Acidanthera UEFI Development Kit based on EDK II edk2-stable202311
Go to file
Mikhail Krichanov 1e5896fabf BaseTools/tools_def: Deduplicate DLINK_FLAGS from CC_FLAGS 2023-12-20 14:01:23 +03:00
.azurepipelines .azurepipelines: Fix Python version (to 3.12) 2023-10-31 14:40:50 +00:00
.devcontainer CI: Constructed separate workflows for common, arm, x86 packages and CodeQL. 2023-12-20 13:53:23 +03:00
.github CI: Remove Dependabot configuration 2023-12-20 14:01:23 +03:00
.mergify .mergify/config.yml: Remove rebase_fallback attribute (deprecated) 2023-02-13 15:58:21 -08:00
.pytool CI: Constructed separate workflows for common, arm, x86 packages and CodeQL. 2023-12-20 13:53:23 +03:00
ArmPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
ArmPlatformPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
ArmVirtPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
BaseTools BaseTools/tools_def: Deduplicate DLINK_FLAGS from CC_FLAGS 2023-12-20 14:01:23 +03:00
Conf
CryptoPkg Build: Replaced GCC5 toolchain with GCC. 2023-12-20 14:00:19 +03:00
DynamicTablesPkg Build: Replaced GCC5 toolchain with GCC. 2023-12-20 14:00:19 +03:00
EmbeddedPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
EmulatorPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
Ext4Pkg Ext4Pkg: Various improvements based on Sydr fuzzing results. 2023-12-20 13:36:38 +03:00
FatPkg FatPkg: Adds support for read-only mode 2023-12-20 13:55:44 +03:00
FmpDevicePkg FmpDevicePkg: CI: Add PrEval entry 2023-10-23 20:17:52 +00:00
IntelFsp2Pkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
IntelFsp2WrapperPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
MdeModulePkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
MdePkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
NetworkPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
OpenCorePkg@ca9a501490 BaseTools: Replaced GenFw with ImageTool and MicroTool. 2023-12-20 13:50:12 +03:00
OvmfPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
PcAtChipsetPkg PcAtChipsetPkg/PcatRealTimeClockRuntimeDxe: rename LibRtcVirtualNotifyEvent 2023-10-18 16:15:41 +00:00
PrmPkg Build: Replaced GCC5 toolchain with GCC. 2023-12-20 14:00:19 +03:00
RedfishPkg RedfishPkg/BaseUcs2Utf8Lib: Fix out of bounds shift in UTF8ToUCS2Char 2023-12-20 13:36:38 +03:00
SecurityPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
ShellPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
SignedCapsulePkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
SourceLevelDebugPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
StandaloneMmPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
UefiCpuPkg MdePkg/UefiImageLib: Introduce DebugAddress 2023-12-20 14:01:23 +03:00
UefiPayloadPkg MdePkg/UefiImageLib: Support multi-format and multi-source architecture 2023-12-20 14:01:23 +03:00
UnitTestFrameworkPkg Build: Replaced GCC5 toolchain with GCC. 2023-12-20 14:00:19 +03:00
.editorconfig Add a .editorconfig file to tell editors basic formatting details 2023-09-08 18:56:52 +00:00
.git-blame-ignore-revs edk2: Add .git-blame-ignore-revs file 2023-04-16 18:04:21 +00:00
.gitignore .gitignore: Add compile_flags.txt 2023-12-20 13:36:38 +03:00
.gitmodules BaseTools: Replaced GenFw with ImageTool and MicroTool. 2023-12-20 13:50:12 +03:00
.mailmap .mailmap: add entries for Rebecca Cran 2020-09-22 13:53:46 +00:00
CONTRIBUTING.md Add a stub CONTRIBUTING.md pointing to the wiki 2020-08-18 18:07:43 +00:00
License-History.txt
License.txt
LoaderFlow.png SecurePE: Replaced old PE loader with Secure one. 2023-12-20 13:48:26 +03:00
Maintainers.txt Maintainers.txt: Remove unused OvmfPkg Confidential Computing path 2023-11-09 20:23:32 +00:00
README.md SecurePE: Replaced old PE loader with Secure one. 2023-12-20 13:48:26 +03:00
ReadMe.rst ReadMe.rst: Add CodeQL/analyze directory under other licenses 2023-11-07 03:19:26 +00:00
STATUS.md Build: Replaced GCC5 toolchain with GCC. 2023-12-20 14:00:19 +03:00
docker-compose.yaml CI: Constructed separate workflows for common, arm, x86 packages and CodeQL. 2023-12-20 13:53:23 +03:00
edksetup.bat edksetup.bat: if toolsetup.bat fails, just exit 2023-05-08 19:03:18 +00:00
edksetup.sh Remove bashisms from edksetup.sh and BaseTools/BuildEnv 2023-05-10 12:02:34 +00:00
pip-requirements.txt .pytool: Integration of edk2-pytools 2023-10-28 14:59:29 +00:00

README.md

PE/COFF loader designed with formal methods

This branch demonstrates the integration of a new PE/COFF loader designed with the help of formal methods into the EDK II infrastructure.

