr6.
@return The value written to Debug Register 6 (DR6).
**/
UINTN
EFIAPI
AsmWriteDr6 (
UINTN Dr6
);
/**
Writes a value to Debug Register 7 (DR7).
Writes and returns a new value to DR7. This function is only available on
IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.
@param Dr7 The value to write to Dr7.
@return The value written to Debug Register 7 (DR7).
**/
UINTN
EFIAPI
AsmWriteDr7 (
UINTN Dr7
);
/**
Reads the current value of Code Segment Register (CS).
Reads and returns the current value of CS. This function is only available on
IA-32 and X64.
@return The current value of CS.
**/
UINT16
EFIAPI
AsmReadCs (
VOID
);
/**
Reads the current value of Data Segment Register (DS).
Reads and returns the current value of DS. This function is only available on
IA-32 and X64.
@return The current value of DS.
**/
UINT16
EFIAPI
AsmReadDs (
VOID
);
/**
Reads the current value of Extra Segment Register (ES).
Reads and returns the current value of ES. This function is only available on
IA-32 and X64.
@return The current value of ES.
**/
UINT16
EFIAPI
AsmReadEs (
VOID
);
/**
Reads the current value of FS Data Segment Register (FS).
Reads and returns the current value of FS. This function is only available on
IA-32 and X64.
@return The current value of FS.
**/
UINT16
EFIAPI
AsmReadFs (
VOID
);
/**
Reads the current value of GS Data Segment Register (GS).
Reads and returns the current value of GS. This function is only available on
IA-32 and X64.
@return The current value of GS.
**/
UINT16
EFIAPI
AsmReadGs (
VOID
);
/**
Reads the current value of Stack Segment Register (SS).
Reads and returns the current value of SS. This function is only available on
IA-32 and X64.
@return The current value of SS.
**/
UINT16
EFIAPI
AsmReadSs (
VOID
);
/**
Reads the current value of Task Register (TR).
Reads and returns the current value of TR. This function is only available on
IA-32 and X64.
@return The current value of TR.
**/
UINT16
EFIAPI
AsmReadTr (
VOID
);
/**
Reads the current Global Descriptor Table Register(GDTR) descriptor.
Reads and returns the current GDTR descriptor and returns it in Gdtr. This
function is only available on IA-32 and X64.
If Gdtr is NULL, then ASSERT().
@param Gdtr Pointer to a GDTR descriptor.
**/
VOID
EFIAPI
AsmReadGdtr (
OUT IA32_DESCRIPTOR *Gdtr
);
/**
Writes the current Global Descriptor Table Register (GDTR) descriptor.
Writes and the current GDTR descriptor specified by Gdtr. This function is
only available on IA-32 and X64.
If Gdtr is NULL, then ASSERT().
@param Gdtr Pointer to a GDTR descriptor.
**/
VOID
EFIAPI
AsmWriteGdtr (
IN CONST IA32_DESCRIPTOR *Gdtr
);
/**
Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.
Reads and returns the current IDTR descriptor and returns it in Idtr. This
function is only available on IA-32 and X64.
If Idtr is NULL, then ASSERT().
@param Idtr Pointer to a IDTR descriptor.
**/
VOID
EFIAPI
AsmReadIdtr (
OUT IA32_DESCRIPTOR *Idtr
);
/**
Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.
Writes the current IDTR descriptor and returns it in Idtr. This function is
only available on IA-32 and X64.
If Idtr is NULL, then ASSERT().
@param Idtr Pointer to a IDTR descriptor.
**/
VOID
EFIAPI
AsmWriteIdtr (
IN CONST IA32_DESCRIPTOR *Idtr
);
/**
Reads the current Local Descriptor Table Register(LDTR) selector.
Reads and returns the current 16-bit LDTR descriptor value. This function is
only available on IA-32 and X64.
@return The current selector of LDT.
