audk/ShellPkg/Library/UefiShellDebug1CommandsLib/Compress.c

1392 lines
29 KiB
C

/** @file
Main file for compression routine.
Compression routine. The compression algorithm is a mixture of
LZ77 and Huffman coding. LZ77 transforms the source data into a
sequence of Original Characters and Pointers to repeated strings.
This sequence is further divided into Blocks and Huffman codings
are applied to each Block.
Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/ShellLib.h>
#include "Compress.h"
//
// Macro Definitions
//
typedef INT16 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define BLKSIZ (1U << 14) // 16 * 1024U
#define PERC_FLAG 0x8000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT)
//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//
#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 4
#define NT (CODE_BIT + 3)
#define TBIT 5
#if NT > NP
#define NPT NT
#else
#define NPT NP
#endif
//
// Function Prototypes
//
/**
Put a dword to output stream
@param[in] Data The dword to put.
**/
VOID
PutDword (
IN UINT32 Data
);
//
// Global Variables
//
STATIC UINT8 *mSrc;
STATIC UINT8 *mDst;
STATIC UINT8 *mSrcUpperLimit;
STATIC UINT8 *mDstUpperLimit;
STATIC UINT8 *mLevel;
STATIC UINT8 *mText;
STATIC UINT8 *mChildCount;
STATIC UINT8 *mBuf;
STATIC UINT8 mCLen[NC];
STATIC UINT8 mPTLen[NPT];
STATIC UINT8 *mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder;
STATIC INT32 mMatchLen;
STATIC INT32 mBitCount;
STATIC INT32 mHeapSize;
STATIC INT32 mTempInt32;
STATIC UINT32 mBufSiz = 0;
STATIC UINT32 mOutputPos;
STATIC UINT32 mOutputMask;
STATIC UINT32 mSubBitBuf;
STATIC UINT32 mCrc;
STATIC UINT32 mCompSize;
STATIC UINT32 mOrigSize;
STATIC UINT16 *mFreq;
STATIC UINT16 *mSortPtr;
STATIC UINT16 mLenCnt[17];
STATIC UINT16 mLeft[2 * NC - 1];
STATIC UINT16 mRight[2 * NC - 1];
STATIC UINT16 mCrcTable[UINT8_MAX + 1];
STATIC UINT16 mCFreq[2 * NC - 1];
STATIC UINT16 mCCode[NC];
STATIC UINT16 mPFreq[2 * NP - 1];
STATIC UINT16 mPTCode[NPT];
STATIC UINT16 mTFreq[2 * NT - 1];
STATIC NODE mPos;
STATIC NODE mMatchPos;
STATIC NODE mAvail;
STATIC NODE *mPosition;
STATIC NODE *mParent;
STATIC NODE *mPrev;
STATIC NODE *mNext = NULL;
INT32 mHuffmanDepth = 0;
/**
Make a CRC table.
**/
VOID
MakeCrcTable (
VOID
)
{
UINT32 LoopVar1;
UINT32 LoopVar2;
UINT32 LoopVar4;
for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) {
LoopVar4 = LoopVar1;
for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) {
if ((LoopVar4 & 1) != 0) {
LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY;
} else {
LoopVar4 >>= 1;
}
}
mCrcTable[LoopVar1] = (UINT16)LoopVar4;
}
}
/**
Put a dword to output stream
@param[in] Data The dword to put.
**/
VOID
PutDword (
IN UINT32 Data
)
{
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
}
}
/**
Allocate memory spaces for data structures used in compression process.
@retval EFI_SUCCESS Memory was allocated successfully.
@retval EFI_OUT_OF_RESOURCES A memory allocation failed.
**/
EFI_STATUS
AllocateMemory (
VOID
)
{
mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH);
mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));
mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));
mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));
mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent));
mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev));
mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext));
mBufSiz = BLKSIZ;
mBuf = AllocateZeroPool (mBufSiz);
while (mBuf == NULL) {
mBufSiz = (mBufSiz / 10U) * 9U;
if (mBufSiz < 4 * 1024U) {
return EFI_OUT_OF_RESOURCES;
}
mBuf = AllocateZeroPool (mBufSiz);
}
mBuf[0] = 0;
return EFI_SUCCESS;
}
/**
Called when compression is completed to free memory previously allocated.
