mirror of https://github.com/acidanthera/audk.git
1006 lines
28 KiB
C
1006 lines
28 KiB
C
/*++
|
|
|
|
Copyright (c) 2006, Intel Corporation
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
|
|
SecMain.c
|
|
|
|
Abstract:
|
|
WinNt emulator of SEC phase. It's really a Posix application, but this is
|
|
Ok since all the other modules for NT32 are NOT Posix applications.
|
|
|
|
This program processes host environment variables and figures out
|
|
what the memory layout will be, how may FD's will be loaded and also
|
|
what the boot mode is.
|
|
|
|
The SEC registers a set of services with the SEC core. gPrivateDispatchTable
|
|
is a list of PPI's produced by the SEC that are availble for usage in PEI.
|
|
|
|
This code produces 128 K of temporary memory for the PEI stack by opening a
|
|
host file and mapping it directly to memory addresses.
|
|
|
|
The system.cmd script is used to set host environment variables that drive
|
|
the configuration opitons of the SEC.
|
|
|
|
--*/
|
|
|
|
#include "SecMain.h"
|
|
#include <stdlib.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/fcntl.h>
|
|
#include <unistd.h>
|
|
|
|
//
|
|
// Globals
|
|
//
|
|
EFI_PEI_PE_COFF_LOADER_PROTOCOL_INSTANCE mPeiEfiPeiPeCoffLoaderInstance = {
|
|
{
|
|
SecNt32PeCoffGetImageInfo,
|
|
SecNt32PeCoffLoadImage,
|
|
SecNt32PeCoffRelocateImage,
|
|
SecNt32PeCoffUnloadimage
|
|
},
|
|
NULL
|
|
};
|
|
|
|
|
|
|
|
EFI_PEI_PE_COFF_LOADER_PROTOCOL *gPeiEfiPeiPeCoffLoader = &mPeiEfiPeiPeCoffLoaderInstance.PeCoff;
|
|
|
|
UNIX_PEI_LOAD_FILE_PPI mSecNtLoadFilePpi = { SecWinNtPeiLoadFile };
|
|
|
|
PEI_UNIX_AUTOSCAN_PPI mSecNtAutoScanPpi = { SecWinNtPeiAutoScan };
|
|
|
|
PEI_UNIX_THUNK_PPI mSecWinNtThunkPpi = { SecWinNtWinNtThunkAddress };
|
|
|
|
EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode };
|
|
|
|
UNIX_FWH_PPI mSecFwhInformationPpi = { SecWinNtFdAddress };
|
|
|
|
|
|
EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = {
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gEfiPeiPeCoffLoaderGuid,
|
|
NULL
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gUnixPeiLoadFilePpiGuid,
|
|
&mSecNtLoadFilePpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gPeiUnixAutoScanPpiGuid,
|
|
&mSecNtAutoScanPpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gPeiUnixThunkPpiGuid,
|
|
&mSecWinNtThunkPpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gEfiPeiStatusCodePpiGuid,
|
|
&mSecStatusCodePpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
|
|
&gUnixFwhPpiGuid,
|
|
&mSecFwhInformationPpi
|
|
}
|
|
};
|
|
|
|
|
|
//
|
|
// Default information about where the FD is located.
|
|
// This array gets filled in with information from EFI_FIRMWARE_VOLUMES
|
|
// EFI_FIRMWARE_VOLUMES is a host environment variable set by system.cmd.
|
|
// The number of array elements is allocated base on parsing
|
|
// EFI_FIRMWARE_VOLUMES and the memory is never freed.
|
|
//
|
|
UINTN gFdInfoCount = 0;
|
|
UNIX_FD_INFO *gFdInfo;
|
|
|
|
//
|
|
// Array that supports seperate memory rantes.
|
|
// The memory ranges are set in system.cmd via the EFI_MEMORY_SIZE variable.
|
|
// The number of array elements is allocated base on parsing
|
|
// EFI_MEMORY_SIZE and the memory is never freed.
