mirror of https://github.com/acidanthera/audk.git
1211 lines
39 KiB
C
1211 lines
39 KiB
C
/** @file
|
|
Code for Processor S3 restoration
|
|
|
|
Copyright (c) 2006 - 2021, Intel Corporation. All rights reserved.<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "PiSmmCpuDxeSmm.h"
|
|
|
|
#pragma pack(1)
|
|
typedef struct {
|
|
UINTN Lock;
|
|
VOID *StackStart;
|
|
UINTN StackSize;
|
|
VOID *ApFunction;
|
|
IA32_DESCRIPTOR GdtrProfile;
|
|
IA32_DESCRIPTOR IdtrProfile;
|
|
UINT32 BufferStart;
|
|
UINT32 Cr3;
|
|
UINTN InitializeFloatingPointUnitsAddress;
|
|
} MP_CPU_EXCHANGE_INFO;
|
|
#pragma pack()
|
|
|
|
typedef struct {
|
|
UINT8 *RendezvousFunnelAddress;
|
|
UINTN PModeEntryOffset;
|
|
UINTN FlatJumpOffset;
|
|
UINTN Size;
|
|
UINTN LModeEntryOffset;
|
|
UINTN LongJumpOffset;
|
|
} MP_ASSEMBLY_ADDRESS_MAP;
|
|
|
|
//
|
|
// Flags used when program the register.
|
|
//
|
|
typedef struct {
|
|
volatile UINTN MemoryMappedLock; // Spinlock used to program mmio
|
|
volatile UINT32 *CoreSemaphoreCount; // Semaphore container used to program
|
|
// core level semaphore.
|
|
volatile UINT32 *PackageSemaphoreCount; // Semaphore container used to program
|
|
// package level semaphore.
|
|
} PROGRAM_CPU_REGISTER_FLAGS;
|
|
|
|
//
|
|
// Signal that SMM BASE relocation is complete.
|
|
//
|
|
volatile BOOLEAN mInitApsAfterSmmBaseReloc;
|
|
|
|
/**
|
|
Get starting address and size of the rendezvous entry for APs.
|
|
Information for fixing a jump instruction in the code is also returned.
|
|
|
|
@param AddressMap Output buffer for address map information.
|
|
**/
|
|
VOID *
|
|
EFIAPI
|
|
AsmGetAddressMap (
|
|
MP_ASSEMBLY_ADDRESS_MAP *AddressMap
|
|
);
|
|
|
|
#define LEGACY_REGION_SIZE (2 * 0x1000)
|
|
#define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)
|
|
|
|
PROGRAM_CPU_REGISTER_FLAGS mCpuFlags;
|
|
ACPI_CPU_DATA mAcpiCpuData;
|
|
volatile UINT32 mNumberToFinish;
|
|
MP_CPU_EXCHANGE_INFO *mExchangeInfo;
|
|
BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;
|
|
|
|
//
|
|
// S3 boot flag
|
|
//
|
|
BOOLEAN mSmmS3Flag = FALSE;
|
|
|
|
//
|
|
// Pointer to structure used during S3 Resume
|
|
//
|
|
SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
|
|
|
|
BOOLEAN mAcpiS3Enable = TRUE;
|
|
|
|
UINT8 *mApHltLoopCode = NULL;
|
|
UINT8 mApHltLoopCodeTemplate[] = {
|
|
0x8B, 0x44, 0x24, 0x04, // mov eax, dword ptr [esp+4]
|
|
0xF0, 0xFF, 0x08, // lock dec dword ptr [eax]
|
|
0xFA, // cli
|
|
0xF4, // hlt
|
|
0xEB, 0xFC // jmp $-2
|
|
};
|
|
|
|
/**
|
|
Sync up the MTRR values for all processors.
|
|
|
|
@param MtrrTable Table holding fixed/variable MTRR values to be loaded.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
LoadMtrrData (
|
|
EFI_PHYSICAL_ADDRESS MtrrTable
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Sync up the MTRR values for all processors.
|
|
|
|
Arguments:
|
|
|
|
Returns:
|
|
None
|
|
|
|
--*/
|
|
{
|
|
MTRR_SETTINGS *MtrrSettings;
|
|
|
|
MtrrSettings = (MTRR_SETTINGS *)(UINTN)MtrrTable;
|
|
MtrrSetAllMtrrs (MtrrSettings);
|
|
}
|
|
|
|
/**
|
|
Increment semaphore by 1.
|
|
|
|
@param Sem IN: 32-bit unsigned integer
|
|
|
|
**/
|
|
VOID
|
|
S3ReleaseSemaphore (
|
|
IN OUT volatile UINT32 *Sem
|
|
)
|
|
{
|
|
InterlockedIncrement (Sem);
|
|
}
|
|
|
|
/**
|
|
Decrement the semaphore by 1 if it is not zero.
|
|
|
|
Performs an atomic decrement operation for semaphore.
|
|
The compare exchange operation must be performed using
|
|
MP safe mechanisms.
