mirror of https://github.com/acidanthera/audk.git
2121 lines
69 KiB
C
2121 lines
69 KiB
C
/** @file
|
|
Implement image verification services for secure boot service
|
|
|
|
Caution: This file requires additional review when modified.
|
|
This library will have external input - PE/COFF image.
|
|
This external input must be validated carefully to avoid security issue like
|
|
buffer overflow, integer overflow.
|
|
|
|
DxeImageVerificationLibImageRead() function will make sure the PE/COFF image content
|
|
read is within the image buffer.
|
|
|
|
DxeImageVerificationHandler(), HashPeImageByType(), HashPeImage() function will accept
|
|
untrusted PE/COFF image and validate its data structure within this image buffer before use.
|
|
|
|
Copyright (c) 2009 - 2018, Intel Corporation. All rights reserved.<BR>
|
|
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "DxeImageVerificationLib.h"
|
|
|
|
//
|
|
// Caution: This is used by a function which may receive untrusted input.
|
|
// These global variables hold PE/COFF image data, and they should be validated before use.
|
|
//
|
|
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION mNtHeader;
|
|
UINT32 mPeCoffHeaderOffset;
|
|
EFI_GUID mCertType;
|
|
|
|
//
|
|
// Information on current PE/COFF image
|
|
//
|
|
UINTN mImageSize;
|
|
UINT8 *mImageBase = NULL;
|
|
UINT8 mImageDigest[MAX_DIGEST_SIZE];
|
|
UINTN mImageDigestSize;
|
|
|
|
//
|
|
// Notify string for authorization UI.
|
|
//
|
|
CHAR16 mNotifyString1[MAX_NOTIFY_STRING_LEN] = L"Image verification pass but not found in authorized database!";
|
|
CHAR16 mNotifyString2[MAX_NOTIFY_STRING_LEN] = L"Launch this image anyway? (Yes/Defer/No)";
|
|
//
|
|
// Public Exponent of RSA Key.
|
|
//
|
|
CONST UINT8 mRsaE[] = { 0x01, 0x00, 0x01 };
|
|
|
|
//
|
|
// OID ASN.1 Value for Hash Algorithms
|
|
//
|
|
UINT8 mHashOidValue[] = {
|
|
0x2B, 0x0E, 0x03, 0x02, 0x1A, // OBJ_sha1
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, // OBJ_sha224
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, // OBJ_sha256
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, // OBJ_sha384
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, // OBJ_sha512
|
|
};
|
|
|
|
HASH_TABLE mHash[] = {
|
|
#ifndef DISABLE_SHA1_DEPRECATED_INTERFACES
|
|
{ L"SHA1", 20, &mHashOidValue[0], 5, Sha1GetContextSize, Sha1Init, Sha1Update, Sha1Final },
|
|
#else
|
|
{ L"SHA1", 20, &mHashOidValue[0], 5, NULL, NULL, NULL, NULL },
|
|
#endif
|
|
{ L"SHA224", 28, &mHashOidValue[5], 9, NULL, NULL, NULL, NULL },
|
|
{ L"SHA256", 32, &mHashOidValue[14], 9, Sha256GetContextSize, Sha256Init, Sha256Update, Sha256Final },
|
|
{ L"SHA384", 48, &mHashOidValue[23], 9, Sha384GetContextSize, Sha384Init, Sha384Update, Sha384Final },
|
|
{ L"SHA512", 64, &mHashOidValue[32], 9, Sha512GetContextSize, Sha512Init, Sha512Update, Sha512Final }
|
|
};
|
|
|
|
EFI_STRING mHashTypeStr;
|
|
|
|
/**
|
|
SecureBoot Hook for processing image verification.
|
|
|
|
@param[in] VariableName Name of Variable to be found.
|
|
@param[in] VendorGuid Variable vendor GUID.
|
|
@param[in] DataSize Size of Data found. If size is less than the
|
|
data, this value contains the required size.
|
|
@param[in] Data Data pointer.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
SecureBootHook (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
IN UINTN DataSize,
|
|
IN VOID *Data
|
|
);
|
|
|
|
/**
|
|
Reads contents of a PE/COFF image in memory buffer.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will make sure the PE/COFF image content
|
|
read is within the image buffer.
|
|
|
|
@param FileHandle Pointer to the file handle to read the PE/COFF image.