|
|
//
|
|
UINTN gSystemMemoryCount = 0;
|
|
UNIX_SYSTEM_MEMORY *gSystemMemory;
|
|
|
|
|
|
STATIC
|
|
EFI_PHYSICAL_ADDRESS *
|
|
MapMemory (
|
|
INTN fd,
|
|
UINT64 length,
|
|
INTN prot,
|
|
INTN flags);
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
MapFile (
|
|
IN CHAR8 *FileName,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
|
|
OUT UINT64 *Length
|
|
);
|
|
|
|
|
|
INTN
|
|
EFIAPI
|
|
main (
|
|
IN INTN Argc,
|
|
IN CHAR8 **Argv,
|
|
IN CHAR8 **Envp
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Main entry point to SEC for WinNt. This is a unix program
|
|
|
|
Arguments:
|
|
Argc - Number of command line arguments
|
|
Argv - Array of command line argument strings
|
|
Envp - Array of environmemt variable strings
|
|
|
|
Returns:
|
|
0 - Normal exit
|
|
1 - Abnormal exit
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS InitialStackMemory;
|
|
UINT64 InitialStackMemorySize;
|
|
UINTN Index;
|
|
UINTN Index1;
|
|
UINTN Index2;
|
|
UINTN PeiIndex;
|
|
CHAR8 *FileName;
|
|
BOOLEAN Done;
|
|
VOID *PeiCoreFile;
|
|
CHAR16 *MemorySizeStr;
|
|
CHAR16 *FirmwareVolumesStr;
|
|
|
|
MemorySizeStr = (CHAR16 *)PcdGetPtr (PcdUnixMemorySizeForSecMain);
|
|
FirmwareVolumesStr = (CHAR16 *)PcdGetPtr (PcdUnixFirmwareVolume);
|
|
|
|
printf ("\nEDK SEC Main UNIX Emulation Environment from www.TianoCore.org\n");
|
|
|
|
//
|
|
// Allocate space for gSystemMemory Array
|
|
//
|
|
gSystemMemoryCount = CountSeperatorsInString (MemorySizeStr, '!') + 1;
|
|
gSystemMemory = calloc (gSystemMemoryCount, sizeof (UNIX_SYSTEM_MEMORY));
|
|
if (gSystemMemory == NULL) {
|
|
printf ("ERROR : Can not allocate memory for system. Exiting.\n");
|
|
exit (1);
|
|
}
|
|
//
|
|
// Allocate space for gSystemMemory Array
|
|
//
|
|
gFdInfoCount = CountSeperatorsInString (FirmwareVolumesStr, '!') + 1;
|
|
gFdInfo = calloc (gFdInfoCount, sizeof (UNIX_FD_INFO));
|
|
if (gFdInfo == NULL) {
|
|
printf ("ERROR : Can not allocate memory for fd info. Exiting.\n");
|
|
exit (1);
|
|
}
|
|
//
|
|
// Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION)
|
|
//
|
|
printf (" BootMode 0x%02x\n", FixedPcdGet32 (PcdUnixBootMode));
|
|
|
|
//
|
|
// Open up a 128K file to emulate temp memory for PEI.
|
|
// on a real platform this would be SRAM, or using the cache as RAM.
