mirror of https://github.com/acidanthera/audk.git
435 lines
14 KiB
C
435 lines
14 KiB
C
/*++
|
|
|
|
Copyright (c) 2006, Intel Corporation
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
VirtualMemory.c
|
|
|
|
Abstract:
|
|
|
|
x64 Virtual Memory Management Services in the form of an IA-32 driver.
|
|
Used to establish a 1:1 Virtual to Physical Mapping that is required to
|
|
enter Long Mode (x64 64-bit mode).
|
|
|
|
While we make a 1:1 mapping (identity mapping) for all physical pages
|
|
we still need to use the MTRR's to ensure that the cachability attirbutes
|
|
for all memory regions is correct.
|
|
|
|
The basic idea is to use 2MB page table entries where ever possible. If
|
|
more granularity of cachability is required then 4K page tables are used.
|
|
|
|
References:
|
|
1) IA-32 Intel(R) Atchitecture Software Developer's Manual Volume 1:Basic Architecture, Intel
|
|
2) IA-32 Intel(R) Atchitecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
|
|
3) IA-32 Intel(R) Atchitecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel
|
|
|
|
--*/
|
|
|
|
#include "VirtualMemory.h"
|
|
|
|
x64_MTRR_VARIABLE_RANGE *mMTRRVariableRange;
|
|
x64_MTRR_FIXED_RANGE mMTRRFixedRange;
|
|
|
|
|
|
//
|
|
// Physial memory limit values for each of the 11 fixed MTRRs
|
|
//
|
|
UINTN mFixedRangeLimit[] = {
|
|
0x7FFFF, // Fixed MTRR #0 describes 0x00000..0x7FFFF
|
|
0x9FFFF, // Fixed MTRR #1 describes 0x80000..0x9FFFF
|
|
0xBFFFF, // Fixed MTRR #2 describes 0xA0000..0xBFFFF
|
|
0xC7FFF, // Fixed MTRR #3 describes 0xC0000..0xC7FFF
|
|
0xCFFFF, // Fixed MTRR #4 describes 0xC8000..0xCFFFF
|
|
0xD7FFF, // Fixed MTRR #5 describes 0xD0000..0xD7FFF
|
|
0xDFFFF, // Fixed MTRR #6 describes 0xD8000..0xDFFFF
|
|
0xE7FFF, // Fixed MTRR #7 describes 0xE0000..0xE7FFF
|
|
0xEFFFF, // Fixed MTRR #8 describes 0xE8000..0xEFFFF
|
|
0xF7FFF, // Fixed MTRR #9 describes 0xF0000..0xF7FFF
|
|
0xFFFFF // Fixed MTRR #10 describes 0xF8000..0xFFFFF
|
|
};
|
|
|
|
//
|
|
// The size, in bits, of each of the 11 fixed MTRR.
|
|
//
|
|
UINTN mFixedRangeShift[] = {
|
|
16, // Fixed MTRR #0 describes 8, 64 KB ranges
|
|
14, // Fixed MTRR #1 describes 8, 16 KB ranges
|
|
14, // Fixed MTRR #2 describes 8, 16 KB ranges
|
|
12, // Fixed MTRR #3 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #4 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #5 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #6 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #7 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #8 describes 8, 4 KB ranges
|
|
12, // Fixed MTRR #9 describes 8, 4 KB ranges
|
|
12 // Fixed MTRR #10 describes 8, 4 KB ranges
|
|
};
|
|
|
|
|
|
UINTN mPowerOf2[] = {
|
|
1,
|
|
2,
|
|
4,
|
|
8,
|
|
16,
|
|
32,
|
|
64,
|
|
128,
|
|
256,
|
|
512
|
|
};
|
|
|
|
x64_MTRR_MEMORY_TYPE
|
|
EfiGetMTRRMemoryType (
|
|
IN EFI_PHYSICAL_ADDRESS Address
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Retrieves the memory type from the MTRR that describes a physical address.
|
|
|
|
Arguments:
|
|
|
|
VariableRange - Set of Variable MTRRs
|
|
|
|
FixedRange - Set of Fixed MTRRs
|
|
|
|
Address - The physical address for which the MTRR memory type is being retrieved
|
|
|
|
Returns:
|
|
|
|
The MTRR Memory Type for the physical memory specified by Address.