|
|
@param FileOffset Offset into the PE/COFF image to begin the read operation.
|
|
@param ReadSize On input, the size in bytes of the requested read operation.
|
|
On output, the number of bytes actually read.
|
|
@param Buffer Output buffer that contains the data read from the PE/COFF image.
|
|
|
|
@retval EFI_SUCCESS The specified portion of the PE/COFF image was read and the size
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationLibImageRead (
|
|
IN VOID *FileHandle,
|
|
IN UINTN FileOffset,
|
|
IN OUT UINTN *ReadSize,
|
|
OUT VOID *Buffer
|
|
)
|
|
{
|
|
UINTN EndPosition;
|
|
|
|
if ((FileHandle == NULL) || (ReadSize == NULL) || (Buffer == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (MAX_ADDRESS - FileOffset < *ReadSize) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
EndPosition = FileOffset + *ReadSize;
|
|
if (EndPosition > mImageSize) {
|
|
*ReadSize = (UINT32)(mImageSize - FileOffset);
|
|
}
|
|
|
|
if (FileOffset >= mImageSize) {
|
|
*ReadSize = 0;
|
|
}
|
|
|
|
CopyMem (Buffer, (UINT8 *)((UINTN)FileHandle + FileOffset), *ReadSize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Get the image type.
|
|
|
|
@param[in] File This is a pointer to the device path of the file that is
|
|
being dispatched.
|
|
|
|
@return UINT32 Image Type
|
|
|
|
**/
|
|
UINT32
|
|
GetImageType (
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *File
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE DeviceHandle;
|
|
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
|
|
EFI_BLOCK_IO_PROTOCOL *BlockIo;
|
|
|
|
if (File == NULL) {
|
|
return IMAGE_UNKNOWN;
|
|
}
|
|
|
|
//
|
|
// First check to see if File is from a Firmware Volume
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *)File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiFirmwareVolume2ProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = gBS->OpenProtocol (
|
|
DeviceHandle,
|
|
&gEfiFirmwareVolume2ProtocolGuid,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
return IMAGE_FROM_FV;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next check to see if File is from a Block I/O device
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *)File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiBlockIoProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
BlockIo = NULL;
|
|
Status = gBS->OpenProtocol (
|
|
DeviceHandle,
|
|
&gEfiBlockIoProtocolGuid,
|
|
(VOID **)&BlockIo,
|
|
NULL,
|
|
NULL,
|
|
EFI_OPEN_PROTOCOL_GET_PROTOCOL
|
|
);
|
|
if (!EFI_ERROR (Status) && (BlockIo != NULL)) {
|
|
if (BlockIo->Media != NULL) {
|
|
if (BlockIo->Media->RemovableMedia) {
|
|
//
|
|
// Block I/O is present and specifies the media is removable
|
|
//
|
|
return IMAGE_FROM_REMOVABLE_MEDIA;
|
|
} else {
|
|
//
|
|
// Block I/O is present and specifies the media is not removable
|
|
//
|
|
return IMAGE_FROM_FIXED_MEDIA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// File is not in a Firmware Volume or on a Block I/O device, so check to see if
|
|
// the device path supports the Simple File System Protocol.
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *)File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiSimpleFileSystemProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Simple File System is present without Block I/O, so assume media is fixed.
|
|
//
|
|
return IMAGE_FROM_FIXED_MEDIA;
|
|
}
|
|
|
|
//
|
|
// File is not from an FV, Block I/O or Simple File System, so the only options
|
|
// left are a PCI Option ROM and a Load File Protocol such as a PXE Boot from a NIC.
|
|
//
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *)File;
|
|
while (!IsDevicePathEndType (TempDevicePath)) {
|
|
switch (DevicePathType (TempDevicePath)) {
|
|
case MEDIA_DEVICE_PATH:
|
|
if (DevicePathSubType (TempDevicePath) == MEDIA_RELATIVE_OFFSET_RANGE_DP) {
|
|
return IMAGE_FROM_OPTION_ROM;
|
|
}
|
|
|
|
break;
|
|
|
|
case MESSAGING_DEVICE_PATH:
|
|
if (DevicePathSubType (TempDevicePath) == MSG_MAC_ADDR_DP) {
|
|
return IMAGE_FROM_REMOVABLE_MEDIA;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
TempDevicePath = NextDevicePathNode (TempDevicePath);
|
|
}
|
|
|
|
return IMAGE_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
Calculate hash of Pe/Coff image based on the authenticode image hashing in
|
|
PE/COFF Specification 8.0 Appendix A
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will validate its data structure
|
|
within this image buffer before use.