**/
VOID
FreeMemory (
VOID
)
{
SHELL_FREE_NON_NULL (mText);
SHELL_FREE_NON_NULL (mLevel);
SHELL_FREE_NON_NULL (mChildCount);
SHELL_FREE_NON_NULL (mPosition);
SHELL_FREE_NON_NULL (mParent);
SHELL_FREE_NON_NULL (mPrev);
SHELL_FREE_NON_NULL (mNext);
SHELL_FREE_NON_NULL (mBuf);
}
/**
Initialize String Info Log data structures.
**/
VOID
InitSlide (
VOID
)
{
NODE LoopVar1;
SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1);
SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0);
SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0);
mAvail = 1;
for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) {
mNext[LoopVar1] = (NODE)(LoopVar1 + 1);
}
mNext[WNDSIZ - 1] = NIL;
SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0);
}
/**
Find child node given the parent node and the edge character
@param[in] LoopVar6 The parent node.
@param[in] LoopVar5 The edge character.
@return The child node.
@retval NIL(Zero) No child could be found.
**/
NODE
Child (
IN NODE LoopVar6,
IN UINT8 LoopVar5
)
{
NODE LoopVar4;
LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)];
mParent[NIL] = LoopVar6; /* sentinel */
while (mParent[LoopVar4] != LoopVar6) {
LoopVar4 = mNext[LoopVar4];
}
return LoopVar4;
}
/**
Create a new child for a given parent node.
@param[in] LoopVar6 The parent node.
@param[in] LoopVar5 The edge character.
@param[in] LoopVar4 The child node.
**/
VOID
MakeChild (
IN NODE LoopVar6,
IN UINT8 LoopVar5,
IN NODE LoopVar4
)
{
NODE LoopVar12;
NODE LoopVar10;
LoopVar12 = (NODE)HASH (LoopVar6, LoopVar5);
LoopVar10 = mNext[LoopVar12];
mNext[LoopVar12] = LoopVar4;
mNext[LoopVar4] = LoopVar10;
mPrev[LoopVar10] = LoopVar4;
mPrev[LoopVar4] = LoopVar12;
mParent[LoopVar4] = LoopVar6;
mChildCount[LoopVar6]++;
}
/**
Split a node.
@param[in] Old The node to split.
**/
VOID
Split (
IN NODE Old
)
{
NODE New;
NODE LoopVar10;
New = mAvail;
mAvail = mNext[New];
mChildCount[New] = 0;
LoopVar10 = mPrev[Old];
mPrev[New] = LoopVar10;
mNext[LoopVar10] = New;
LoopVar10 = mNext[Old];
mNext[New] = LoopVar10;
mPrev[LoopVar10] = New;
mParent[New] = mParent[Old];
mLevel[New] = (UINT8)mMatchLen;
mPosition[New] = mPos;
MakeChild (New, mText[mMatchPos + mMatchLen], Old);
MakeChild (New, mText[mPos + mMatchLen], mPos);
}
/**
Insert string info for current position into the String Info Log.
**/
VOID
InsertNode (
VOID
)
{
NODE LoopVar6;
NODE LoopVar4;
NODE LoopVar2;
NODE LoopVar10;
UINT8 LoopVar5;
UINT8 *TempString3;
UINT8 *TempString2;
if (mMatchLen >= 4) {
//
// We have just got a long match, the target tree
// can be located by MatchPos + 1. Travese the tree
// from bottom up to get to a proper starting point.
// The usage of PERC_FLAG ensures proper node deletion
// in DeleteNode() later.
//
mMatchLen--;
LoopVar4 = (NODE)((mMatchPos + 1) | WNDSIZ);
LoopVar6 = mParent[LoopVar4];
while (LoopVar6 == NIL) {
LoopVar4 = mNext[LoopVar4];
LoopVar6 = mParent[LoopVar4];
}
while (mLevel[LoopVar6] >= mMatchLen) {
LoopVar4 = LoopVar6;
LoopVar6 = mParent[LoopVar6];
}
LoopVar10 = LoopVar6;
while (mPosition[LoopVar10] < 0) {
mPosition[LoopVar10] = mPos;
LoopVar10 = mParent[LoopVar10];
}
if (LoopVar10 < WNDSIZ) {
mPosition[LoopVar10] = (NODE)(mPos | PERC_FLAG);
}
} else {
//
// Locate the target tree
//
LoopVar6 = (NODE)(mText[mPos] + WNDSIZ);
LoopVar5 = mText[mPos + 1];
LoopVar4 = Child (LoopVar6, LoopVar5);
if (LoopVar4 == NIL) {
MakeChild (LoopVar6, LoopVar5, mPos);
mMatchLen = 1;
return;
}
mMatchLen = 2;
}
//
// Traverse down the tree to find a match.