|
|
|
|
@param Sem IN: 32-bit unsigned integer
|
|
|
|
**/
|
|
VOID
|
|
S3WaitForSemaphore (
|
|
IN OUT volatile UINT32 *Sem
|
|
)
|
|
{
|
|
UINT32 Value;
|
|
|
|
do {
|
|
Value = *Sem;
|
|
} while (Value == 0 ||
|
|
InterlockedCompareExchange32 (
|
|
Sem,
|
|
Value,
|
|
Value - 1
|
|
) != Value);
|
|
}
|
|
|
|
/**
|
|
Read / write CR value.
|
|
|
|
@param[in] CrIndex The CR index which need to read/write.
|
|
@param[in] Read Read or write. TRUE is read.
|
|
@param[in,out] CrValue CR value.
|
|
|
|
@retval EFI_SUCCESS means read/write success, else return EFI_UNSUPPORTED.
|
|
**/
|
|
UINTN
|
|
ReadWriteCr (
|
|
IN UINT32 CrIndex,
|
|
IN BOOLEAN Read,
|
|
IN OUT UINTN *CrValue
|
|
)
|
|
{
|
|
switch (CrIndex) {
|
|
case 0:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr0 ();
|
|
} else {
|
|
AsmWriteCr0 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr2 ();
|
|
} else {
|
|
AsmWriteCr2 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 3:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr3 ();
|
|
} else {
|
|
AsmWriteCr3 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 4:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr4 ();
|
|
} else {
|
|
AsmWriteCr4 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Initialize the CPU registers from a register table.
|
|
|
|
@param[in] RegisterTable The register table for this AP.
|
|
@param[in] ApLocation AP location info for this ap.
|
|
@param[in] CpuStatus CPU status info for this CPU.
|
|
@param[in] CpuFlags Flags data structure used when program the register.
|
|
|
|
@note This service could be called by BSP/APs.
|
|
**/
|
|
VOID
|
|
ProgramProcessorRegister (
|
|
IN CPU_REGISTER_TABLE *RegisterTable,
|
|
IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
|
|
IN CPU_STATUS_INFORMATION *CpuStatus,
|
|
IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
|
|
)
|
|
{
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
|
UINTN Index;
|
|
UINTN Value;
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
|
|
volatile UINT32 *SemaphorePtr;
|
|
UINT32 FirstThread;
|
|
UINT32 CurrentThread;
|
|
UINT32 CurrentCore;
|
|
UINTN ProcessorIndex;
|
|
UINT32 *ThreadCountPerPackage;
|
|
UINT8 *ThreadCountPerCore;
|
|
EFI_STATUS Status;
|
|
UINT64 CurrentValue;
|
|
|
|
//
|
|
// Traverse Register Table of this logical processor
|
|
//
|
|
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;
|
|
|
|
for (Index = 0; Index < RegisterTable->TableLength; Index++) {
|
|
RegisterTableEntry = &RegisterTableEntryHead[Index];
|
|
|
|
//
|
|
// Check the type of specified register
|
|
//
|
|
switch (RegisterTableEntry->RegisterType) {
|
|
//
|
|
// The specified register is Control Register
|
|
//
|
|
case ControlRegister:
|
|
Status = ReadWriteCr (RegisterTableEntry->Index, TRUE, &Value);
|
|
if (EFI_ERROR (Status)) {
|
|
break;
|
|
}
|
|
|
|
if (RegisterTableEntry->TestThenWrite) {
|
|
CurrentValue = BitFieldRead64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
|
);
|
|
if (CurrentValue == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value = (UINTN)BitFieldWrite64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
RegisterTableEntry->Value
|
|
);
|
|
ReadWriteCr (RegisterTableEntry->Index, FALSE, &Value);
|
|
break;
|
|
//
|
|
// The specified register is Model Specific Register
|
|
//
|
|
case Msr:
|
|
if (RegisterTableEntry->TestThenWrite) {
|
|
Value = (UINTN)AsmReadMsr64 (RegisterTableEntry->Index);
|
|
if (RegisterTableEntry->ValidBitLength >= 64) {
|
|
if (Value == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
} else {
|
|
CurrentValue = BitFieldRead64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
|
);
|
|
if (CurrentValue == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// If this function is called to restore register setting after INIT signal,
|
|
// there is no need to restore MSRs in register table.
|
|
//
|
|
if (RegisterTableEntry->ValidBitLength >= 64) {
|
|
//
|
|
// If length is not less than 64 bits, then directly write without reading
|
|
//
|
|
AsmWriteMsr64 (
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->Value
|
|
);
|
|
} else {
|
|
//
|
|
// Set the bit section according to bit start and length
|
|
//
|
|
AsmMsrBitFieldWrite64 (
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
RegisterTableEntry->Value
|
|
);
|
|
}
|
|
|
|
break;
|
|
//
|
|
// MemoryMapped operations
|
|
//
|
|
case MemoryMapped:
|
|
AcquireSpinLock (&CpuFlags->MemoryMappedLock);
|
|
MmioBitFieldWrite32 (
|
|
(UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
(UINT32)RegisterTableEntry->Value
|
|
);
|
|
ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
|
|
break;
|
|
//
|
|
// Enable or disable cache
|
|
//
|
|
case CacheControl:
|
|
//
|
|
// If value of the entry is 0, then disable cache. Otherwise, enable cache.