|
|
|
|
Notes: PE/COFF image has been checked by BasePeCoffLib PeCoffLoaderGetImageInfo() in
|
|
its caller function DxeImageVerificationHandler().
|
|
|
|
@param[in] HashAlg Hash algorithm type.
|
|
|
|
@retval TRUE Successfully hash image.
|
|
@retval FALSE Fail in hash image.
|
|
|
|
**/
|
|
BOOLEAN
|
|
HashPeImage (
|
|
IN UINT32 HashAlg
|
|
)
|
|
{
|
|
BOOLEAN Status;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
VOID *HashCtx;
|
|
UINTN CtxSize;
|
|
UINT8 *HashBase;
|
|
UINTN HashSize;
|
|
UINTN SumOfBytesHashed;
|
|
EFI_IMAGE_SECTION_HEADER *SectionHeader;
|
|
UINTN Index;
|
|
UINTN Pos;
|
|
UINT32 CertSize;
|
|
UINT32 NumberOfRvaAndSizes;
|
|
|
|
HashCtx = NULL;
|
|
SectionHeader = NULL;
|
|
Status = FALSE;
|
|
|
|
if ((HashAlg >= HASHALG_MAX)) {
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// Initialize context of hash.
|
|
//
|
|
ZeroMem (mImageDigest, MAX_DIGEST_SIZE);
|
|
|
|
switch (HashAlg) {
|
|
#ifndef DISABLE_SHA1_DEPRECATED_INTERFACES
|
|
case HASHALG_SHA1:
|
|
mImageDigestSize = SHA1_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha1Guid;
|
|
break;
|
|
#endif
|
|
|
|
case HASHALG_SHA256:
|
|
mImageDigestSize = SHA256_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha256Guid;
|
|
break;
|
|
|
|
case HASHALG_SHA384:
|
|
mImageDigestSize = SHA384_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha384Guid;
|
|
break;
|
|
|
|
case HASHALG_SHA512:
|
|
mImageDigestSize = SHA512_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha512Guid;
|
|
break;
|
|
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
mHashTypeStr = mHash[HashAlg].Name;
|
|
CtxSize = mHash[HashAlg].GetContextSize ();
|
|
|
|
HashCtx = AllocatePool (CtxSize);
|
|
if (HashCtx == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
// 1. Load the image header into memory.
|
|
|
|
// 2. Initialize a SHA hash context.
|
|
Status = mHash[HashAlg].HashInit (HashCtx);
|
|
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Measuring PE/COFF Image Header;
|
|
// But CheckSum field and SECURITY data directory (certificate) are excluded
|
|
//
|
|
|
|
//
|
|
// 3. Calculate the distance from the base of the image header to the image checksum address.
|
|
// 4. Hash the image header from its base to beginning of the image checksum.
|
|
//
|
|
HashBase = mImageBase;
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashSize = (UINTN)(&mNtHeader.Pe32->OptionalHeader.CheckSum) - (UINTN)HashBase;
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32->OptionalHeader.NumberOfRvaAndSizes;
|
|
} else if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashSize = (UINTN)(&mNtHeader.Pe32Plus->OptionalHeader.CheckSum) - (UINTN)HashBase;
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes;
|
|
} else {
|
|
//
|
|
// Invalid header magic number.
|
|
//
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 5. Skip over the image checksum (it occupies a single ULONG).
|
|
//
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
//
|
|
// 6. Since there is no Cert Directory in optional header, hash everything
|
|
// from the end of the checksum to the end of image header.
|
|
//
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders - ((UINTN)HashBase - (UINTN)mImageBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders - ((UINTN)HashBase - (UINTN)mImageBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// 7. Hash everything from the end of the checksum to the start of the Cert Directory.
|
|
//
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN)(&mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - (UINTN)HashBase;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN)(&mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - (UINTN)HashBase;
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 8. Skip over the Cert Directory. (It is sizeof(IMAGE_DATA_DIRECTORY) bytes.)
|
|
// 9. Hash everything from the end of the Cert Directory to the end of image header.