// Update Position value along the route.
// Node split or creation is involved.
//
for ( ; ;) {
if (LoopVar4 >= WNDSIZ) {
LoopVar2 = MAXMATCH;
mMatchPos = LoopVar4;
} else {
LoopVar2 = mLevel[LoopVar4];
mMatchPos = (NODE)(mPosition[LoopVar4] & ~PERC_FLAG);
}
if (mMatchPos >= mPos) {
mMatchPos -= WNDSIZ;
}
TempString3 = &mText[mPos + mMatchLen];
TempString2 = &mText[mMatchPos + mMatchLen];
while (mMatchLen < LoopVar2) {
if (*TempString3 != *TempString2) {
Split (LoopVar4);
return;
}
mMatchLen++;
TempString3++;
TempString2++;
}
if (mMatchLen >= MAXMATCH) {
break;
}
mPosition[LoopVar4] = mPos;
LoopVar6 = LoopVar4;
LoopVar4 = Child (LoopVar6, *TempString3);
if (LoopVar4 == NIL) {
MakeChild (LoopVar6, *TempString3, mPos);
return;
}
mMatchLen++;
}
LoopVar10 = mPrev[LoopVar4];
mPrev[mPos] = LoopVar10;
mNext[LoopVar10] = mPos;
LoopVar10 = mNext[LoopVar4];
mNext[mPos] = LoopVar10;
mPrev[LoopVar10] = mPos;
mParent[mPos] = LoopVar6;
mParent[LoopVar4] = NIL;
//
// Special usage of 'next'
//
mNext[LoopVar4] = mPos;
}
/**
Delete outdated string info. (The Usage of PERC_FLAG
ensures a clean deletion).
**/
VOID
DeleteNode (
VOID
)
{
NODE LoopVar6;
NODE LoopVar4;
NODE LoopVar11;
NODE LoopVar10;
NODE LoopVar9;
if (mParent[mPos] == NIL) {
return;
}
LoopVar4 = mPrev[mPos];
LoopVar11 = mNext[mPos];
mNext[LoopVar4] = LoopVar11;
mPrev[LoopVar11] = LoopVar4;
LoopVar4 = mParent[mPos];
mParent[mPos] = NIL;
if (LoopVar4 >= WNDSIZ) {
return;
}
mChildCount[LoopVar4]--;
if (mChildCount[LoopVar4] > 1) {
return;
}
LoopVar10 = (NODE)(mPosition[LoopVar4] & ~PERC_FLAG);
if (LoopVar10 >= mPos) {
LoopVar10 -= WNDSIZ;
}
LoopVar11 = LoopVar10;
LoopVar6 = mParent[LoopVar4];
LoopVar9 = mPosition[LoopVar6];
while ((LoopVar9 & PERC_FLAG) != 0) {
LoopVar9 &= ~PERC_FLAG;
if (LoopVar9 >= mPos) {
LoopVar9 -= WNDSIZ;
}
if (LoopVar9 > LoopVar11) {
LoopVar11 = LoopVar9;
}
mPosition[LoopVar6] = (NODE)(LoopVar11 | WNDSIZ);
LoopVar6 = mParent[LoopVar6];
LoopVar9 = mPosition[LoopVar6];
}
if (LoopVar6 < WNDSIZ) {
if (LoopVar9 >= mPos) {
LoopVar9 -= WNDSIZ;
}
if (LoopVar9 > LoopVar11) {
LoopVar11 = LoopVar9;
}
mPosition[LoopVar6] = (NODE)(LoopVar11 | WNDSIZ | PERC_FLAG);
}
LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]);
LoopVar10 = mPrev[LoopVar11];
LoopVar9 = mNext[LoopVar11];
mNext[LoopVar10] = LoopVar9;
mPrev[LoopVar9] = LoopVar10;
LoopVar10 = mPrev[LoopVar4];
mNext[LoopVar10] = LoopVar11;
mPrev[LoopVar11] = LoopVar10;
LoopVar10 = mNext[LoopVar4];
mPrev[LoopVar10] = LoopVar11;
mNext[LoopVar11] = LoopVar10;
mParent[LoopVar11] = mParent[LoopVar4];
mParent[LoopVar4] = NIL;
mNext[LoopVar4] = mAvail;
mAvail = LoopVar4;
}
/**
Read in source data
@param[out] LoopVar7 The buffer to hold the data.