|
|
// Set InitialStackMemory to zero so WinNtOpenFile will allocate a new mapping
|
|
//
|
|
InitialStackMemorySize = 0x20000;
|
|
InitialStackMemory = (UINTN)MapMemory(0,
|
|
(UINT32) InitialStackMemorySize,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE);
|
|
if (InitialStackMemory == 0) {
|
|
printf ("ERROR : Can not open SecStack Exiting\n");
|
|
exit (1);
|
|
}
|
|
|
|
printf (" SEC passing in %u KB of temp RAM at 0x%08lx to PEI\n",
|
|
(UINTN)(InitialStackMemorySize / 1024),
|
|
(unsigned long)InitialStackMemory);
|
|
|
|
//
|
|
// Open All the firmware volumes and remember the info in the gFdInfo global
|
|
//
|
|
FileName = (CHAR8 *)malloc (StrLen (FirmwareVolumesStr) + 1);
|
|
if (FileName == NULL) {
|
|
printf ("ERROR : Can not allocate memory for firmware volume string\n");
|
|
exit (1);
|
|
}
|
|
|
|
Index2 = 0;
|
|
for (Done = FALSE, Index = 0, PeiIndex = 0, PeiCoreFile = NULL;
|
|
FirmwareVolumesStr[Index2] != 0;
|
|
Index++) {
|
|
for (Index1 = 0; (FirmwareVolumesStr[Index2] != '!') && (FirmwareVolumesStr[Index2] != 0); Index2++)
|
|
FileName[Index1++] = FirmwareVolumesStr[Index2];
|
|
if (FirmwareVolumesStr[Index2] == '!')
|
|
Index2++;
|
|
FileName[Index1] = '\0';
|
|
|
|
//
|
|
// Open the FD and remmeber where it got mapped into our processes address space
|
|
//
|
|
Status = MapFile (
|
|
FileName,
|
|
&gFdInfo[Index].Address,
|
|
&gFdInfo[Index].Size
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
printf ("ERROR : Can not open Firmware Device File %s (%x). Exiting.\n", FileName, Status);
|
|
exit (1);
|
|
}
|
|
|
|
printf (" FD loaded from %s at 0x%08lx",
|
|
FileName, (unsigned long)gFdInfo[Index].Address);
|
|
|
|
if (PeiCoreFile == NULL) {
|
|
//
|
|
// Assume the beginning of the FD is an FV and look for the PEI Core.
|
|
// Load the first one we find.
|
|
//
|
|
Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile);
|
|
if (!EFI_ERROR (Status)) {
|
|
PeiIndex = Index;
|
|
printf (" contains SEC Core");
|
|
}
|
|
}
|
|
|
|
printf ("\n");
|
|
}
|
|
//
|
|
// Calculate memory regions and store the information in the gSystemMemory
|
|
// global for later use. The autosizing code will use this data to
|
|
// map this memory into the SEC process memory space.
|
|
//
|
|
Index1 = 0;
|
|
Index = 0;
|
|
while (1) {
|
|
UINTN val = 0;
|
|
//
|
|
// Save the size of the memory.
|
|
//
|
|
while (MemorySizeStr[Index1] >= '0' && MemorySizeStr[Index1] <= '9') {
|
|
val = val * 10 + MemorySizeStr[Index1] - '0';
|
|
Index1++;
|
|
}
|
|
gSystemMemory[Index++].Size = val * 0x100000;
|
|
if (MemorySizeStr[Index1] == 0)
|
|
break;
|
|
Index1++;
|
|
}
|
|
|
|
printf ("\n");
|
|
|
|
//
|
|
// Hand off to PEI Core
|
|
//
|
|
SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile);
|
|
|
|
//
|
|
// If we get here, then the PEI Core returned. This is an error as PEI should
|
|
// always hand off to DXE.
|
|
//
|
|
printf ("ERROR : PEI Core returned\n");
|
|
exit (1);
|
|
}
|
|
|
|
EFI_PHYSICAL_ADDRESS *
|
|
MapMemory (
|
|
INTN fd,
|
|
UINT64 length,
|
|
INTN prot,
|
|
INTN flags)
|
|
{
|
|
STATIC UINTN base = 0x40000000;
|
|
CONST UINTN align = (1 << 24);
|
|
VOID *res;
|
|
BOOLEAN isAligned = 0;
|
|
|
|
//
|
|
// Try to get an aligned block somewhere in the address space of this
|
|
// process.