|
|
//
|
|
if (RegisterTableEntry->Value == 0) {
|
|
AsmDisableCache ();
|
|
} else {
|
|
AsmEnableCache ();
|
|
}
|
|
|
|
break;
|
|
|
|
case Semaphore:
|
|
// Semaphore works logic like below:
|
|
//
|
|
// V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
|
|
// P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
|
|
//
|
|
// All threads (T0...Tn) waits in P() line and continues running
|
|
// together.
|
|
//
|
|
//
|
|
// T0 T1 ... Tn
|
|
//
|
|
// V(0...n) V(0...n) ... V(0...n)
|
|
// n * P(0) n * P(1) ... n * P(n)
|
|
//
|
|
ASSERT (
|
|
(ApLocation != NULL) &&
|
|
(CpuStatus->ThreadCountPerPackage != 0) &&
|
|
(CpuStatus->ThreadCountPerCore != 0) &&
|
|
(CpuFlags->CoreSemaphoreCount != NULL) &&
|
|
(CpuFlags->PackageSemaphoreCount != NULL)
|
|
);
|
|
switch (RegisterTableEntry->Value) {
|
|
case CoreDepType:
|
|
SemaphorePtr = CpuFlags->CoreSemaphoreCount;
|
|
ThreadCountPerCore = (UINT8 *)(UINTN)CpuStatus->ThreadCountPerCore;
|
|
|
|
CurrentCore = ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core;
|
|
//
|
|
// Get Offset info for the first thread in the core which current thread belongs to.
|
|
//
|
|
FirstThread = CurrentCore * CpuStatus->MaxThreadCount;
|
|
CurrentThread = FirstThread + ApLocation->Thread;
|
|
|
|
//
|
|
// Different cores may have different valid threads in them. If driver maintail clearly
|
|
// thread index in different cores, the logic will be much complicated.
|
|
// Here driver just simply records the max thread number in all cores and use it as expect
|
|
// thread number for all cores.
|
|
// In below two steps logic, first current thread will Release semaphore for each thread
|
|
// in current core. Maybe some threads are not valid in this core, but driver don't
|
|
// care. Second, driver will let current thread wait semaphore for all valid threads in
|
|
// current core. Because only the valid threads will do release semaphore for this
|
|
// thread, driver here only need to wait the valid thread count.
|
|
//
|
|
|
|
//
|
|
// First Notify ALL THREADs in current Core that this thread is ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex++) {
|
|
S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
|
}
|
|
|
|
//
|
|
// Second, check whether all VALID THREADs (not all threads) in current core are ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerCore[CurrentCore]; ProcessorIndex++) {
|
|
S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
|
}
|
|
|
|
break;
|
|
|
|
case PackageDepType:
|
|
SemaphorePtr = CpuFlags->PackageSemaphoreCount;
|
|
ThreadCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ThreadCountPerPackage;
|
|
//
|
|
// Get Offset info for the first thread in the package which current thread belongs to.
|
|
//
|
|
FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
|
|
//
|
|
// Get the possible threads count for current package.
|
|
//
|
|
CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
|
|
|
|
//
|
|
// Different packages may have different valid threads in them. If driver maintail clearly
|
|
// thread index in different packages, the logic will be much complicated.
|
|
// Here driver just simply records the max thread number in all packages and use it as expect
|
|
// thread number for all packages.
|
|
// In below two steps logic, first current thread will Release semaphore for each thread
|
|
// in current package. Maybe some threads are not valid in this package, but driver don't
|
|
// care. Second, driver will let current thread wait semaphore for all valid threads in
|
|
// current package. Because only the valid threads will do release semaphore for this
|
|
// thread, driver here only need to wait the valid thread count.
|
|
//
|
|
|
|
//
|
|
// First Notify ALL THREADS in current package that this thread is ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount; ProcessorIndex++) {
|
|
S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
|
}
|
|
|
|
//
|
|
// Second, check whether VALID THREADS (not all threads) in current package are ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerPackage[ApLocation->Package]; ProcessorIndex++) {
|
|
S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
|
|
Set Processor register for one AP.
|
|
|
|
@param PreSmmRegisterTable Use pre Smm register table or register table.