@param[in] LoopVar8 The number of bytes to read.
@return The number of bytes actually read.
**/
INT32
FreadCrc (
OUT UINT8 *LoopVar7,
IN INT32 LoopVar8
)
{
INT32 LoopVar1;
for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) {
*LoopVar7++ = *mSrc++;
}
LoopVar8 = LoopVar1;
LoopVar7 -= LoopVar8;
mOrigSize += LoopVar8;
LoopVar1--;
while (LoopVar1 >= 0) {
UPDATE_CRC (*LoopVar7++);
LoopVar1--;
}
return LoopVar8;
}
/**
Advance the current position (read in new data if needed).
Delete outdated string info. Find a match string for current position.
@retval TRUE The operation was successful.
@retval FALSE The operation failed due to insufficient memory.
**/
BOOLEAN
GetNextMatch (
VOID
)
{
INT32 LoopVar8;
VOID *Temp;
mRemainder--;
mPos++;
if (mPos == WNDSIZ * 2) {
Temp = AllocateZeroPool (WNDSIZ + MAXMATCH);
if (Temp == NULL) {
return (FALSE);
}
CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH);
CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH);
FreePool (Temp);
LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);
mRemainder += LoopVar8;
mPos = WNDSIZ;
}
DeleteNode ();
InsertNode ();
return (TRUE);
}
/**
Send entry LoopVar1 down the queue.
@param[in] LoopVar1 The index of the item to move.
**/
VOID
DownHeap (
IN INT32 i
)
{
INT32 LoopVar1;
INT32 LoopVar2;
//
// priority queue: send i-th entry down heap
//
LoopVar2 = mHeap[i];
LoopVar1 = 2 * i;
while (LoopVar1 <= mHeapSize) {
if ((LoopVar1 < mHeapSize) && (mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]])) {
LoopVar1++;
}
if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) {
break;
}
mHeap[i] = mHeap[LoopVar1];
i = LoopVar1;
LoopVar1 = 2 * i;
}
mHeap[i] = (INT16)LoopVar2;
}
/**
Count the number of each code length for a Huffman tree.
@param[in] LoopVar1 The top node.
**/
VOID
CountLen (
IN INT32 LoopVar1
)
{
if (LoopVar1 < mTempInt32) {
mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++;
} else {
mHuffmanDepth++;
CountLen (mLeft[LoopVar1]);
CountLen (mRight[LoopVar1]);
mHuffmanDepth--;
}
}
/**
Create code length array for a Huffman tree.
@param[in] Root The root of the tree.
**/
VOID
MakeLen (
IN INT32 Root
)
{
INT32 LoopVar1;
INT32 LoopVar2;
UINT32 Cum;
for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) {
mLenCnt[LoopVar1] = 0;
}
CountLen (Root);
//
// Adjust the length count array so that
// no code will be generated longer than its designated length
//
Cum = 0;
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
Cum += mLenCnt[LoopVar1] << (16 - LoopVar1);
}
while (Cum != (1U << 16)) {
mLenCnt[16]--;
for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) {
if (mLenCnt[LoopVar1] != 0) {
mLenCnt[LoopVar1]--;
mLenCnt[LoopVar1 + 1] += 2;
break;
}
}
Cum--;
}
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
LoopVar2 = mLenCnt[LoopVar1];
LoopVar2--;
while (LoopVar2 >= 0) {
mLen[*mSortPtr++] = (UINT8)LoopVar1;
LoopVar2--;
}
}
}
/**
Assign code to each symbol based on the code length array.
@param[in] LoopVar8 The number of symbols.
@param[in] Len The code length array.
@param[out] Code The stores codes for each symbol.
**/
VOID
MakeCode (
IN INT32 LoopVar8,
IN UINT8 Len[],
OUT UINT16 Code[]
)
{
INT32 LoopVar1;
UINT16 Start[18];
Start[1] = 0;
for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) {
Start[LoopVar1 + 1] = (UINT16)((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1);
}
for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) {
Code[LoopVar1] = Start[Len[LoopVar1]]++;
}
}
/**
Generates Huffman codes given a frequency distribution of symbols.