|
|
//
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders - ((UINTN)HashBase - (UINTN)mImageBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *)&mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders - ((UINTN)HashBase - (UINTN)mImageBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 10. Set the SUM_OF_BYTES_HASHED to the size of the header.
|
|
//
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
SumOfBytesHashed = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
SumOfBytesHashed = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders;
|
|
}
|
|
|
|
Section = (EFI_IMAGE_SECTION_HEADER *)(
|
|
mImageBase +
|
|
mPeCoffHeaderOffset +
|
|
sizeof (UINT32) +
|
|
sizeof (EFI_IMAGE_FILE_HEADER) +
|
|
mNtHeader.Pe32->FileHeader.SizeOfOptionalHeader
|
|
);
|
|
|
|
//
|
|
// 11. Build a temporary table of pointers to all the IMAGE_SECTION_HEADER
|
|
// structures in the image. The 'NumberOfSections' field of the image
|
|
// header indicates how big the table should be. Do not include any
|
|
// IMAGE_SECTION_HEADERs in the table whose 'SizeOfRawData' field is zero.
|
|
//
|
|
SectionHeader = (EFI_IMAGE_SECTION_HEADER *)AllocateZeroPool (sizeof (EFI_IMAGE_SECTION_HEADER) * mNtHeader.Pe32->FileHeader.NumberOfSections);
|
|
if (SectionHeader == NULL) {
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 12. Using the 'PointerToRawData' in the referenced section headers as
|
|
// a key, arrange the elements in the table in ascending order. In other
|
|
// words, sort the section headers according to the disk-file offset of
|
|
// the section.
|
|
//
|
|
for (Index = 0; Index < mNtHeader.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Pos = Index;
|
|
while ((Pos > 0) && (Section->PointerToRawData < SectionHeader[Pos - 1].PointerToRawData)) {
|
|
CopyMem (&SectionHeader[Pos], &SectionHeader[Pos - 1], sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Pos--;
|
|
}
|
|
|
|
CopyMem (&SectionHeader[Pos], Section, sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Section += 1;
|
|
}
|
|
|
|
//
|
|
// 13. Walk through the sorted table, bring the corresponding section
|
|
// into memory, and hash the entire section (using the 'SizeOfRawData'
|
|
// field in the section header to determine the amount of data to hash).
|
|
// 14. Add the section's 'SizeOfRawData' to SUM_OF_BYTES_HASHED .
|
|
// 15. Repeat steps 13 and 14 for all the sections in the sorted table.
|
|
//
|
|
for (Index = 0; Index < mNtHeader.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Section = &SectionHeader[Index];
|
|
if (Section->SizeOfRawData == 0) {
|
|
continue;
|
|
}
|
|
|
|
HashBase = mImageBase + Section->PointerToRawData;
|
|
HashSize = (UINTN)Section->SizeOfRawData;
|
|
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
SumOfBytesHashed += HashSize;
|
|
}
|
|
|
|
//
|
|
// 16. If the file size is greater than SUM_OF_BYTES_HASHED, there is extra
|
|
// data in the file that needs to be added to the hash. This data begins
|
|
// at file offset SUM_OF_BYTES_HASHED and its length is:
|
|
// FileSize - (CertDirectory->Size)
|
|
//
|
|
if (mImageSize > SumOfBytesHashed) {
|
|
HashBase = mImageBase + SumOfBytesHashed;
|
|
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
CertSize = 0;
|
|
} else {
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
CertSize = mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
CertSize = mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
}
|
|
}
|
|
|
|
if (mImageSize > CertSize + SumOfBytesHashed) {
|
|
HashSize = (UINTN)(mImageSize - CertSize - SumOfBytesHashed);
|
|
|
|
Status = mHash[HashAlg].HashUpdate (HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
} else if (mImageSize < CertSize + SumOfBytesHashed) {
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
Status = mHash[HashAlg].HashFinal (HashCtx, mImageDigest);
|
|
|
|
Done:
|
|
if (HashCtx != NULL) {
|
|
FreePool (HashCtx);
|
|
}
|
|
|
|
if (SectionHeader != NULL) {
|
|
FreePool (SectionHeader);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Recognize the Hash algorithm in PE/COFF Authenticode and calculate hash of
|
|
Pe/Coff image based on the authenticode image hashing in PE/COFF Specification
|
|
8.0 Appendix A
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will validate its data structure
|
|
within this image buffer before use.