|
|
|
|
**/
|
|
VOID
|
|
SetRegister (
|
|
IN BOOLEAN PreSmmRegisterTable
|
|
)
|
|
{
|
|
CPU_FEATURE_INIT_DATA *FeatureInitData;
|
|
CPU_REGISTER_TABLE *RegisterTable;
|
|
CPU_REGISTER_TABLE *RegisterTables;
|
|
UINT32 InitApicId;
|
|
UINTN ProcIndex;
|
|
UINTN Index;
|
|
|
|
FeatureInitData = &mAcpiCpuData.CpuFeatureInitData;
|
|
|
|
if (PreSmmRegisterTable) {
|
|
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)FeatureInitData->PreSmmInitRegisterTable;
|
|
} else {
|
|
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)FeatureInitData->RegisterTable;
|
|
}
|
|
|
|
if (RegisterTables == NULL) {
|
|
return;
|
|
}
|
|
|
|
InitApicId = GetInitialApicId ();
|
|
RegisterTable = NULL;
|
|
ProcIndex = (UINTN)-1;
|
|
for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
|
|
if (RegisterTables[Index].InitialApicId == InitApicId) {
|
|
RegisterTable = &RegisterTables[Index];
|
|
ProcIndex = Index;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ASSERT (RegisterTable != NULL);
|
|
|
|
if (FeatureInitData->ApLocation != 0) {
|
|
ProgramProcessorRegister (
|
|
RegisterTable,
|
|
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)FeatureInitData->ApLocation + ProcIndex,
|
|
&FeatureInitData->CpuStatus,
|
|
&mCpuFlags
|
|
);
|
|
} else {
|
|
ProgramProcessorRegister (
|
|
RegisterTable,
|
|
NULL,
|
|
&FeatureInitData->CpuStatus,
|
|
&mCpuFlags
|
|
);
|
|
}
|
|
}
|
|
|
|
/**
|
|
AP initialization before then after SMBASE relocation in the S3 boot path.
|
|
**/
|
|
VOID
|
|
InitializeAp (
|
|
VOID
|
|
)
|
|
{
|
|
UINTN TopOfStack;
|
|
UINT8 Stack[128];
|
|
|
|
LoadMtrrData (mAcpiCpuData.MtrrTable);
|
|
|
|
SetRegister (TRUE);
|
|
|
|
//
|
|
// Count down the number with lock mechanism.
|
|
//
|
|
InterlockedDecrement (&mNumberToFinish);
|
|
|
|
//
|
|
// Wait for BSP to signal SMM Base relocation done.
|
|
//
|
|
while (!mInitApsAfterSmmBaseReloc) {
|
|
CpuPause ();
|
|
}
|
|
|
|
ProgramVirtualWireMode ();
|
|
DisableLvtInterrupts ();
|
|
|
|
SetRegister (FALSE);
|
|
|
|
//
|
|
// Place AP into the safe code, count down the number with lock mechanism in the safe code.
|
|
//
|
|
TopOfStack = (UINTN)Stack + sizeof (Stack);
|
|
TopOfStack &= ~(UINTN)(CPU_STACK_ALIGNMENT - 1);
|
|
CopyMem ((VOID *)(UINTN)mApHltLoopCode, mApHltLoopCodeTemplate, sizeof (mApHltLoopCodeTemplate));
|
|
TransferApToSafeState ((UINTN)mApHltLoopCode, TopOfStack, (UINTN)&mNumberToFinish);
|
|
}
|
|
|
|
/**
|
|
Prepares startup vector for APs.
|
|
|
|
This function prepares startup vector for APs.
|
|
|
|
@param WorkingBuffer The address of the work buffer.
|
|
**/
|
|
VOID
|
|
PrepareApStartupVector (
|
|
EFI_PHYSICAL_ADDRESS WorkingBuffer
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS StartupVector;
|
|
MP_ASSEMBLY_ADDRESS_MAP AddressMap;
|
|
|
|
//
|
|
// Get the address map of startup code for AP,
|
|
// including code size, and offset of long jump instructions to redirect.
|
|
//
|
|
ZeroMem (&AddressMap, sizeof (AddressMap));
|
|
AsmGetAddressMap (&AddressMap);
|
|
|
|
StartupVector = WorkingBuffer;
|
|
|
|
//
|
|
// Copy AP startup code to startup vector, and then redirect the long jump
|
|
// instructions for mode switching.
|
|
//
|
|
CopyMem ((VOID *)(UINTN)StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
|
|
*(UINT32 *)(UINTN)(StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32)(StartupVector + AddressMap.PModeEntryOffset);
|
|
if (AddressMap.LongJumpOffset != 0) {
|
|
*(UINT32 *)(UINTN)(StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32)(StartupVector + AddressMap.LModeEntryOffset);
|
|
}
|
|
|
|
//
|
|
// Get the start address of exchange data between BSP and AP.
