mirror of https://github.com/acidanthera/audk.git
185 lines
6.1 KiB
NASM
185 lines
6.1 KiB
NASM
;***
|
|
;ulldvrm.asm - unsigned long divide and remainder routine
|
|
;
|
|
; Copyright (c) Microsoft Corporation. All rights reserved.
|
|
; SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
;
|
|
;Purpose:
|
|
; defines the unsigned long divide and remainder routine
|
|
; __aulldvrm
|
|
;
|
|
;Original Implemenation: MSVC 14.29.30133
|
|
;
|
|
;*******************************************************************************
|
|
.686
|
|
.model flat,C
|
|
.code
|
|
|
|
|
|
;***
|
|
;ulldvrm - unsigned long divide and remainder
|
|
;
|
|
;Purpose:
|
|
; Does a unsigned long divide and remainder of the arguments. Arguments
|
|
; are not changed.
|
|
;
|
|
;Entry:
|
|
; Arguments are passed on the stack:
|
|
; 1st pushed: divisor (QWORD)
|
|
; 2nd pushed: dividend (QWORD)
|
|
;
|
|
;Exit:
|
|
; EDX:EAX contains the quotient (dividend/divisor)
|
|
; EBX:ECX contains the remainder (divided % divisor)
|
|
; NOTE: this routine removes the parameters from the stack.
|
|
;
|
|
;Uses:
|
|
; ECX
|
|
;
|
|
;Exceptions:
|
|
;
|
|
;*******************************************************************************
|
|
_aulldvrm PROC NEAR
|
|
|
|
HIWORD EQU [4] ;
|
|
LOWORD EQU [0]
|
|
push esi
|
|
|
|
; Set up the local stack and save the index registers. When this is done
|
|
; the stack frame will look as follows (assuming that the expression a/b will
|
|
; generate a call to aulldvrm(a, b)):
|
|
;
|
|
; -----------------
|
|
; | |
|
|
; |---------------|
|
|
; | |
|
|
; |--divisor (b)--|
|
|
; | |
|
|
; |---------------|
|
|
; | |
|
|
; |--dividend (a)-|
|
|
; | |
|
|
; |---------------|
|
|
; | return addr** |
|
|
; |---------------|
|
|
; ESP---->| ESI |
|
|
; -----------------
|
|
;
|
|
|
|
DVND equ [esp + 8] ; stack address of dividend (a)
|
|
DVSR equ [esp + 16] ; stack address of divisor (b)
|
|
|
|
;
|
|
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
|
; If so, then we can use a simple algorithm with word divides, otherwise
|
|
; things get a little more complex.
|
|
;
|
|
|
|
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
|
|
or eax,eax
|
|
jnz short L1 ; nope, gotta do this the hard way
|
|
mov ecx,LOWORD(DVSR) ; load divisor
|
|
mov eax,HIWORD(DVND) ; load high word of dividend
|
|
xor edx,edx
|
|
div ecx ; get high order bits of quotient
|
|
mov ebx,eax ; save high bits of quotient
|
|
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
|
div ecx ; get low order bits of quotient
|
|
mov esi,eax ; ebx:esi <- quotient
|
|
|
|
;
|
|
; Now we need to do a multiply so that we can compute the remainder.
|
|
;
|
|
mov eax,ebx ; set up high word of quotient
|
|
mul dword ptr LOWORD(DVSR) ; HIWORD(QUOT) * DVSR
|
|
mov ecx,eax ; save the result in ecx
|
|
mov eax,esi ; set up low word of quotient
|
|
mul dword ptr LOWORD(DVSR) ; LOWORD(QUOT) * DVSR
|
|
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
|
jmp short L2 ; complete remainder calculation
|
|
|
|
;
|
|
; Here we do it the hard way. Remember, eax contains DVSRHI
|
|
;
|
|
|
|
L1:
|
|
mov ecx,eax ; ecx:ebx <- divisor
|
|
mov ebx,LOWORD(DVSR)
|
|
mov edx,HIWORD(DVND) ; edx:eax <- dividend
|
|
mov eax,LOWORD(DVND)
|
|
L3:
|
|
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
|
|
rcr ebx,1
|
|
shr edx,1 ; shift dividend right one bit; hi bit <- 0
|
|
rcr eax,1
|
|
or ecx,ecx
|
|
jnz short L3 ; loop until divisor < 4194304K
|
|
div ebx ; now divide, ignore remainder
|
|
mov esi,eax ; save quotient
|
|
|
|
;
|
|
; We may be off by one, so to check, we will multiply the quotient
|
|
; by the divisor and check the result against the original dividend
|
|
; Note that we must also check for overflow, which can occur if the
|
|
; dividend is close to 2**64 and the quotient is off by 1.
|
|
;
|
|
|
|
mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)
|
|
mov ecx,eax
|
|
mov eax,LOWORD(DVSR)
|
|
mul esi ; QUOT * LOWORD(DVSR)
|
|
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
|
jc short L4 ; carry means Quotient is off by 1
|
|
|
|
;
|
|
; do long compare here between original dividend and the result of the
|
|
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
|
; subtract one (1) from the quotient.
|
|
;
|
|
|
|
cmp edx,HIWORD(DVND) ; compare hi words of result and original
|
|
ja short L4 ; if result > original, do subtract
|
|
jb short L5 ; if result < original, we are ok
|
|
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
|
|
jbe short L5 ; if less or equal we are ok, else subtract
|
|
L4:
|
|
dec esi ; subtract 1 from quotient
|
|
sub eax,LOWORD(DVSR) ; subtract divisor from result
|
|
sbb edx,HIWORD(DVSR)
|
|
L5:
|
|
xor ebx,ebx ; ebx:esi <- quotient
|
|
|
|
L2:
|
|
;
|
|
; Calculate remainder by subtracting the result from the original dividend.
|
|
; Since the result is already in a register, we will do the subtract in the
|
|
; opposite direction and negate the result.
|
|
;
|
|
|
|
sub eax,LOWORD(DVND) ; subtract dividend from result
|
|
sbb edx,HIWORD(DVND)
|
|
neg edx ; otherwise, negate the result
|
|
neg eax
|
|
sbb edx,0
|
|
|
|
;
|
|
; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
|
|
;
|
|
mov ecx,edx
|
|
mov edx,ebx
|
|
mov ebx,ecx
|
|
mov ecx,eax
|
|
mov eax,esi
|
|
;
|
|
; Just the cleanup left to do. edx:eax contains the quotient.
|
|
; Restore the saved registers and return.
|
|
;
|
|
|
|
pop esi
|
|
|
|
ret 16
|
|
|
|
_aulldvrm ENDP
|
|
|
|
end
|