|
|
|
|
@param[in] AuthData Pointer to the Authenticode Signature retrieved from signed image.
|
|
@param[in] AuthDataSize Size of the Authenticode Signature in bytes.
|
|
|
|
@retval EFI_UNSUPPORTED Hash algorithm is not supported.
|
|
@retval EFI_SUCCESS Hash successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
HashPeImageByType (
|
|
IN UINT8 *AuthData,
|
|
IN UINTN AuthDataSize
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < HASHALG_MAX; Index++) {
|
|
//
|
|
// Check the Hash algorithm in PE/COFF Authenticode.
|
|
// According to PKCS#7 Definition:
|
|
// SignedData ::= SEQUENCE {
|
|
// version Version,
|
|
// digestAlgorithms DigestAlgorithmIdentifiers,
|
|
// contentInfo ContentInfo,
|
|
// .... }
|
|
// The DigestAlgorithmIdentifiers can be used to determine the hash algorithm in PE/COFF hashing
|
|
// This field has the fixed offset (+32) in final Authenticode ASN.1 data.
|
|
// Fixed offset (+32) is calculated based on two bytes of length encoding.
|
|
//
|
|
if ((*(AuthData + 1) & TWO_BYTE_ENCODE) != TWO_BYTE_ENCODE) {
|
|
//
|
|
// Only support two bytes of Long Form of Length Encoding.
|
|
//
|
|
continue;
|
|
}
|
|
|
|
if (AuthDataSize < 32 + mHash[Index].OidLength) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (CompareMem (AuthData + 32, mHash[Index].OidValue, mHash[Index].OidLength) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == HASHALG_MAX) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// HASH PE Image based on Hash algorithm in PE/COFF Authenticode.
|
|
//
|
|
if (!HashPeImage (Index)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Returns the size of a given image execution info table in bytes.
|
|
|
|
This function returns the size, in bytes, of the image execution info table specified by
|
|
ImageExeInfoTable. If ImageExeInfoTable is NULL, then 0 is returned.
|
|
|
|
@param ImageExeInfoTable A pointer to a image execution info table structure.
|
|
|
|
@retval 0 If ImageExeInfoTable is NULL.
|
|
@retval Others The size of a image execution info table in bytes.
|
|
|
|
**/
|
|
UINTN
|
|
GetImageExeInfoTableSize (
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *ImageExeInfoTable
|
|
)
|
|
{
|
|
UINTN Index;
|
|
EFI_IMAGE_EXECUTION_INFO *ImageExeInfoItem;
|
|
UINTN TotalSize;
|
|
|
|
if (ImageExeInfoTable == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
ImageExeInfoItem = (EFI_IMAGE_EXECUTION_INFO *)((UINT8 *)ImageExeInfoTable + sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE));
|
|
TotalSize = sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE);
|
|
for (Index = 0; Index < ImageExeInfoTable->NumberOfImages; Index++) {
|
|
TotalSize += ReadUnaligned32 ((UINT32 *)&ImageExeInfoItem->InfoSize);
|
|
ImageExeInfoItem = (EFI_IMAGE_EXECUTION_INFO *)((UINT8 *)ImageExeInfoItem + ReadUnaligned32 ((UINT32 *)&ImageExeInfoItem->InfoSize));
|
|
}
|
|
|
|
return TotalSize;
|
|
}
|
|
|
|
/**
|
|
Create an Image Execution Information Table entry and add it to system configuration table.
|
|
|
|
@param[in] Action Describes the action taken by the firmware regarding this image.
|
|
@param[in] Name Input a null-terminated, user-friendly name.
|
|
@param[in] DevicePath Input device path pointer.
|
|
@param[in] Signature Input signature info in EFI_SIGNATURE_LIST data structure.
|
|
@param[in] SignatureSize Size of signature. Must be zero if Signature is NULL.