|
|
//
|
|
while((!isAligned) && (base != 0)) {
|
|
res = mmap ((void *)base, length, prot, flags, fd, 0);
|
|
if (res == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
if ((((UINTN)res) & ~(align-1)) == (UINTN)res) {
|
|
isAligned=1;
|
|
}
|
|
else {
|
|
munmap(res, length);
|
|
base += align;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
EFI_STATUS
|
|
MapFile (
|
|
IN CHAR8 *FileName,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
|
|
OUT UINT64 *Length
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Opens and memory maps a file using WinNt services. If BaseAddress is non zero
|
|
the process will try and allocate the memory starting at BaseAddress.
|
|
|
|
Arguments:
|
|
FileName - The name of the file to open and map
|
|
MapSize - The amount of the file to map in bytes
|
|
CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
|
|
memory emulation, and exiting files for firmware volume emulation
|
|
BaseAddress - The base address of the mapped file in the user address space.
|
|
If passed in as NULL the a new memory region is used.
|
|
If passed in as non NULL the request memory region is used for
|
|
the mapping of the file into the process space.
|
|
Length - The size of the mapped region in bytes
|
|
|
|
Returns:
|
|
EFI_SUCCESS - The file was opened and mapped.
|
|
EFI_NOT_FOUND - FileName was not found in the current directory
|
|
EFI_DEVICE_ERROR - An error occured attempting to map the opened file
|
|
|
|
--*/
|
|
{
|
|
int fd;
|
|
VOID *res;
|
|
UINTN FileSize;
|
|
|
|
fd = open (FileName, O_RDONLY);
|
|
if (fd < 0)
|
|
return EFI_NOT_FOUND;
|
|
FileSize = lseek (fd, 0, SEEK_END);
|
|
|
|
#if 0
|
|
if (IsMain)
|
|
{
|
|
/* Read entry address. */
|
|
lseek (fd, FileSize - 0x20, SEEK_SET);
|
|
if (read (fd, &EntryAddress, 4) != 4)
|
|
{
|
|
close (fd);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
res = MapMemory(fd, FileSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
|
|
|
|
close (fd);
|
|
|
|
if (res == MAP_FAILED)
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
*Length = (UINT64) FileSize;
|
|
*BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) res;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
#define BYTES_PER_RECORD 512
|
|
|
|
/**
|
|
Extracts ASSERT() information from a status code structure.
|
|
|
|
Converts the status code specified by CodeType, Value, and Data to the ASSERT()
|
|
arguments specified by Filename, Description, and LineNumber. If CodeType is
|
|
an EFI_ERROR_CODE, and CodeType has a severity of EFI_ERROR_UNRECOVERED, and
|
|
Value has an operation mask of EFI_SW_EC_ILLEGAL_SOFTWARE_STATE, extract
|
|
Filename, Description, and LineNumber from the optional data area of the
|
|
status code buffer specified by Data. The optional data area of Data contains
|
|
a Null-terminated ASCII string for the FileName, followed by a Null-terminated
|
|
ASCII string for the Description, followed by a 32-bit LineNumber. If the
|
|
ASSERT() information could be extracted from Data, then return TRUE.
|
|
Otherwise, FALSE is returned.
|
|
|
|
If Data is NULL, then ASSERT().
|
|
If Filename is NULL, then ASSERT().
|
|
If Description is NULL, then ASSERT().
|
|
If LineNumber is NULL, then ASSERT().
|
|
|
|
@param CodeType The type of status code being converted.
|
|
@param Value The status code value being converted.
|
|
@param Data Pointer to status code data buffer.
|
|
@param Filename Pointer to the source file name that generated the ASSERT().
|
|
@param Description Pointer to the description of the ASSERT().
|
|
@param LineNumber Pointer to source line number that generated the ASSERT().
|
|
|
|
@retval TRUE The status code specified by CodeType, Value, and Data was
|
|
converted ASSERT() arguments specified by Filename, Description,
|
|
and LineNumber.
|
|
@retval FALSE The status code specified by CodeType, Value, and Data could
|
|
not be converted to ASSERT() arguments.