|
|
|
|
--*/
|
|
{
|
|
UINTN Index;
|
|
UINTN TypeIndex;
|
|
BOOLEAN Found;
|
|
x64_MTRR_MEMORY_TYPE VariableType;
|
|
EFI_PHYSICAL_ADDRESS MaskBase;
|
|
EFI_PHYSICAL_ADDRESS PhysMask;
|
|
|
|
//
|
|
// If the MTRRs are disabled, then return the Uncached Memory Type
|
|
//
|
|
if (mMTRRFixedRange.DefaultType.Bits.E == 0) {
|
|
return Uncached;
|
|
}
|
|
|
|
//
|
|
// If the CPU supports Fixed MTRRs and the Fixed MTRRs are enabled, then
|
|
// see if Address falls into one of the Fixed MTRRs
|
|
//
|
|
if (mMTRRFixedRange.Capabilities.Bits.FIX && mMTRRFixedRange.DefaultType.Bits.FE) {
|
|
//
|
|
// Loop though 11 fixed MTRRs
|
|
//
|
|
for (Index = 0; Index < 11; Index++) {
|
|
//
|
|
// Check for a matching range
|
|
//
|
|
if (Address <= mFixedRangeLimit[Index]) {
|
|
//
|
|
// Compute the offset address into the MTRR bu subtrating the base address of the MTRR
|
|
//
|
|
if (Index > 0) {
|
|
Address = Address - (mFixedRangeLimit[Index-1] + 1);
|
|
}
|
|
//
|
|
// Retrieve the index into the MTRR to extract the memory type. The range is 0..7
|
|
//
|
|
TypeIndex = (UINTN)RShiftU64 (Address, mFixedRangeShift[Index]);
|
|
|
|
//
|
|
// Retrieve and return the memory type for the matching range
|
|
//
|
|
return mMTRRFixedRange.Fixed[Index].Type[TypeIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// If Address was not found in a Fixed MTRR, then search the Variable MTRRs
|
|
//
|
|
for (Index = 0, Found = FALSE, VariableType = WriteBack; Index < mMTRRFixedRange.Capabilities.Bits.VCNT; Index++) {
|
|
//
|
|
// BugBug: __aullshr complier error
|
|
//
|
|
if ((mMTRRVariableRange[Index].PhysMask.Uint64 & 0x800) == 0x800) {
|
|
//if (mMTRRVariableRange[Index].PhysMask.Bits.Valid == 1) {
|
|
PhysMask = mMTRRVariableRange[Index].PhysMask.Uint64 & ~0xfff;
|
|
MaskBase = PhysMask & (mMTRRVariableRange[Index].PhysBase.Uint64 & ~0xfff);
|
|
if (MaskBase == (PhysMask & Address)) {
|
|
//
|
|
// Check to see how many matches we find
|
|
//
|
|
Found = TRUE;
|
|
if ((mMTRRVariableRange[Index].PhysBase.Bits.Type == Uncached) || (VariableType == Uncached)) {
|
|
//
|
|
// If any matching region uses UC, the memory region is UC
|
|
//
|
|
VariableType = Uncached;
|
|
} else if ((mMTRRVariableRange[Index].PhysBase.Bits.Type == WriteThrough) || (VariableType == WriteThrough)){
|
|
//
|
|
// If it's WT and WB then set it to WT. If it's WT and other type it's undefined
|
|
//
|
|
VariableType = WriteThrough;
|
|
} else {
|
|
VariableType = mMTRRVariableRange[Index].PhysBase.Bits.Type;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Found) {
|
|
return VariableType;
|
|
}
|
|
|
|
//
|
|
// Address was not found in the Fixed or Variable MTRRs, so return the default memory type
|
|
//
|
|
return mMTRRFixedRange.DefaultType.Bits.Type;
|
|
}
|
|
|
|
|
|
BOOLEAN
|
|
CanNotUse2MBPage (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Test to see if a 2MB aligned page has all the same attributes. If a 2MB page
|
|
has more than one attibute type it needs to be split into multiple 4K pages.