|
|
|
|
**/
|
|
VOID
|
|
AddImageExeInfo (
|
|
IN EFI_IMAGE_EXECUTION_ACTION Action,
|
|
IN CHAR16 *Name OPTIONAL,
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
|
|
IN EFI_SIGNATURE_LIST *Signature OPTIONAL,
|
|
IN UINTN SignatureSize
|
|
)
|
|
{
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *ImageExeInfoTable;
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *NewImageExeInfoTable;
|
|
EFI_IMAGE_EXECUTION_INFO *ImageExeInfoEntry;
|
|
UINTN ImageExeInfoTableSize;
|
|
UINTN NewImageExeInfoEntrySize;
|
|
UINTN NameStringLen;
|
|
UINTN DevicePathSize;
|
|
CHAR16 *NameStr;
|
|
|
|
ImageExeInfoTable = NULL;
|
|
NewImageExeInfoTable = NULL;
|
|
ImageExeInfoEntry = NULL;
|
|
NameStringLen = 0;
|
|
NameStr = NULL;
|
|
|
|
if (DevicePath == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (Name != NULL) {
|
|
NameStringLen = StrSize (Name);
|
|
} else {
|
|
NameStringLen = sizeof (CHAR16);
|
|
}
|
|
|
|
EfiGetSystemConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID **)&ImageExeInfoTable);
|
|
if (ImageExeInfoTable != NULL) {
|
|
//
|
|
// The table has been found!
|
|
// We must enlarge the table to accommodate the new exe info entry.
|
|
//
|
|
ImageExeInfoTableSize = GetImageExeInfoTableSize (ImageExeInfoTable);
|
|
} else {
|
|
//
|
|
// Not Found!
|
|
// We should create a new table to append to the configuration table.
|
|
//
|
|
ImageExeInfoTableSize = sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE);
|
|
}
|
|
|
|
DevicePathSize = GetDevicePathSize (DevicePath);
|
|
|
|
//
|
|
// Signature size can be odd. Pad after signature to ensure next EXECUTION_INFO entry align
|
|
//
|
|
ASSERT (Signature != NULL || SignatureSize == 0);
|
|
NewImageExeInfoEntrySize = sizeof (EFI_IMAGE_EXECUTION_INFO) + NameStringLen + DevicePathSize + SignatureSize;
|
|
|
|
NewImageExeInfoTable = (EFI_IMAGE_EXECUTION_INFO_TABLE *)AllocateRuntimePool (ImageExeInfoTableSize + NewImageExeInfoEntrySize);
|
|
if (NewImageExeInfoTable == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (ImageExeInfoTable != NULL) {
|
|
CopyMem (NewImageExeInfoTable, ImageExeInfoTable, ImageExeInfoTableSize);
|
|
} else {
|
|
NewImageExeInfoTable->NumberOfImages = 0;
|
|
}
|
|
|
|
NewImageExeInfoTable->NumberOfImages++;
|
|
ImageExeInfoEntry = (EFI_IMAGE_EXECUTION_INFO *)((UINT8 *)NewImageExeInfoTable + ImageExeInfoTableSize);
|
|
//
|
|
// Update new item's information.
|
|
//
|
|
WriteUnaligned32 ((UINT32 *)ImageExeInfoEntry, Action);
|
|
WriteUnaligned32 ((UINT32 *)((UINT8 *)ImageExeInfoEntry + sizeof (EFI_IMAGE_EXECUTION_ACTION)), (UINT32)NewImageExeInfoEntrySize);
|
|
|
|
NameStr = (CHAR16 *)(ImageExeInfoEntry + 1);
|
|
if (Name != NULL) {
|
|
CopyMem ((UINT8 *)NameStr, Name, NameStringLen);
|
|
} else {
|
|
ZeroMem ((UINT8 *)NameStr, sizeof (CHAR16));
|
|
}
|
|
|
|
CopyMem (
|
|
(UINT8 *)NameStr + NameStringLen,
|
|
DevicePath,
|
|
DevicePathSize
|
|
);
|
|
if (Signature != NULL) {
|
|
CopyMem (
|
|
(UINT8 *)NameStr + NameStringLen + DevicePathSize,
|
|
Signature,
|
|
SignatureSize
|
|
);
|
|
}
|
|
|
|
//
|
|
// Update/replace the image execution table.
|
|
//
|
|
gBS->InstallConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID *)NewImageExeInfoTable);
|
|
|
|
//
|
|
// Free Old table data!
|
|
//
|
|
if (ImageExeInfoTable != NULL) {
|
|
FreePool (ImageExeInfoTable);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Check whether the hash of an given X.509 certificate is in forbidden database (DBX).
|
|
|
|
@param[in] Certificate Pointer to X.509 Certificate that is searched for.