@param[in] NParm The number of symbols.
@param[in] FreqParm The frequency of each symbol.
@param[out] LenParm The code length for each symbol.
@param[out] CodeParm The code for each symbol.
@return The root of the Huffman tree.
**/
INT32
MakeTree (
IN INT32 NParm,
IN UINT16 FreqParm[],
OUT UINT8 LenParm[],
OUT UINT16 CodeParm[]
)
{
INT32 LoopVar1;
INT32 LoopVar2;
INT32 LoopVar3;
INT32 Avail;
//
// make tree, calculate len[], return root
//
mTempInt32 = NParm;
mFreq = FreqParm;
mLen = LenParm;
Avail = mTempInt32;
mHeapSize = 0;
mHeap[1] = 0;
for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) {
mLen[LoopVar1] = 0;
if ((mFreq[LoopVar1]) != 0) {
mHeapSize++;
mHeap[mHeapSize] = (INT16)LoopVar1;
}
}
if (mHeapSize < 2) {
CodeParm[mHeap[1]] = 0;
return mHeap[1];
}
for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) {
//
// make priority queue
//
DownHeap (LoopVar1);
}
mSortPtr = CodeParm;
do {
LoopVar1 = mHeap[1];
if (LoopVar1 < mTempInt32) {
*mSortPtr++ = (UINT16)LoopVar1;
}
mHeap[1] = mHeap[mHeapSize--];
DownHeap (1);
LoopVar2 = mHeap[1];
if (LoopVar2 < mTempInt32) {
*mSortPtr++ = (UINT16)LoopVar2;
}
LoopVar3 = Avail++;
mFreq[LoopVar3] = (UINT16)(mFreq[LoopVar1] + mFreq[LoopVar2]);
mHeap[1] = (INT16)LoopVar3;
DownHeap (1);
mLeft[LoopVar3] = (UINT16)LoopVar1;
mRight[LoopVar3] = (UINT16)LoopVar2;
} while (mHeapSize > 1);
mSortPtr = CodeParm;
MakeLen (LoopVar3);
MakeCode (NParm, LenParm, CodeParm);
//
// return root
//
return LoopVar3;
}
/**
Outputs rightmost LoopVar8 bits of x
@param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used.
@param[in] x The data.
**/
VOID
PutBits (
IN INT32 LoopVar8,
IN UINT32 x
)
{
UINT8 Temp;
if (LoopVar8 < mBitCount) {
mSubBitBuf |= x << (mBitCount -= LoopVar8);
} else {
Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount)));
if (mDst < mDstUpperLimit) {
*mDst++ = Temp;
}
mCompSize++;
if (LoopVar8 < UINT8_BIT) {
mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8);
} else {
Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT));
if (mDst < mDstUpperLimit) {
*mDst++ = Temp;
}
mCompSize++;
mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8);
}
}
}
/**
Encode a signed 32 bit number.
@param[in] LoopVar5 The number to encode.
**/
VOID
EncodeC (
IN INT32 LoopVar5
)
{
PutBits (mCLen[LoopVar5], mCCode[LoopVar5]);
}
/**
Encode a unsigned 32 bit number.
@param[in] LoopVar7 The number to encode.
**/
VOID
EncodeP (
IN UINT32 LoopVar7
)
{
UINT32 LoopVar5;
UINT32 LoopVar6;
LoopVar5 = 0;
LoopVar6 = LoopVar7;
while (LoopVar6 != 0) {
LoopVar6 >>= 1;
LoopVar5++;
}
PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]);
if (LoopVar5 > 1) {
PutBits (LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5)));
}
}
/**
Count the frequencies for the Extra Set.
**/
VOID
CountTFreq (
VOID
)
{
INT32 LoopVar1;
INT32 LoopVar3;
INT32 LoopVar8;
INT32 Count;
for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) {
mTFreq[LoopVar1] = 0;
}
LoopVar8 = NC;
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
LoopVar8--;
}
LoopVar1 = 0;
while (LoopVar1 < LoopVar8) {
LoopVar3 = mCLen[LoopVar1++];
if (LoopVar3 == 0) {
Count = 1;
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
LoopVar1++;
Count++;
}
if (Count <= 2) {
mTFreq[0] = (UINT16)(mTFreq[0] + Count);
} else if (Count <= 18) {
mTFreq[1]++;
} else if (Count == 19) {
mTFreq[0]++;
mTFreq[1]++;
} else {
mTFreq[2]++;
}
} else {
ASSERT ((LoopVar3+2) < (2 * NT - 1));
mTFreq[LoopVar3 + 2]++;
}
}
}
/**
Outputs the code length array for the Extra Set or the Position Set.