**/
UINT16
EFIAPI
AsmReadLdtr (
VOID
);
/**
Writes the current Local Descriptor Table Register (GDTR) selector.
Writes and the current LDTR descriptor specified by Ldtr. This function is
only available on IA-32 and X64.
@param Ldtr 16-bit LDTR selector value.
**/
VOID
EFIAPI
AsmWriteLdtr (
IN UINT16 Ldtr
);
/**
Save the current floating point/SSE/SSE2 context to a buffer.
Saves the current floating point/SSE/SSE2 state to the buffer specified by
Buffer. Buffer must be aligned on a 16-byte boundary. This function is only
available on IA-32 and X64.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 16-byte boundary, then ASSERT().
@param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.
**/
VOID
EFIAPI
AsmFxSave (
OUT IA32_FX_BUFFER *Buffer
);
/**
Restores the current floating point/SSE/SSE2 context from a buffer.
Restores the current floating point/SSE/SSE2 state from the buffer specified
by Buffer. Buffer must be aligned on a 16-byte boundary. This function is
only available on IA-32 and X64.
If Buffer is NULL, then ASSERT().
If Buffer is not aligned on a 16-byte boundary, then ASSERT().
If Buffer was not saved with AsmFxSave(), then ASSERT().
@param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.
**/
VOID
EFIAPI
AsmFxRestore (
IN CONST IA32_FX_BUFFER *Buffer
);
/**
Reads the current value of 64-bit MMX Register #0 (MM0).
Reads and returns the current value of MM0. This function is only available
on IA-32 and X64.
@return The current value of MM0.
**/
UINT64
EFIAPI
AsmReadMm0 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #1 (MM1).
Reads and returns the current value of MM1. This function is only available
on IA-32 and X64.
@return The current value of MM1.
**/
UINT64
EFIAPI
AsmReadMm1 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #2 (MM2).
Reads and returns the current value of MM2. This function is only available
on IA-32 and X64.
@return The current value of MM2.
**/
UINT64
EFIAPI
AsmReadMm2 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #3 (MM3).
Reads and returns the current value of MM3. This function is only available
on IA-32 and X64.
@return The current value of MM3.
**/
UINT64
EFIAPI
AsmReadMm3 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #4 (MM4).
Reads and returns the current value of MM4. This function is only available
on IA-32 and X64.
@return The current value of MM4.
**/
UINT64
EFIAPI
AsmReadMm4 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #5 (MM5).
Reads and returns the current value of MM5. This function is only available
on IA-32 and X64.
@return The current value of MM5.
**/
UINT64
EFIAPI
AsmReadMm5 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #6 (MM6).
Reads and returns the current value of MM6. This function is only available
on IA-32 and X64.
@return The current value of MM6.
**/
UINT64
EFIAPI
AsmReadMm6 (
VOID
);
/**
Reads the current value of 64-bit MMX Register #7 (MM7).
Reads and returns the current value of MM7. This function is only available
on IA-32 and X64.
@return The current value of MM7.
**/
UINT64
EFIAPI
AsmReadMm7 (
VOID
);
/**
Writes the current value of 64-bit MMX Register #0 (MM0).
Writes the current value of MM0. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM0.
**/
VOID
EFIAPI
AsmWriteMm0 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #1 (MM1).
Writes the current value of MM1. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM1.
**/
VOID
EFIAPI
AsmWriteMm1 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #2 (MM2).
Writes the current value of MM2. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM2.
**/
VOID
EFIAPI
AsmWriteMm2 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #3 (MM3).
Writes the current value of MM3. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM3.
**/
VOID
EFIAPI
AsmWriteMm3 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #4 (MM4).
Writes the current value of MM4. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM4.
**/
VOID
EFIAPI
AsmWriteMm4 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #5 (MM5).
Writes the current value of MM5. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM5.
**/
VOID
EFIAPI
AsmWriteMm5 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #6 (MM6).
Writes the current value of MM6. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM6.