|
|
//
|
|
mExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN)(StartupVector + AddressMap.Size);
|
|
ZeroMem ((VOID *)mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
|
|
|
|
CopyMem ((VOID *)(UINTN)&mExchangeInfo->GdtrProfile, (VOID *)(UINTN)mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
|
|
CopyMem ((VOID *)(UINTN)&mExchangeInfo->IdtrProfile, (VOID *)(UINTN)mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));
|
|
|
|
mExchangeInfo->StackStart = (VOID *)(UINTN)mAcpiCpuData.StackAddress;
|
|
mExchangeInfo->StackSize = mAcpiCpuData.StackSize;
|
|
mExchangeInfo->BufferStart = (UINT32)StartupVector;
|
|
mExchangeInfo->Cr3 = (UINT32)(AsmReadCr3 ());
|
|
mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
|
|
}
|
|
|
|
/**
|
|
The function is invoked before SMBASE relocation in S3 path to restores CPU status.
|
|
|
|
The function is invoked before SMBASE relocation in S3 path. It does first time microcode load
|
|
and restores MTRRs for both BSP and APs.
|
|
|
|
**/
|
|
VOID
|
|
InitializeCpuBeforeRebase (
|
|
VOID
|
|
)
|
|
{
|
|
LoadMtrrData (mAcpiCpuData.MtrrTable);
|
|
|
|
SetRegister (TRUE);
|
|
|
|
ProgramVirtualWireMode ();
|
|
|
|
PrepareApStartupVector (mAcpiCpuData.StartupVector);
|
|
|
|
if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
|
|
ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
|
|
} else {
|
|
ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
|
|
}
|
|
|
|
mNumberToFinish = (UINT32)(mNumberOfCpus - 1);
|
|
mExchangeInfo->ApFunction = (VOID *)(UINTN)InitializeAp;
|
|
|
|
//
|
|
// Execute code for before SmmBaseReloc. Note: This flag is maintained across S3 boots.
|
|
//
|
|
mInitApsAfterSmmBaseReloc = FALSE;
|
|
|
|
//
|
|
// Send INIT IPI - SIPI to all APs
|
|
//
|
|
SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);
|
|
|
|
while (mNumberToFinish > 0) {
|
|
CpuPause ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
The function is invoked after SMBASE relocation in S3 path to restores CPU status.
|
|
|
|
The function is invoked after SMBASE relocation in S3 path. It restores configuration according to
|
|
data saved by normal boot path for both BSP and APs.
|
|
|
|
**/
|
|
VOID
|
|
InitializeCpuAfterRebase (
|
|
VOID
|
|
)
|
|
{
|
|
if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
|
|
ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
|
|
} else {
|
|
ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
|
|
}
|
|
|
|
mNumberToFinish = (UINT32)(mNumberOfCpus - 1);
|
|
|
|
//
|
|
// Signal that SMM base relocation is complete and to continue initialization for all APs.
|
|
//
|
|
mInitApsAfterSmmBaseReloc = TRUE;
|
|
|
|
//
|
|
// Must begin set register after all APs have continue their initialization.
|
|
// This is a requirement to support semaphore mechanism in register table.
|
|
// Because if semaphore's dependence type is package type, semaphore will wait
|
|
// for all Aps in one package finishing their tasks before set next register
|
|
// for all APs. If the Aps not begin its task during BSP doing its task, the
|
|
// BSP thread will hang because it is waiting for other Aps in the same
|
|
// package finishing their task.
|
|
//
|
|
SetRegister (FALSE);
|
|
|
|
while (mNumberToFinish > 0) {
|
|
CpuPause ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
Restore SMM Configuration in S3 boot path.
|
|
|
|
**/
|
|
VOID
|
|
RestoreSmmConfigurationInS3 (
|
|
VOID
|
|
)
|
|
{
|
|
if (!mAcpiS3Enable) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Restore SMM Configuration in S3 boot path.
|
|
//
|
|
if (mRestoreSmmConfigurationInS3) {
|
|
//
|
|
// Need make sure gSmst is correct because below function may use them.
|
|
//
|
|
gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
|
|
gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
|
|
gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
|
|
gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
|
|
gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
|
|
|
|
//
|
|
// Configure SMM Code Access Check feature if available.
|
|
//
|
|
ConfigSmmCodeAccessCheck ();
|
|
|
|
SmmCpuFeaturesCompleteSmmReadyToLock ();
|
|
|
|
mRestoreSmmConfigurationInS3 = FALSE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Perform SMM initialization for all processors in the S3 boot path.