@param[in] LoopVar8 The number of symbols.
@param[in] nbit The number of bits needed to represent 'LoopVar8'.
@param[in] Special The special symbol that needs to be take care of.
**/
VOID
WritePTLen (
IN INT32 LoopVar8,
IN INT32 nbit,
IN INT32 Special
)
{
INT32 LoopVar1;
INT32 LoopVar3;
while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) {
LoopVar8--;
}
PutBits (nbit, LoopVar8);
LoopVar1 = 0;
while (LoopVar1 < LoopVar8) {
LoopVar3 = mPTLen[LoopVar1++];
if (LoopVar3 <= 6) {
PutBits (3, LoopVar3);
} else {
PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2);
}
if (LoopVar1 == Special) {
while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) {
LoopVar1++;
}
PutBits (2, (LoopVar1 - 3) & 3);
}
}
}
/**
Outputs the code length array for Char&Length Set.
**/
VOID
WriteCLen (
VOID
)
{
INT32 LoopVar1;
INT32 LoopVar3;
INT32 LoopVar8;
INT32 Count;
LoopVar8 = NC;
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
LoopVar8--;
}
PutBits (CBIT, LoopVar8);
LoopVar1 = 0;
while (LoopVar1 < LoopVar8) {
LoopVar3 = mCLen[LoopVar1++];
if (LoopVar3 == 0) {
Count = 1;
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
LoopVar1++;
Count++;
}
if (Count <= 2) {
for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) {
PutBits (mPTLen[0], mPTCode[0]);
}
} else if (Count <= 18) {
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, Count - 3);
} else if (Count == 19) {
PutBits (mPTLen[0], mPTCode[0]);
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, 15);
} else {
PutBits (mPTLen[2], mPTCode[2]);
PutBits (CBIT, Count - 20);
}
} else {
ASSERT ((LoopVar3+2) < NPT);
PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]);
}
}
}
/**
Huffman code the block and output it.
**/
VOID
SendBlock (
VOID
)
{
UINT32 LoopVar1;
UINT32 LoopVar3;
UINT32 Flags;
UINT32 Root;
UINT32 Pos;
UINT32 Size;
Flags = 0;
Root = MakeTree (NC, mCFreq, mCLen, mCCode);
Size = mCFreq[Root];
PutBits (16, Size);
if (Root >= NC) {
CountTFreq ();
Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);
if (Root >= NT) {
WritePTLen (NT, TBIT, 3);
} else {
PutBits (TBIT, 0);
PutBits (TBIT, Root);
}
WriteCLen ();
} else {
PutBits (TBIT, 0);
PutBits (TBIT, 0);
PutBits (CBIT, 0);
PutBits (CBIT, Root);
}
Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);
if (Root >= NP) {
WritePTLen (NP, PBIT, -1);
} else {
PutBits (PBIT, 0);
PutBits (PBIT, Root);
}
Pos = 0;
for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) {
if (LoopVar1 % UINT8_BIT == 0) {
Flags = mBuf[Pos++];
} else {
Flags <<= 1;
}
if ((Flags & (1U << (UINT8_BIT - 1))) != 0) {
EncodeC (mBuf[Pos++] + (1U << UINT8_BIT));
LoopVar3 = mBuf[Pos++] << UINT8_BIT;
LoopVar3 += mBuf[Pos++];
EncodeP (LoopVar3);
} else {
EncodeC (mBuf[Pos++]);
}
}
SetMem (mCFreq, NC * sizeof (UINT16), 0);
SetMem (mPFreq, NP * sizeof (UINT16), 0);
}
/**
Start the huffman encoding.
**/
VOID
HufEncodeStart (
VOID
)
{
SetMem (mCFreq, NC * sizeof (UINT16), 0);
SetMem (mPFreq, NP * sizeof (UINT16), 0);
mOutputPos = mOutputMask = 0;
mBitCount = UINT8_BIT;
mSubBitBuf = 0;
}
/**
Outputs an Original Character or a Pointer.
@param[in] LoopVar5 The original character or the 'String Length' element of
a Pointer.
@param[in] LoopVar7 The 'Position' field of a Pointer.