**/
VOID
EFIAPI
AsmWriteMm6 (
IN UINT64 Value
);
/**
Writes the current value of 64-bit MMX Register #7 (MM7).
Writes the current value of MM7. This function is only available on IA32 and
X64.
@param Value The 64-bit value to write to MM7.
**/
VOID
EFIAPI
AsmWriteMm7 (
IN UINT64 Value
);
/**
Reads the current value of Time Stamp Counter (TSC).
Reads and returns the current value of TSC. This function is only available
on IA-32 and X64.
@return The current value of TSC
**/
UINT64
EFIAPI
AsmReadTsc (
VOID
);
/**
Reads the current value of a Performance Counter (PMC).
Reads and returns the current value of performance counter specified by
Index. This function is only available on IA-32 and X64.
@param Index The 32-bit Performance Counter index to read.
@return The value of the PMC specified by Index.
**/
UINT64
EFIAPI
AsmReadPmc (
IN UINT32 Index
);
/**
Sets up a monitor buffer that is used by AsmMwait().
Executes a MONITOR instruction with the register state specified by Eax, Ecx
and Edx. Returns Eax. This function is only available on IA-32 and X64.
@param Eax The value to load into EAX or RAX before executing the MONITOR
instruction.
@param Ecx The value to load into ECX or RCX before executing the MONITOR
instruction.
@param Edx The value to load into EDX or RDX before executing the MONITOR
instruction.
@return Eax
**/
UINTN
EFIAPI
AsmMonitor (
IN UINTN Eax,
IN UINTN Ecx,
IN UINTN Edx
);
/**
Executes an MWAIT instruction.
Executes an MWAIT instruction with the register state specified by Eax and
Ecx. Returns Eax. This function is only available on IA-32 and X64.
@param Eax The value to load into EAX or RAX before executing the MONITOR
instruction.
@param Ecx The value to load into ECX or RCX before executing the MONITOR
instruction.
@return Eax
**/
UINTN
EFIAPI
AsmMwait (
IN UINTN Eax,
IN UINTN Ecx
);
/**
Executes a WBINVD instruction.
Executes a WBINVD instruction. This function is only available on IA-32 and
X64.
**/
VOID
EFIAPI
AsmWbinvd (
VOID
);
/**
Executes a INVD instruction.
Executes a INVD instruction. This function is only available on IA-32 and
X64.
**/
VOID
EFIAPI
AsmInvd (
VOID
);
/**
Flushes a cache line from all the instruction and data caches within the
coherency domain of the CPU.
Flushed the cache line specified by LinearAddress, and returns LinearAddress.
This function is only available on IA-32 and X64.
@param LinearAddress The address of the cache line to flush. If the CPU is
in a physical addressing mode, then LinearAddress is a
physical address. If the CPU is in a virtual
addressing mode, then LinearAddress is a virtual
address.
@return LinearAddress
**/
VOID *
EFIAPI
AsmFlushCacheLine (
IN VOID *LinearAddress
);
/**
Enables the 32-bit paging mode on the CPU.
Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
must be properly initialized prior to calling this service. This function
assumes the current execution mode is 32-bit protected mode. This function is
only available on IA-32. After the 32-bit paging mode is enabled, control is
transferred to the function specified by EntryPoint using the new stack
specified by NewStack and passing in the parameters specified by Context1 and
Context2. Context1 and Context2 are optional and may be NULL. The function
EntryPoint must never return.
If the current execution mode is not 32-bit protected mode, then ASSERT().
If EntryPoint is NULL, then ASSERT().
If NewStack is NULL, then ASSERT().
There are a number of constraints that must be followed before calling this
function:
1) Interrupts must be disabled.
2) The caller must be in 32-bit protected mode with flat descriptors. This
means all descriptors must have a base of 0 and a limit of 4GB.
3) CR0 and CR4 must be compatible with 32-bit protected mode with flat
descriptors.