|
|
|
|
**/
|
|
STATIC
|
|
BOOLEAN
|
|
ReportStatusCodeExtractAssertInfo (
|
|
IN EFI_STATUS_CODE_TYPE CodeType,
|
|
IN EFI_STATUS_CODE_VALUE Value,
|
|
IN CONST EFI_STATUS_CODE_DATA *Data,
|
|
OUT CHAR8 **Filename,
|
|
OUT CHAR8 **Description,
|
|
OUT UINT32 *LineNumber
|
|
)
|
|
{
|
|
EFI_DEBUG_ASSERT_DATA *AssertData;
|
|
|
|
ASSERT (Data != NULL);
|
|
ASSERT (Filename != NULL);
|
|
ASSERT (Description != NULL);
|
|
ASSERT (LineNumber != NULL);
|
|
|
|
if (((CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_ERROR_CODE) &&
|
|
((CodeType & EFI_STATUS_CODE_SEVERITY_MASK) == EFI_ERROR_UNRECOVERED) &&
|
|
((Value & EFI_STATUS_CODE_OPERATION_MASK) == EFI_SW_EC_ILLEGAL_SOFTWARE_STATE)) {
|
|
AssertData = (EFI_DEBUG_ASSERT_DATA *)(Data + 1);
|
|
*Filename = (CHAR8 *)(AssertData + 1);
|
|
*Description = *Filename + AsciiStrLen (*Filename) + 1;
|
|
*LineNumber = AssertData->LineNumber;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecPeiReportStatusCode (
|
|
IN EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_STATUS_CODE_TYPE CodeType,
|
|
IN EFI_STATUS_CODE_VALUE Value,
|
|
IN UINT32 Instance,
|
|
IN EFI_GUID * CallerId,
|
|
IN EFI_STATUS_CODE_DATA * Data OPTIONAL
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine produces the ReportStatusCode PEI service. It's passed
|
|
up to the PEI Core via a PPI. T
|
|
|
|
This code currently uses the UNIX clib printf. This does not work the same way
|
|
as the EFI Print (), as %t, %g, %s as Unicode are not supported.
|
|
|
|
Arguments:
|
|
(see EFI_PEI_REPORT_STATUS_CODE)
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Always return success
|
|
|
|
--*/
|
|
// TODO: PeiServices - add argument and description to function comment
|
|
// TODO: CodeType - add argument and description to function comment
|
|
// TODO: Value - add argument and description to function comment
|
|
// TODO: Instance - add argument and description to function comment
|
|
// TODO: CallerId - add argument and description to function comment
|
|
// TODO: Data - add argument and description to function comment
|
|
{
|
|
CHAR8 *Format;
|
|
EFI_DEBUG_INFO *DebugInfo;
|
|
VA_LIST Marker;
|
|
CHAR8 PrintBuffer[BYTES_PER_RECORD * 2];
|
|
CHAR8 *Filename;
|
|
CHAR8 *Description;
|
|
UINT32 LineNumber;
|
|
|
|
if ((CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_DEBUG_CODE) {
|
|
//
|
|
// This supports DEBUG () marcos
|
|
// Data format
|
|
// EFI_STATUS_CODE_DATA
|
|
// EFI_DEBUG_INFO
|
|
//
|
|
// The first 12 * UINT64 bytes of the string are really an
|
|
// arguement stack to support varargs on the Format string.
|
|
//
|
|
if (Data != NULL) {
|
|
DebugInfo = (EFI_DEBUG_INFO *) (Data + 1);
|
|
Marker = (VA_LIST) (DebugInfo + 1);
|
|
Format = (CHAR8 *) (((UINT64 *) Marker) + 12);
|
|
|
|
AsciiVSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker);
|
|
printf (PrintBuffer);
|
|
} else {
|
|
printf ("DEBUG <null>\n");
|
|
}
|
|
}
|
|
|
|
if (((CodeType & EFI_STATUS_CODE_TYPE_MASK) == EFI_ERROR_CODE) &&
|
|
((CodeType & EFI_STATUS_CODE_SEVERITY_MASK) == EFI_ERROR_UNRECOVERED)
|
|
) {
|
|
if (Data != NULL && ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) {
|
|
//
|
|
// Support ASSERT () macro
|
|
//
|
|
printf ("ASSERT %s(%d): %s\n", Filename, LineNumber, Description);
|
|
} else {
|
|
printf ("ASSERT <null>\n");
|
|
}
|
|
CpuBreakpoint ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
VOID
|
|
SecLoadFromCore (
|
|
IN UINTN LargestRegion,
|
|
IN UINTN LargestRegionSize,
|
|
IN UINTN BootFirmwareVolumeBase,
|
|
IN VOID *PeiCorePe32File
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
This is the service to load the PEI Core from the Firmware Volume
|
|
|
|
Arguments:
|
|
LargestRegion - Memory to use for PEI.