|
|
|
|
Arguments:
|
|
BaseAddress - 2MB aligned address to check out
|
|
|
|
Returns:
|
|
TRUE - This 2MB address range (BaseAddress) can NOT be mapped by a 2MB page
|
|
FALSE - This 2MB address range can be mapped by a 2MB page
|
|
|
|
--*/
|
|
{
|
|
UINTN Index;
|
|
x64_MTRR_MEMORY_TYPE MemoryType;
|
|
x64_MTRR_MEMORY_TYPE PreviousMemoryType;
|
|
|
|
//
|
|
// Address needs to be 2MB aligned
|
|
//
|
|
ASSERT ((BaseAddress & 0x1fffff) == 0);
|
|
|
|
PreviousMemoryType = -1;
|
|
for (Index = 0; Index < 512; Index++, BaseAddress += 0x1000) {
|
|
MemoryType = EfiGetMTRRMemoryType (BaseAddress);
|
|
if ((Index != 0) && (MemoryType != PreviousMemoryType)) {
|
|
return TRUE;
|
|
}
|
|
|
|
PreviousMemoryType = MemoryType;
|
|
}
|
|
|
|
//
|
|
// All the pages had the same type
|
|
//
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
|
|
VOID
|
|
Convert2MBPageTo4KPages (
|
|
IN x64_PAGE_TABLE_ENTRY_2M *PageDirectoryEntry2MB,
|
|
IN EFI_PHYSICAL_ADDRESS PageAddress
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Convert a single 2MB page entry to 512 4K page entries. The attributes for
|
|
the 4K pages are read from the MTRR registers.
|
|
|
|
Arguments:
|
|
PageDirectoryEntry2MB - Page directory entry for PageAddress
|
|
PageAddress - 2MB algined address of region to convert
|
|
|
|
Returns:
|
|
None
|
|
|
|
--*/
|
|
{
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
x64_PAGE_DIRECTORY_ENTRY_4K *PageDirectoryEntry4k;
|
|
x64_PAGE_TABLE_ENTRY_4K *PageTableEntry;
|
|
UINTN Index1;
|
|
|
|
//
|
|
// Allocate the page table entry for the 4K pages
|
|
//
|
|
PageTableEntry = (x64_PAGE_TABLE_ENTRY_4K *) AllocatePages (1);
|
|
|
|
ASSERT (PageTableEntry != NULL);
|
|
|
|
//
|
|
// Convert PageDirectoryEntry2MB into a 4K Page Directory
|
|
//
|
|
PageDirectoryEntry4k = (x64_PAGE_DIRECTORY_ENTRY_4K *)PageDirectoryEntry2MB;
|
|
PageDirectoryEntry2MB->Uint64 = (UINT64)PageTableEntry;
|
|
PageDirectoryEntry2MB->Bits.ReadWrite = 1;
|
|
PageDirectoryEntry2MB->Bits.Present = 1;
|
|
|
|
//
|
|
// Fill in the 4K page entries with the attributes from the MTRRs
|
|
//
|
|
for (Index1 = 0, Address = PageAddress; Index1 < 512; Index1++, PageTableEntry++, Address += 0x1000) {
|
|
PageTableEntry->Uint64 = (UINT64)Address;
|
|
PageTableEntry->Bits.ReadWrite = 1;
|
|
PageTableEntry->Bits.Present = 1;
|
|
}
|
|
}
|
|
|
|
|
|
EFI_PHYSICAL_ADDRESS
|
|
CreateIdentityMappingPageTables (
|
|
IN UINT32 NumberOfProcessorPhysicalAddressBits
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Allocates and fills in the Page Directory and Page Table Entries to
|
|
establish a 1:1 Virtual to Physical mapping for physical memory from
|
|
0 to 4GB. Memory above 4GB is not mapped. The MTRRs are used to
|
|
determine the cachability of the physical memory regions
|
|
|
|
Arguments:
|
|
|
|
NumberOfProcessorPhysicalAddressBits - Number of processor address bits to use.
|
|
Limits the number of page table entries
|
|
to the physical address space.
|
|
|
|
Returns:
|
|
EFI_OUT_OF_RESOURCES There are not enough resources to allocate the Page Tables
|
|
|
|
EFI_SUCCESS The 1:1 Virtual to Physical identity mapping was created
|
|
|
|
--*/
|
|
{
|
|
EFI_PHYSICAL_ADDRESS PageAddress;
|
|
UINTN Index;
|
|
UINTN MaxBitsSupported;
|
|
UINTN Index1;
|
|
UINTN Index2;
|
|
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageMapLevel4Entry;
|
|
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageMap;
|
|
x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *PageDirectoryPointerEntry;
|
|
x64_PAGE_TABLE_ENTRY_2M *PageDirectoryEntry2MB;
|
|
|
|
|
|
//
|
|
// Page Table structure 4 level 4K, 3 level 2MB.