4) CR3 must point to valid page tables that will be used once the transition
is complete, and those page tables must guarantee that the pages for this
function and the stack are identity mapped.
@param EntryPoint A pointer to function to call with the new stack after
paging is enabled.
@param Context1 A pointer to the context to pass into the EntryPoint
function as the first parameter after paging is enabled.
@param Context2 A pointer to the context to pass into the EntryPoint
function as the second parameter after paging is enabled.
@param NewStack A pointer to the new stack to use for the EntryPoint
function after paging is enabled.
**/
VOID
EFIAPI
AsmEnablePaging32 (
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
IN VOID *Context1, OPTIONAL
IN VOID *Context2, OPTIONAL
IN VOID *NewStack
);
/**
Disables the 32-bit paging mode on the CPU.
Disables the 32-bit paging mode on the CPU and returns to 32-bit protected
mode. This function assumes the current execution mode is 32-paged protected
mode. This function is only available on IA-32. After the 32-bit paging mode
is disabled, control is transferred to the function specified by EntryPoint
using the new stack specified by NewStack and passing in the parameters
specified by Context1 and Context2. Context1 and Context2 are optional and
may be NULL. The function EntryPoint must never return.
If the current execution mode is not 32-bit paged mode, then ASSERT().
If EntryPoint is NULL, then ASSERT().
If NewStack is NULL, then ASSERT().
There are a number of constraints that must be followed before calling this
function:
1) Interrupts must be disabled.
2) The caller must be in 32-bit paged mode.
3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.
4) CR3 must point to valid page tables that guarantee that the pages for
this function and the stack are identity mapped.
@param EntryPoint A pointer to function to call with the new stack after
paging is disabled.
@param Context1 A pointer to the context to pass into the EntryPoint
function as the first parameter after paging is disabled.
@param Context2 A pointer to the context to pass into the EntryPoint
function as the second parameter after paging is
disabled.
@param NewStack A pointer to the new stack to use for the EntryPoint
function after paging is disabled.
**/
VOID
EFIAPI
AsmDisablePaging32 (
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
IN VOID *Context1, OPTIONAL
IN VOID *Context2, OPTIONAL
IN VOID *NewStack
);
/**
Enables the 64-bit paging mode on the CPU.
Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
must be properly initialized prior to calling this service. This function
assumes the current execution mode is 32-bit protected mode with flat
descriptors. This function is only available on IA-32. After the 64-bit
paging mode is enabled, control is transferred to the function specified by
EntryPoint using the new stack specified by NewStack and passing in the
parameters specified by Context1 and Context2. Context1 and Context2 are
optional and may be 0. The function EntryPoint must never return.
If the current execution mode is not 32-bit protected mode with flat
descriptors, then ASSERT().
If EntryPoint is 0, then ASSERT().
If NewStack is 0, then ASSERT().
@param CodeSelector The 16-bit selector to load in the CS before EntryPoint
is called. The descriptor in the GDT that this selector
references must be setup for long mode.
@param EntryPoint The 64-bit virtual address of the function to call with
the new stack after paging is enabled.
@param Context1 The 64-bit virtual address of the context to pass into
the EntryPoint function as the first parameter after
paging is enabled.
@param Context2 The 64-bit virtual address of the context to pass into
the EntryPoint function as the second parameter after
paging is enabled.
@param NewStack The 64-bit virtual address of the new stack to use for
the EntryPoint function after paging is enabled.
**/
VOID
EFIAPI
AsmEnablePaging64 (
IN UINT16 CodeSelector,
IN UINT64 EntryPoint,
IN UINT64 Context1, OPTIONAL
IN UINT64 Context2, OPTIONAL
IN UINT64 NewStack
);
/**
Disables the 64-bit paging mode on the CPU.
Disables the 64-bit paging mode on the CPU and returns to 32-bit protected
mode. This function assumes the current execution mode is 64-paging mode.
