audk/CryptoPkg/Library/IntrinsicLib/Ia32/MathUllrem.asm

164 lines
5.2 KiB
NASM

;***
;ullrem.asm - unsigned long remainder routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
;Purpose:
; defines the unsigned long remainder routine
; __aullrem
;
;Original Implemenation: MSVC 14.29.30133
;
;*******************************************************************************
.686
.model flat,C
.code
;***
;ullrem - unsigned long remainder
;
;Purpose:
; Does a unsigned long remainder of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the remainder (dividend%divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
_aullrem PROC NEAR
HIWORD EQU [4] ;
LOWORD EQU [0]
push ebx
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a%b will
; generate a call to ullrem(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; ESP---->| EBX |
; -----------------
;
DVND equ [esp + 8] ; stack address of dividend (a)
DVSR equ [esp + 16] ; stack address of divisor (b)
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
or eax,eax
jnz short L1 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; edx <- remainder, eax <- quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; edx <- final remainder
mov eax,edx ; edx:eax <- remainder
xor edx,edx
jmp short L2 ; restore stack and return
;
; Here we do it the hard way. Remember, eax contains DVSRHI
;
L1:
mov ecx,eax ; ecx:ebx <- divisor
mov ebx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L3:
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
rcr ebx,1
shr edx,1 ; shift dividend right one bit; hi bit <- 0
rcr eax,1
or ecx,ecx
jnz short L3 ; loop until divisor < 4194304K
div ebx ; now divide, ignore remainder
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mov ecx,eax ; save a copy of quotient in ECX
mul dword ptr HIWORD(DVSR)
xchg ecx,eax ; put partial product in ECX, get quotient in EAX
mul dword ptr LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L4 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we're ok, otherwise
; subtract the original divisor from the result.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L4 ; if result > original, do subtract
jb short L5 ; if result < original, we're ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L5 ; if less or equal we're ok, else subtract
L4:
sub eax,LOWORD(DVSR) ; subtract divisor from result
sbb edx,HIWORD(DVSR)
L5:
;
; Calculate remainder by subtracting the result from the original dividend.
; Since the result is already in a register, we will perform the subtract in
; the opposite direction and negate the result to make it positive.
;
sub eax,LOWORD(DVND) ; subtract original dividend from result
sbb edx,HIWORD(DVND)
neg edx ; and negate it
neg eax
sbb edx,0
;
; Just the cleanup left to do. dx:ax contains the remainder.
; Restore the saved registers and return.
;
L2:
pop ebx
ret 16
_aullrem ENDP
end