|
|
|
|
For a native platform, MP initialization in the S3 boot path is also performed in this function.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
SmmRestoreCpu (
|
|
VOID
|
|
)
|
|
{
|
|
SMM_S3_RESUME_STATE *SmmS3ResumeState;
|
|
IA32_DESCRIPTOR Ia32Idtr;
|
|
IA32_DESCRIPTOR X64Idtr;
|
|
IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
|
|
EFI_STATUS Status;
|
|
|
|
DEBUG ((DEBUG_INFO, "SmmRestoreCpu()\n"));
|
|
|
|
mSmmS3Flag = TRUE;
|
|
|
|
//
|
|
// See if there is enough context to resume PEI Phase
|
|
//
|
|
if (mSmmS3ResumeState == NULL) {
|
|
DEBUG ((DEBUG_ERROR, "No context to return to PEI Phase\n"));
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
SmmS3ResumeState = mSmmS3ResumeState;
|
|
ASSERT (SmmS3ResumeState != NULL);
|
|
|
|
if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
|
|
//
|
|
// Save the IA32 IDT Descriptor
|
|
//
|
|
AsmReadIdtr ((IA32_DESCRIPTOR *)&Ia32Idtr);
|
|
|
|
//
|
|
// Setup X64 IDT table
|
|
//
|
|
ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
|
|
X64Idtr.Base = (UINTN)IdtEntryTable;
|
|
X64Idtr.Limit = (UINT16)(sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
|
|
AsmWriteIdtr ((IA32_DESCRIPTOR *)&X64Idtr);
|
|
|
|
//
|
|
// Setup the default exception handler
|
|
//
|
|
Status = InitializeCpuExceptionHandlers (NULL);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
//
|
|
// Initialize Debug Agent to support source level debug
|
|
//
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
|
|
}
|
|
|
|
//
|
|
// Skip initialization if mAcpiCpuData is not valid
|
|
//
|
|
if (mAcpiCpuData.NumberOfCpus > 0) {
|
|
//
|
|
// First time microcode load and restore MTRRs
|
|
//
|
|
InitializeCpuBeforeRebase ();
|
|
}
|
|
|
|
//
|
|
// Restore SMBASE for BSP and all APs
|
|
//
|
|
SmmRelocateBases ();
|
|
|
|
//
|
|
// Skip initialization if mAcpiCpuData is not valid
|
|
//
|
|
if (mAcpiCpuData.NumberOfCpus > 0) {
|
|
//
|
|
// Restore MSRs for BSP and all APs
|
|
//
|
|
InitializeCpuAfterRebase ();
|
|
}
|
|
|
|
//
|
|
// Set a flag to restore SMM configuration in S3 path.
|
|
//
|
|
mRestoreSmmConfigurationInS3 = TRUE;
|
|
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
|
|
|
|
//
|
|
// If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
|
|
//
|
|
if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
|
|
DEBUG ((DEBUG_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
|
|
|
|
SwitchStack (
|
|
(SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
|
|
(VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
|
|
(VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
|
|
(VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
|
|
);
|
|
}
|
|
|
|
//
|
|
// If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
|
|
//
|
|
if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
|
|
DEBUG ((DEBUG_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
|
|
//
|
|
// Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
|
|
//
|
|
SaveAndSetDebugTimerInterrupt (FALSE);
|
|
//
|
|
// Restore IA32 IDT table
|
|
//
|
|
AsmWriteIdtr ((IA32_DESCRIPTOR *)&Ia32Idtr);
|
|
AsmDisablePaging64 (
|
|
SmmS3ResumeState->ReturnCs,
|
|
(UINT32)SmmS3ResumeState->ReturnEntryPoint,
|
|
(UINT32)SmmS3ResumeState->ReturnContext1,
|
|
(UINT32)SmmS3ResumeState->ReturnContext2,
|
|
(UINT32)SmmS3ResumeState->ReturnStackPointer
|
|
);
|
|
}
|
|
|
|
//
|
|
// Can not resume PEI Phase
|
|
//
|
|
DEBUG ((DEBUG_ERROR, "No context to return to PEI Phase\n"));
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
/**
|
|
Initialize SMM S3 resume state structure used during S3 Resume.
|
|
|
|
@param[in] Cr3 The base address of the page tables to use in SMM.
|
|
|
|
**/
|
|
VOID
|
|
InitSmmS3ResumeState (
|
|
IN UINT32 Cr3
|
|
)
|
|
{
|
|
VOID *GuidHob;
|
|
EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
|
|
SMM_S3_RESUME_STATE *SmmS3ResumeState;
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
EFI_STATUS Status;
|
|
|
|
if (!mAcpiS3Enable) {
|
|
return;
|
|
}
|
|
|
|
GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
|
|
if (GuidHob == NULL) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"ERROR:%a(): HOB(gEfiAcpiVariableGuid=%g) needed by S3 resume doesn't exist!\n",
|
|
__FUNCTION__,
|
|
&gEfiAcpiVariableGuid
|
|
));
|
|
CpuDeadLoop ();
|
|
} else {
|
|
SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *)GET_GUID_HOB_DATA (GuidHob);
|
|
|
|
DEBUG ((DEBUG_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
|
|
DEBUG ((DEBUG_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
|
|
|
|
SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
|
|
ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
|
|
|
|
mSmmS3ResumeState = SmmS3ResumeState;
|
|
SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
|
|
|
|
SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
|
|
|
|
SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
|
|
SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
|
|
if (SmmS3ResumeState->SmmS3StackBase == 0) {
|
|
SmmS3ResumeState->SmmS3StackSize = 0;
|
|
}
|
|
|
|
SmmS3ResumeState->SmmS3Cr0 = mSmmCr0;
|
|
SmmS3ResumeState->SmmS3Cr3 = Cr3;
|
|
SmmS3ResumeState->SmmS3Cr4 = mSmmCr4;
|
|
|
|
if (sizeof (UINTN) == sizeof (UINT64)) {
|
|
SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
|
|
}
|
|
|
|
if (sizeof (UINTN) == sizeof (UINT32)) {
|
|
SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
|
|
}
|
|
|
|
//
|
|
// Patch SmmS3ResumeState->SmmS3Cr3
|
|
//
|
|
InitSmmS3Cr3 ();
|
|
}
|
|
|
|
//
|
|
// Allocate safe memory in ACPI NVS for AP to execute hlt loop in
|
|
// protected mode on S3 path
|
|
//
|
|
Address = BASE_4GB - 1;
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
EfiACPIMemoryNVS,
|
|
EFI_SIZE_TO_PAGES (sizeof (mApHltLoopCodeTemplate)),
|
|
&Address
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
mApHltLoopCode = (UINT8 *)(UINTN)Address;
|
|
}
|
|
|
|
/**
|
|
Copy register table from non-SMRAM into SMRAM.