|
|
@param[in] CertSize Size of X.509 Certificate.
|
|
@param[in] SignatureList Pointer to the Signature List in forbidden database.
|
|
@param[in] SignatureListSize Size of Signature List.
|
|
@param[out] RevocationTime Return the time that the certificate was revoked.
|
|
@param[out] IsFound Search result. Only valid if EFI_SUCCESS returned.
|
|
|
|
@retval EFI_SUCCESS Finished the search without any error.
|
|
@retval Others Error occurred in the search of database.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IsCertHashFoundInDbx (
|
|
IN UINT8 *Certificate,
|
|
IN UINTN CertSize,
|
|
IN EFI_SIGNATURE_LIST *SignatureList,
|
|
IN UINTN SignatureListSize,
|
|
OUT EFI_TIME *RevocationTime,
|
|
OUT BOOLEAN *IsFound
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SIGNATURE_LIST *DbxList;
|
|
UINTN DbxSize;
|
|
EFI_SIGNATURE_DATA *CertHash;
|
|
UINTN CertHashCount;
|
|
UINTN Index;
|
|
UINT32 HashAlg;
|
|
VOID *HashCtx;
|
|
UINT8 CertDigest[MAX_DIGEST_SIZE];
|
|
UINT8 *DbxCertHash;
|
|
UINTN SiglistHeaderSize;
|
|
UINT8 *TBSCert;
|
|
UINTN TBSCertSize;
|
|
|
|
Status = EFI_ABORTED;
|
|
*IsFound = FALSE;
|
|
DbxList = SignatureList;
|
|
DbxSize = SignatureListSize;
|
|
HashCtx = NULL;
|
|
HashAlg = HASHALG_MAX;
|
|
|
|
if ((RevocationTime == NULL) || (DbxList == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Retrieve the TBSCertificate from the X.509 Certificate.
|
|
//
|
|
if (!X509GetTBSCert (Certificate, CertSize, &TBSCert, &TBSCertSize)) {
|
|
return Status;
|
|
}
|
|
|
|
while ((DbxSize > 0) && (SignatureListSize >= DbxList->SignatureListSize)) {
|
|
//
|
|
// Determine Hash Algorithm of Certificate in the forbidden database.
|
|
//
|
|
if (CompareGuid (&DbxList->SignatureType, &gEfiCertX509Sha256Guid)) {
|
|
HashAlg = HASHALG_SHA256;
|
|
} else if (CompareGuid (&DbxList->SignatureType, &gEfiCertX509Sha384Guid)) {
|
|
HashAlg = HASHALG_SHA384;
|
|
} else if (CompareGuid (&DbxList->SignatureType, &gEfiCertX509Sha512Guid)) {
|
|
HashAlg = HASHALG_SHA512;
|
|
} else {
|
|
DbxSize -= DbxList->SignatureListSize;
|
|
DbxList = (EFI_SIGNATURE_LIST *)((UINT8 *)DbxList + DbxList->SignatureListSize);
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Calculate the hash value of current TBSCertificate for comparision.
|
|
//
|
|
if (mHash[HashAlg].GetContextSize == NULL) {
|
|
goto Done;
|
|
}
|
|
|
|
ZeroMem (CertDigest, MAX_DIGEST_SIZE);
|
|
HashCtx = AllocatePool (mHash[HashAlg].GetContextSize ());
|
|
if (HashCtx == NULL) {
|
|
goto Done;
|
|
}
|
|
|
|
if (!mHash[HashAlg].HashInit (HashCtx)) {
|
|
goto Done;
|
|
}
|
|
|
|
if (!mHash[HashAlg].HashUpdate (HashCtx, TBSCert, TBSCertSize)) {
|
|
goto Done;
|
|
}
|
|
|
|
if (!mHash[HashAlg].HashFinal (HashCtx, CertDigest)) {
|
|
goto Done;
|
|
}
|
|
|
|
FreePool (HashCtx);
|
|
HashCtx = NULL;
|
|
|
|
SiglistHeaderSize = sizeof (EFI_SIGNATURE_LIST) + DbxList->SignatureHeaderSize;
|
|
CertHash = (EFI_SIGNATURE_DATA *)((UINT8 *)DbxList + SiglistHeaderSize);
|
|
CertHashCount = (DbxList->SignatureListSize - SiglistHeaderSize) / DbxList->SignatureSize;
|
|
for (Index = 0; Index < CertHashCount; Index++) {
|
|
//
|
|
// Iterate each Signature Data Node within this CertList for verify.
|
|
//
|
|
DbxCertHash = CertHash->SignatureData;
|
|
if (CompareMem (DbxCertHash, CertDigest, mHash[HashAlg].DigestLength) == 0) {
|
|
//
|
|
// Hash of Certificate is found in forbidden database.