Introduction

The PE/COFF loader is one of the central components of the firmware core and its trust base. Every Image which is part of a UEFI system, including platform drivers from the primary firmware storage, Option ROMs from external hardware, and OS loaders from arbitrary storage, is verified and loaded by this library. Clearly it is a key component to ensure platform reliability and software compatibility, and can only be modified with great care. It also is an essential component for security technologies such as Secure Boot and Measured Boot.

image

Unfortunately, over the years, the current solution has been subject to bug reports affecting platform reliability, some of which have been unresolved to date. Please refer to the TianoCore BugZilla and especially discussions on the edk2-devel mailing list for further reading. Due to the incremental changes to the existing solution over the years, the state of a sound solution has been lost, and it has become a maintenance burden that is hard to fix and further advance incrementally. At the same time, the demand on not only tested but proven security has become more important in the recent times.

The usage of formal methods to design the new solution greatly helped restore the state of a truly sound solution, resolving many issues regarding inter-API guarantees and Image format validation. Many new abstractions have been introduced, external code has been centralized, and the overall flexibility has been improved, to hopefully aid developers to extend the codebase more easily in the future. Beyond that, the formal model ensures a high level of confidence that security-wise there have been no regressions, and there might even be potential improvements.

Please also refer to the new work-in-progress documentation available at MdePkg/Library/BasePeCoffLib2/Documentation.md

Further abstraction

The new solution has been implemented as a new library class in MdePkg. PeCoffLib2 features a new API that allows for a more resilient and a more flexible caller design. Most notably, all Image operations have been integrated into the API design rather than the callers accessing the library context and duplicating certain work. PeCoffLib remains intact as deprecated API to support legacy code during the transition period.

To increase platform flexibility, a new layer of abstraction is introduced in the form of the library class UefiImageLib, which can be found at MdePkg/Include/Library/UefiImageLib.h. Currently, it is a subset of the APIs provided by PeCoffLib2 that is expected to be compatible with most other common executable formats, plus a few convenience functions. As part of the proposal, the instance UefiImageLibPeCoff is provided, which is basically a shim for PeCoffLib2. In the future, instances to support other file formats can be introduced without having to integrate them across the entire EDK II tree.

Issues of the current solution

  • High level of maintenance cost due to convoluted function contracts
  • Error-prone design promoting the introduction of code bugs
  • Multiple real-world bugs affecting reliability, some unaddressed for years
  • A lot of duplicate caller-side code that decreases the flexibility of porting and integration (e.g. Image permissions in PEI)
  • Dependency on Image re-parsing for production code

Benefits of the new solution

  • Fixes all known reported BugZilla tickets on PE/COFF loader reliability
  • Formal methods increase confidence in a high level of reliability and security
  • Improved design eases future maintenance and extension
  • Architecture-independent Image processing (e.g. for emulation)
  • Support for more granular Image section permissions (e.g. read-only)

Benefits of the formal methods involved

  • Complete proof arithmetic cannot overflow (excluding intentional modulo arithmetic)
  • Mostly complete proof memory accesses are safe (requires axioms)
  • Complete proof of Image format compliance verification
  • Complete proof of Image loading
  • Mostly complete proof of Image relocation (final memory state cannot be easily described)

Further notes about the formal approach

  • A snapshot of the new PE/COFF loader code will be provided with annotations and proving results
  • The snapshot will not be current and updating the old code is out of the scope of this project, however the functional changes should be manageable to review
  • We are currently investigating whether deploying the proving environment as a Docker container is feasible
  • There may be aids to compare the updates over the last fully verified state (e.g. stripped versions of the code with diffs)
  • If accepted, the new PE/COFF loader code should be developed further without updating the formal annotations, but with thorough review of important invariants and sufficient documentation

Current progress, future goals, and further notes

  • OVMF boots to Shell with SMM and Secure Boot enabled
  • Linux EmulatorPkg boots
  • Extended support for Image protection has been implemented
  • FFS and DebugTable enhancements have been implemented
  • Not all features have been implemented, e.g. RISC-V support
  • There are unrelated changes present to help testing and validation
  • Specified interfaces need adjustments (e.g. security architectural protocol)
  • Some validation is still absent

BZs fixed by integrating the new PE/COFF loader

BZs easier to address by integrating the new PE/COFF loader