|
|
|
|
@param[in] DestinationRegisterTableList Points to destination register table.
|
|
@param[in] SourceRegisterTableList Points to source register table.
|
|
@param[in] NumberOfCpus Number of CPUs.
|
|
|
|
**/
|
|
VOID
|
|
CopyRegisterTable (
|
|
IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
|
|
IN CPU_REGISTER_TABLE *SourceRegisterTableList,
|
|
IN UINT32 NumberOfCpus
|
|
)
|
|
{
|
|
UINTN Index;
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
|
|
|
CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
|
for (Index = 0; Index < NumberOfCpus; Index++) {
|
|
if (DestinationRegisterTableList[Index].TableLength != 0) {
|
|
DestinationRegisterTableList[Index].AllocatedSize = DestinationRegisterTableList[Index].TableLength * sizeof (CPU_REGISTER_TABLE_ENTRY);
|
|
RegisterTableEntry = AllocateCopyPool (
|
|
DestinationRegisterTableList[Index].AllocatedSize,
|
|
(VOID *)(UINTN)SourceRegisterTableList[Index].RegisterTableEntry
|
|
);
|
|
ASSERT (RegisterTableEntry != NULL);
|
|
DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Check whether the register table is empty or not.
|
|
|
|
@param[in] RegisterTable Point to the register table.
|
|
@param[in] NumberOfCpus Number of CPUs.
|
|
|
|
@retval TRUE The register table is empty.
|
|
@retval FALSE The register table is not empty.
|
|
**/
|
|
BOOLEAN
|
|
IsRegisterTableEmpty (
|
|
IN CPU_REGISTER_TABLE *RegisterTable,
|
|
IN UINT32 NumberOfCpus
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
if (RegisterTable != NULL) {
|
|
for (Index = 0; Index < NumberOfCpus; Index++) {
|
|
if (RegisterTable[Index].TableLength != 0) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Copy the data used to initialize processor register into SMRAM.
|
|
|
|
@param[in,out] CpuFeatureInitDataDst Pointer to the destination CPU_FEATURE_INIT_DATA structure.
|
|
@param[in] CpuFeatureInitDataSrc Pointer to the source CPU_FEATURE_INIT_DATA structure.
|
|
|
|
**/
|
|
VOID
|
|
CopyCpuFeatureInitDatatoSmram (
|
|
IN OUT CPU_FEATURE_INIT_DATA *CpuFeatureInitDataDst,
|
|
IN CPU_FEATURE_INIT_DATA *CpuFeatureInitDataSrc
|
|
)
|
|
{
|
|
CPU_STATUS_INFORMATION *CpuStatus;
|
|
|
|
if (!IsRegisterTableEmpty ((CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->PreSmmInitRegisterTable, mAcpiCpuData.NumberOfCpus)) {
|
|
CpuFeatureInitDataDst->PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
|
ASSERT (CpuFeatureInitDataDst->PreSmmInitRegisterTable != 0);
|
|
|
|
CopyRegisterTable (
|
|
(CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataDst->PreSmmInitRegisterTable,
|
|
(CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->PreSmmInitRegisterTable,
|
|
mAcpiCpuData.NumberOfCpus
|
|
);
|
|
}
|
|
|
|
if (!IsRegisterTableEmpty ((CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->RegisterTable, mAcpiCpuData.NumberOfCpus)) {
|
|
CpuFeatureInitDataDst->RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
|
|
ASSERT (CpuFeatureInitDataDst->RegisterTable != 0);
|
|
|
|
CopyRegisterTable (
|
|
(CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataDst->RegisterTable,
|
|
(CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->RegisterTable,
|
|
mAcpiCpuData.NumberOfCpus
|
|
);
|
|
}
|
|
|
|
CpuStatus = &CpuFeatureInitDataDst->CpuStatus;
|
|
CopyMem (CpuStatus, &CpuFeatureInitDataSrc->CpuStatus, sizeof (CPU_STATUS_INFORMATION));
|
|
|
|
if (CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerPackage != 0) {
|
|
CpuStatus->ThreadCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
|
|
sizeof (UINT32) * CpuStatus->PackageCount,
|
|
(UINT32 *)(UINTN)CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerPackage
|
|
);
|
|
ASSERT (CpuStatus->ThreadCountPerPackage != 0);
|
|
}
|
|
|
|
if (CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerCore != 0) {
|
|
CpuStatus->ThreadCountPerCore = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
|
|
sizeof (UINT8) * (CpuStatus->PackageCount * CpuStatus->MaxCoreCount),
|
|
(UINT32 *)(UINTN)CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerCore
|
|
);
|
|
ASSERT (CpuStatus->ThreadCountPerCore != 0);
|
|
}
|
|
|
|
if (CpuFeatureInitDataSrc->ApLocation != 0) {
|
|
CpuFeatureInitDataDst->ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
|
|
mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),
|
|
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)CpuFeatureInitDataSrc->ApLocation
|
|
);
|
|
ASSERT (CpuFeatureInitDataDst->ApLocation != 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Get ACPI CPU data.