This function is only available on X64. After the 64-bit paging mode is
disabled, control is transferred to the function specified by EntryPoint
using the new stack specified by NewStack and passing in the parameters
specified by Context1 and Context2. Context1 and Context2 are optional and
may be 0. The function EntryPoint must never return.
If the current execution mode is not 64-bit paged mode, then ASSERT().
If EntryPoint is 0, then ASSERT().
If NewStack is 0, then ASSERT().
@param CodeSelector The 16-bit selector to load in the CS before EntryPoint
is called. The descriptor in the GDT that this selector
references must be setup for 32-bit protected mode.
@param EntryPoint The 64-bit virtual address of the function to call with
the new stack after paging is disabled.
@param Context1 The 64-bit virtual address of the context to pass into
the EntryPoint function as the first parameter after
paging is disabled.
@param Context2 The 64-bit virtual address of the context to pass into
the EntryPoint function as the second parameter after
paging is disabled.
@param NewStack The 64-bit virtual address of the new stack to use for
the EntryPoint function after paging is disabled.
**/
VOID
EFIAPI
AsmDisablePaging64 (
IN UINT16 CodeSelector,
IN UINT32 EntryPoint,
IN UINT32 Context1, OPTIONAL
IN UINT32 Context2, OPTIONAL
IN UINT32 NewStack
);
//
// 16-bit thunking services
//
/**
Retrieves the properties for 16-bit thunk functions.
Computes the size of the buffer and stack below 1MB required to use the
AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This
buffer size is returned in RealModeBufferSize, and the stack size is returned
in ExtraStackSize. If parameters are passed to the 16-bit real mode code,
then the actual minimum stack size is ExtraStackSize plus the maximum number
of bytes that need to be passed to the 16-bit real mode code.
If RealModeBufferSize is NULL, then ASSERT().
If ExtraStackSize is NULL, then ASSERT().
@param RealModeBufferSize A pointer to the size of the buffer below 1MB
required to use the 16-bit thunk functions.
@param ExtraStackSize A pointer to the extra size of stack below 1MB
that the 16-bit thunk functions require for
temporary storage in the transition to and from
16-bit real mode.
**/
VOID
EFIAPI
AsmGetThunk16Properties (
OUT UINT32 *RealModeBufferSize,
OUT UINT32 *ExtraStackSize
);
/**
Prepares all structures a code required to use AsmThunk16().
Prepares all structures and code required to use AsmThunk16().
If ThunkContext is NULL, then ASSERT().
@param ThunkContext A pointer to the context structure that describes the
16-bit real mode code to call.
**/
VOID
EFIAPI
AsmPrepareThunk16 (
OUT THUNK_CONTEXT *ThunkContext
);
/**
Transfers control to a 16-bit real mode entry point and returns the results.
Transfers control to a 16-bit real mode entry point and returns the results.
AsmPrepareThunk16() must be called with ThunkContext before this function is
used.
If ThunkContext is NULL, then ASSERT().
If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().
@param ThunkContext A pointer to the context structure that describes the
16-bit real mode code to call.
**/
VOID
EFIAPI
AsmThunk16 (
IN OUT THUNK_CONTEXT *ThunkContext
);
/**
Prepares all structures and code for a 16-bit real mode thunk, transfers
control to a 16-bit real mode entry point, and returns the results.
Prepares all structures and code for a 16-bit real mode thunk, transfers
control to a 16-bit real mode entry point, and returns the results. If the
caller only need to perform a single 16-bit real mode thunk, then this
service should be used. If the caller intends to make more than one 16-bit
real mode thunk, then it is more efficient if AsmPrepareThunk16() is called
once and AsmThunk16() can be called for each 16-bit real mode thunk.
If ThunkContext is NULL, then ASSERT().
@param ThunkContext A pointer to the context structure that describes the
16-bit real mode code to call.
**/
VOID
EFIAPI
AsmPrepareAndThunk16 (
IN OUT THUNK_CONTEXT *ThunkContext
);
#else
#endif
#endif