|
|
//
|
|
// PageMapLevel4Entry : bits 47-39
|
|
// PageDirectoryPointerEntry : bits 38-30
|
|
// Page Table 2MB : PageDirectoryEntry2M : bits 29-21
|
|
// Page Table 4K : PageDirectoryEntry4K : bits 29 - 21
|
|
// PageTableEntry : bits 20 - 12
|
|
//
|
|
// Strategy is to map every thing in the processor address space using
|
|
// 2MB pages. If more granularity is required the 2MB page will get
|
|
// converted to set of 4K pages.
|
|
//
|
|
|
|
//
|
|
// By architecture only one PageMapLevel4 exists - so lets allocate storgage for it.
|
|
//
|
|
PageMap = PageMapLevel4Entry = (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *) AllocatePages (1);
|
|
ASSERT (PageMap != NULL);
|
|
PageAddress = 0;
|
|
|
|
//
|
|
// The number of page-map Level-4 Offset entries is based on the number of
|
|
// physical address bits. Less than equal to 38 bits only takes one entry.
|
|
// 512 entries represents 48 address bits.
|
|
//
|
|
if (NumberOfProcessorPhysicalAddressBits <= 38) {
|
|
MaxBitsSupported = 1;
|
|
} else {
|
|
MaxBitsSupported = mPowerOf2[NumberOfProcessorPhysicalAddressBits - 39];
|
|
}
|
|
|
|
for (Index = 0; Index < MaxBitsSupported; Index++, PageMapLevel4Entry++) {
|
|
//
|
|
// Each PML4 entry points to a page of Page Directory Pointer entires.
|
|
// So lets allocate space for them and fill them in in the Index1 loop.
|
|
//
|
|
PageDirectoryPointerEntry = (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K *) AllocatePages (1);
|
|
ASSERT (PageDirectoryPointerEntry != NULL);
|
|
|
|
//
|
|
// Make a PML4 Entry
|
|
//
|
|
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry;
|
|
PageMapLevel4Entry->Bits.ReadWrite = 1;
|
|
PageMapLevel4Entry->Bits.Present = 1;
|
|
|
|
for (Index1 = 0; Index1 < 512; Index1++, PageDirectoryPointerEntry++) {
|
|
//
|
|
// Each Directory Pointer entries points to a page of Page Directory entires.
|
|
// So lets allocate space for them and fill them in in the Index2 loop.
|
|
//
|
|
PageDirectoryEntry2MB = (x64_PAGE_TABLE_ENTRY_2M *) AllocatePages (1);
|
|
ASSERT (PageDirectoryEntry2MB != NULL);
|
|
|
|
//
|
|
// Fill in a Page Directory Pointer Entries
|
|
//
|
|
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry2MB;
|
|
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
|
|
PageDirectoryPointerEntry->Bits.Present = 1;
|
|
|
|
for (Index2 = 0; Index2 < 512; Index2++, PageDirectoryEntry2MB++, PageAddress += 0x200000) {
|
|
//
|
|
// Fill in the Page Directory entries
|
|
//
|
|
PageDirectoryEntry2MB->Uint64 = (UINT64)PageAddress;
|
|
PageDirectoryEntry2MB->Bits.ReadWrite = 1;
|
|
PageDirectoryEntry2MB->Bits.Present = 1;
|
|
PageDirectoryEntry2MB->Bits.MustBe1 = 1;
|
|
|
|
if (CanNotUse2MBPage (PageAddress)) {
|
|
//
|
|
// Check to see if all 2MB has the same mapping. If not convert
|
|
// to 4K pages by adding the 4th level of page table entries
|
|
//
|
|
Convert2MBPageTo4KPages (PageDirectoryEntry2MB, PageAddress);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// For the PML4 entries we are not using fill in a null entry.
|
|
// for now we just copy the first entry.
|
|
//
|
|
for (; Index < 512; Index++, PageMapLevel4Entry++) {
|
|
// EfiCopyMem (PageMapLevel4Entry, PageMap, sizeof (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K));
|
|
CopyMem (PageMapLevel4Entry,
|
|
PageMap,
|
|
sizeof (x64_PAGE_MAP_AND_DIRECTORY_POINTER_2MB_4K)
|
|
);
|
|
}
|
|
|
|
return (EFI_PHYSICAL_ADDRESS)PageMap;
|
|
}
|
|
|