|
|
|
|
**/
|
|
VOID
|
|
GetAcpiCpuData (
|
|
VOID
|
|
)
|
|
{
|
|
ACPI_CPU_DATA *AcpiCpuData;
|
|
IA32_DESCRIPTOR *Gdtr;
|
|
IA32_DESCRIPTOR *Idtr;
|
|
VOID *GdtForAp;
|
|
VOID *IdtForAp;
|
|
VOID *MachineCheckHandlerForAp;
|
|
CPU_STATUS_INFORMATION *CpuStatus;
|
|
|
|
if (!mAcpiS3Enable) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
|
|
//
|
|
mAcpiCpuData.NumberOfCpus = 0;
|
|
|
|
//
|
|
// If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
|
|
//
|
|
AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
|
|
if (AcpiCpuData == 0) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
|
|
//
|
|
CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
|
|
|
|
mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
|
|
ASSERT (mAcpiCpuData.MtrrTable != 0);
|
|
|
|
CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
|
|
|
|
mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
|
|
ASSERT (mAcpiCpuData.GdtrProfile != 0);
|
|
|
|
CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
|
|
|
|
mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
|
|
ASSERT (mAcpiCpuData.IdtrProfile != 0);
|
|
|
|
CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
|
|
|
|
//
|
|
// Copy AP's GDT, IDT and Machine Check handler into SMRAM.
|
|
//
|
|
Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
|
|
Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
|
|
|
|
GdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
|
|
ASSERT (GdtForAp != NULL);
|
|
IdtForAp = (VOID *)((UINTN)GdtForAp + (Gdtr->Limit + 1));
|
|
MachineCheckHandlerForAp = (VOID *)((UINTN)IdtForAp + (Idtr->Limit + 1));
|
|
|
|
CopyMem (GdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
|
|
CopyMem (IdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
|
|
CopyMem (MachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
|
|
|
|
Gdtr->Base = (UINTN)GdtForAp;
|
|
Idtr->Base = (UINTN)IdtForAp;
|
|
mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;
|
|
|
|
ZeroMem (&mAcpiCpuData.CpuFeatureInitData, sizeof (CPU_FEATURE_INIT_DATA));
|
|
|
|
if (!PcdGetBool (PcdCpuFeaturesInitOnS3Resume)) {
|
|
//
|
|
// If the CPU features will not be initialized by CpuFeaturesPei module during
|
|
// next ACPI S3 resume, copy the CPU features initialization data into SMRAM,
|
|
// which will be consumed in SmmRestoreCpu during next S3 resume.
|
|
//
|
|
CopyCpuFeatureInitDatatoSmram (&mAcpiCpuData.CpuFeatureInitData, &AcpiCpuData->CpuFeatureInitData);
|
|
|
|
CpuStatus = &mAcpiCpuData.CpuFeatureInitData.CpuStatus;
|
|
|
|
mCpuFlags.CoreSemaphoreCount = AllocateZeroPool (
|
|
sizeof (UINT32) * CpuStatus->PackageCount *
|
|
CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
|
|
);
|
|
ASSERT (mCpuFlags.CoreSemaphoreCount != NULL);
|
|
|
|
mCpuFlags.PackageSemaphoreCount = AllocateZeroPool (
|
|
sizeof (UINT32) * CpuStatus->PackageCount *
|
|
CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
|
|
);
|
|
ASSERT (mCpuFlags.PackageSemaphoreCount != NULL);
|
|
|
|
InitializeSpinLock ((SPIN_LOCK *)&mCpuFlags.MemoryMappedLock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Get ACPI S3 enable flag.
|
|
|
|
**/
|
|
VOID
|
|
GetAcpiS3EnableFlag (
|
|
VOID
|
|
)
|
|
{
|
|
mAcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);
|
|
}
|