**/
VOID
CompressOutput (
IN UINT32 LoopVar5,
IN UINT32 LoopVar7
)
{
STATIC UINT32 CPos;
if ((mOutputMask >>= 1) == 0) {
mOutputMask = 1U << (UINT8_BIT - 1);
if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
SendBlock ();
mOutputPos = 0;
}
CPos = mOutputPos++;
mBuf[CPos] = 0;
}
mBuf[mOutputPos++] = (UINT8)LoopVar5;
mCFreq[LoopVar5]++;
if (LoopVar5 >= (1U << UINT8_BIT)) {
mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask);
mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT);
mBuf[mOutputPos++] = (UINT8)LoopVar7;
LoopVar5 = 0;
while (LoopVar7 != 0) {
LoopVar7 >>= 1;
LoopVar5++;
}
mPFreq[LoopVar5]++;
}
}
/**
End the huffman encoding.
**/
VOID
HufEncodeEnd (
VOID
)
{
SendBlock ();
//
// Flush remaining bits
//
PutBits (UINT8_BIT - 1, 0);
}
/**
The main controlling routine for compression process.
@retval EFI_SUCCESS The compression is successful.
@retval EFI_OUT_0F_RESOURCES Not enough memory for compression process.
**/
EFI_STATUS
Encode (
VOID
)
{
EFI_STATUS Status;
INT32 LastMatchLen;
NODE LastMatchPos;
Status = AllocateMemory ();
if (EFI_ERROR (Status)) {
FreeMemory ();
return Status;
}
InitSlide ();
HufEncodeStart ();
mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);
mMatchLen = 0;
mPos = WNDSIZ;
InsertNode ();
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
while (mRemainder > 0) {
LastMatchLen = mMatchLen;
LastMatchPos = mMatchPos;
if (!GetNextMatch ()) {
Status = EFI_OUT_OF_RESOURCES;
}
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
if ((mMatchLen > LastMatchLen) || (LastMatchLen < THRESHOLD)) {
//
// Not enough benefits are gained by outputting a pointer,
// so just output the original character
//
CompressOutput (mText[mPos - 1], 0);
} else {
//
// Outputting a pointer is beneficial enough, do it.
//
CompressOutput (
LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
(mPos - LastMatchPos - 2) & (WNDSIZ - 1)
);
LastMatchLen--;
while (LastMatchLen > 0) {
if (!GetNextMatch ()) {
Status = EFI_OUT_OF_RESOURCES;
}
LastMatchLen--;
}
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
}
}
HufEncodeEnd ();
FreeMemory ();
return (Status);
}
/**
The compression routine.
@param[in] SrcBuffer The buffer containing the source data.
@param[in] SrcSize Number of bytes in SrcBuffer.
@param[in] DstBuffer The buffer to put the compressed image in.
@param[in, out] DstSize On input the size (in bytes) of DstBuffer, on
return the number of bytes placed in DstBuffer.
@retval EFI_SUCCESS The compression was sucessful.
@retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required.
**/
EFI_STATUS
Compress (
IN VOID *SrcBuffer,
IN UINT64 SrcSize,
IN VOID *DstBuffer,
IN OUT UINT64 *DstSize
)
{
EFI_STATUS Status;
//
// Initializations
//
mBufSiz = 0;
mBuf = NULL;
mText = NULL;
mLevel = NULL;
mChildCount = NULL;
mPosition = NULL;
mParent = NULL;
mPrev = NULL;
mNext = NULL;
mSrc = SrcBuffer;
mSrcUpperLimit = mSrc + SrcSize;
mDst = DstBuffer;
mDstUpperLimit = mDst +*DstSize;
PutDword (0L);
PutDword (0L);
MakeCrcTable ();
mOrigSize = mCompSize = 0;
mCrc = INIT_CRC;
//
// Compress it
//
Status = Encode ();
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
//
// Null terminate the compressed data
//
if (mDst < mDstUpperLimit) {
*mDst++ = 0;
}
//
// Fill in compressed size and original size
//
mDst = DstBuffer;
PutDword (mCompSize + 1);
PutDword (mOrigSize);
//
// Return
//
if (mCompSize + 1 + 8 > *DstSize) {
*DstSize = mCompSize + 1 + 8;
return EFI_BUFFER_TOO_SMALL;
} else {
*DstSize = mCompSize + 1 + 8;
return EFI_SUCCESS;
}
}