|
|
LargestRegionSize - Size of Memory to use for PEI
|
|
BootFirmwareVolumeBase - Start of the Boot FV
|
|
PeiCorePe32File - PEI Core PE32
|
|
|
|
Returns:
|
|
Success means control is transfered and thus we should never return
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS TopOfMemory;
|
|
VOID *TopOfStack;
|
|
UINT64 PeiCoreSize;
|
|
EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint;
|
|
EFI_PHYSICAL_ADDRESS PeiImageAddress;
|
|
EFI_PEI_STARTUP_DESCRIPTOR *PeiStartup;
|
|
|
|
//
|
|
// Compute Top Of Memory for Stack and PEI Core Allocations
|
|
//
|
|
TopOfMemory = LargestRegion + LargestRegionSize;
|
|
|
|
//
|
|
// Allocate 128KB for the Stack
|
|
//
|
|
TopOfStack = (VOID *)((UINTN)TopOfMemory - sizeof (EFI_PEI_STARTUP_DESCRIPTOR) - CPU_STACK_ALIGNMENT);
|
|
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
|
|
TopOfMemory = TopOfMemory - STACK_SIZE;
|
|
|
|
//
|
|
// Patch value in dispatch table values
|
|
//
|
|
gPrivateDispatchTable[0].Ppi = gPeiEfiPeiPeCoffLoader;
|
|
|
|
//
|
|
// Bind this information into the SEC hand-off state
|
|
//
|
|
PeiStartup = (EFI_PEI_STARTUP_DESCRIPTOR *) (UINTN) TopOfStack;
|
|
PeiStartup->DispatchTable = (EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable;
|
|
PeiStartup->SizeOfCacheAsRam = STACK_SIZE;
|
|
PeiStartup->BootFirmwareVolume = BootFirmwareVolumeBase;
|
|
|
|
//
|
|
// Load the PEI Core from a Firmware Volume
|
|
//
|
|
Status = SecWinNtPeiLoadFile (
|
|
PeiCorePe32File,
|
|
&PeiImageAddress,
|
|
&PeiCoreSize,
|
|
&PeiCoreEntryPoint
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return ;
|
|
}
|
|
printf ("Jump to 0x%08lx\n", (unsigned long)PeiCoreEntryPoint);
|
|
//
|
|
// Transfer control to the PEI Core
|
|
//
|
|
SwitchStack (
|
|
(SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint,
|
|
PeiStartup,
|
|
NULL,
|
|
TopOfStack
|
|
);
|
|
//
|
|
// If we get here, then the PEI Core returned. This is an error
|
|
//
|
|
return ;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecWinNtPeiAutoScan (
|
|
IN UINTN Index,
|
|
OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
|
|
OUT UINT64 *MemorySize
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
|
|
It allows discontiguous memory regions to be supported by the emulator.
|
|
It uses gSystemMemory[] and gSystemMemoryCount that were created by
|
|
parsing the host environment variable EFI_MEMORY_SIZE.
|
|
The size comes from the varaible and the address comes from the call to
|
|
WinNtOpenFile.
|
|
|
|
Arguments:
|
|
Index - Which memory region to use
|
|
MemoryBase - Return Base address of memory region
|
|
MemorySize - Return size in bytes of the memory region
|
|
|
|
Returns:
|
|
EFI_SUCCESS - If memory region was mapped
|
|
EFI_UNSUPPORTED - If Index is not supported
|
|
|
|
--*/
|
|
{
|
|
void *res;
|
|
|
|
if (Index >= gSystemMemoryCount) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
*MemoryBase = 0;
|
|
res = MapMemory(0, gSystemMemory[Index].Size,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANONYMOUS);
|
|
if (res == MAP_FAILED)
|
|
return EFI_DEVICE_ERROR;
|
|
*MemorySize = gSystemMemory[Index].Size;
|
|
*MemoryBase = (UINTN)res;
|
|
gSystemMemory[Index].Memory = *MemoryBase;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
VOID *
|
|
EFIAPI
|
|
SecWinNtWinNtThunkAddress (
|
|
VOID
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Since the SEC is the only Unix program in stack it must export
|
|
an interface to do Win API calls. That's what the WinNtThunk address
|
|
is for. gWinNt is initailized in WinNtThunk.c.
|
|
|
|
Arguments:
|
|
InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
|
|
InterfaceBase - Address of the gWinNt global
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Data returned
|
|
|
|
--*/
|
|
{
|
|
return gUnix;
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecWinNtPeiLoadFile (
|
|
IN VOID *Pe32Data,
|
|
IN EFI_PHYSICAL_ADDRESS *ImageAddress,
|
|
IN UINT64 *ImageSize,
|
|
IN EFI_PHYSICAL_ADDRESS *EntryPoint
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Loads and relocates a PE/COFF image into memory.
|
|
|
|
Arguments:
|
|
Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
|
|
ImageAddress - The base address of the relocated PE/COFF image
|
|
ImageSize - The size of the relocated PE/COFF image
|
|
EntryPoint - The entry point of the relocated PE/COFF image
|
|
|
|
Returns:
|
|
EFI_SUCCESS - The file was loaded and relocated
|
|
EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = Pe32Data;
|
|
|
|
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
|
|
|
|
Status = gPeiEfiPeiPeCoffLoader->GetImageInfo (gPeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Allocate space in UNIX (not emulator) memory. Extra space is for alignment
|
|
//
|
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) malloc ((UINTN) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)));
|
|
if (ImageContext.ImageAddress == 0) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// Align buffer on section boundry
|
|
//
|
|
ImageContext.ImageAddress += ImageContext.SectionAlignment;
|
|
ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1);
|
|
|
|
|
|
Status = gPeiEfiPeiPeCoffLoader->LoadImage (gPeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
Status = gPeiEfiPeiPeCoffLoader->RelocateImage (gPeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// BugBug: Flush Instruction Cache Here when CPU Lib is ready
|
|
//
|
|
|
|
*ImageAddress = ImageContext.ImageAddress;
|
|
*ImageSize = ImageContext.ImageSize;
|
|
*EntryPoint = ImageContext.EntryPoint;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecWinNtFdAddress (
|
|
IN UINTN Index,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
|
|
IN OUT UINT64 *FdSize
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Return the FD Size and base address. Since the FD is loaded from a
|
|
file into host memory only the SEC will know it's address.
|
|
|
|
Arguments:
|
|
Index - Which FD, starts at zero.
|
|
FdSize - Size of the FD in bytes
|
|
FdBase - Start address of the FD. Assume it points to an FV Header
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Return the Base address and size of the FV
|
|
EFI_UNSUPPORTED - Index does nto map to an FD in the system
|
|
|
|
--*/
|
|
{
|
|
if (Index >= gFdInfoCount) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
*FdBase = gFdInfo[Index].Address;
|
|
*FdSize = gFdInfo[Index].Size;
|
|
|
|
if (*FdBase == 0 && *FdSize == 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecImageRead (
|
|
IN VOID *FileHandle,
|
|
IN UINTN FileOffset,
|
|
IN OUT UINTN *ReadSize,
|
|
OUT VOID *Buffer
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
|
|
|
|
Arguments:
|
|
FileHandle - The handle to the PE/COFF file
|
|
FileOffset - The offset, in bytes, into the file to read
|
|
ReadSize - The number of bytes to read from the file starting at FileOffset
|
|
Buffer - A pointer to the buffer to read the data into.
|
|
|
|
Returns:
|
|
EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
|
|
|
|
--*/
|
|
{
|
|
CHAR8 *Destination8;
|
|
CHAR8 *Source8;
|
|
UINTN Length;
|
|
|
|
Destination8 = Buffer;
|
|
Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
|
|
Length = *ReadSize;
|
|
while (Length--) {
|
|
*(Destination8++) = *(Source8++);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
UINTN
|
|
CountSeperatorsInString (
|
|
IN const CHAR16 *String,
|
|
IN CHAR16 Seperator
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Count the number of seperators in String
|
|
|
|
Arguments:
|
|
String - String to process
|
|
Seperator - Item to count
|
|
|
|
Returns:
|
|
Number of Seperator in String
|
|
|
|
--*/
|
|
{
|
|
UINTN Count;
|
|
|
|
for (Count = 0; *String != '\0'; String++) {
|
|
if (*String == Seperator) {
|
|
Count++;
|
|
}
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecNt32PeCoffGetImageInfo (
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
|
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
Status = PeCoffLoaderGetImageInfo (ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
switch (ImageContext->ImageType) {
|
|
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION:
|
|
ImageContext->ImageCodeMemoryType = EfiLoaderCode;
|
|
ImageContext->ImageDataMemoryType = EfiLoaderData;
|
|
break;
|
|
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
|
|
ImageContext->ImageCodeMemoryType = EfiBootServicesCode;
|
|
ImageContext->ImageDataMemoryType = EfiBootServicesData;
|
|
break;
|
|
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
|
|
case EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
|
|
ImageContext->ImageCodeMemoryType = EfiRuntimeServicesCode;
|
|
ImageContext->ImageDataMemoryType = EfiRuntimeServicesData;
|
|
break;
|
|
|
|
default:
|
|
ImageContext->ImageError = IMAGE_ERROR_INVALID_SUBSYSTEM;
|
|
return RETURN_UNSUPPORTED;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecNt32PeCoffLoadImage (
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
|
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
Status = PeCoffLoaderLoadImage (ImageContext);
|
|
return Status;
|
|
}
|
|
|
|
VOID
|
|
SecUnixLoaderBreak (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecNt32PeCoffRelocateImage (
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
|
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
|
|
#if 0
|
|
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
|
|
EFI_IMAGE_SECTION_HEADER *Sec;
|
|
INTN i;
|
|
#endif
|
|
|
|
fprintf (stderr,
|
|
"Loading %s 0x%08lx - entry point 0x%08lx\n",
|
|
ImageContext->PdbPointer,
|
|
(unsigned long)ImageContext->ImageAddress,
|
|
(unsigned long)ImageContext->EntryPoint);
|
|
|
|
#if 0
|
|
Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)
|
|
((UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset);
|
|
Sec = (EFI_IMAGE_SECTION_HEADER*)
|
|
((UINTN)ImageContext->ImageAddress
|
|
+ ImageContext->PeCoffHeaderOffset
|
|
+ sizeof(UINT32)
|
|
+ sizeof(EFI_IMAGE_FILE_HEADER)
|
|
+ Hdr.Pe32->FileHeader.SizeOfOptionalHeader);
|
|
for (i = 0; i < Hdr.Pe32->FileHeader.NumberOfSections; i++)
|
|
fprintf (stderr, " %s 0x%08lx\n",
|
|
Sec[i].Name, (unsigned long)Sec[i].VirtualAddress);
|
|
#endif
|
|
|
|
SecUnixLoaderBreak ();
|
|
|
|
return PeCoffLoaderRelocateImage (ImageContext);
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecNt32PeCoffUnloadimage (
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
|
|
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
VOID
|
|
_ModuleEntryPoint (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|