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
*IsFound = TRUE;
|
|
|
|
//
|
|
// Return the revocation time.
|
|
//
|
|
CopyMem (RevocationTime, (EFI_TIME *)(DbxCertHash + mHash[HashAlg].DigestLength), sizeof (EFI_TIME));
|
|
goto Done;
|
|
}
|
|
|
|
CertHash = (EFI_SIGNATURE_DATA *)((UINT8 *)CertHash + DbxList->SignatureSize);
|
|
}
|
|
|
|
DbxSize -= DbxList->SignatureListSize;
|
|
DbxList = (EFI_SIGNATURE_LIST *)((UINT8 *)DbxList + DbxList->SignatureListSize);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
Done:
|
|
if (HashCtx != NULL) {
|
|
FreePool (HashCtx);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check whether signature is in specified database.
|
|
|
|
@param[in] VariableName Name of database variable that is searched in.
|
|
@param[in] Signature Pointer to signature that is searched for.
|
|
@param[in] CertType Pointer to hash algorithm.
|
|
@param[in] SignatureSize Size of Signature.
|
|
@param[out] IsFound Search result. Only valid if EFI_SUCCESS returned
|
|
|
|
@retval EFI_SUCCESS Finished the search without any error.
|
|
@retval Others Error occurred in the search of database.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IsSignatureFoundInDatabase (
|
|
IN CHAR16 *VariableName,
|
|
IN UINT8 *Signature,
|
|
IN EFI_GUID *CertType,
|
|
IN UINTN SignatureSize,
|
|
OUT BOOLEAN *IsFound
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINTN DataSize;
|
|
UINT8 *Data;
|
|
UINTN Index;
|
|
UINTN CertCount;
|
|
|
|
//
|
|
// Read signature database variable.
|
|
//
|
|
*IsFound = FALSE;
|
|
Data = NULL;
|
|
DataSize = 0;
|
|
Status = gRT->GetVariable (VariableName, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, NULL);
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
if (Status == EFI_NOT_FOUND) {
|
|
//
|
|
// No database, no need to search.
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
Data = (UINT8 *)AllocateZeroPool (DataSize);
|
|
if (Data == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
Status = gRT->GetVariable (VariableName, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, Data);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Enumerate all signature data in SigDB to check if signature exists for executable.
|
|
//
|
|
CertList = (EFI_SIGNATURE_LIST *)Data;
|
|
while ((DataSize > 0) && (DataSize >= CertList->SignatureListSize)) {
|
|
CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
Cert = (EFI_SIGNATURE_DATA *)((UINT8 *)CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
if ((CertList->SignatureSize == sizeof (EFI_SIGNATURE_DATA) - 1 + SignatureSize) && (CompareGuid (&CertList->SignatureType, CertType))) {
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
if (CompareMem (Cert->SignatureData, Signature, SignatureSize) == 0) {
|
|
//
|
|
// Find the signature in database.
|
|
//
|
|
*IsFound = TRUE;
|
|
//
|
|
// Entries in UEFI_IMAGE_SECURITY_DATABASE that are used to validate image should be measured
|
|
//
|
|
if (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) {
|
|
SecureBootHook (VariableName, &gEfiImageSecurityDatabaseGuid, CertList->SignatureSize, Cert);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
Cert = (EFI_SIGNATURE_DATA *)((UINT8 *)Cert + CertList->SignatureSize);
|
|
}
|
|
|
|
if (*IsFound) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
DataSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *)((UINT8 *)CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
Done:
|
|
if (Data != NULL) {
|
|
FreePool (Data);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check whether the timestamp is valid by comparing the signing time and the revocation time.
|
|
|
|
@param SigningTime A pointer to the signing time.
|
|
@param RevocationTime A pointer to the revocation time.
|
|
|
|
@retval TRUE The SigningTime is not later than the RevocationTime.
|
|
@retval FALSE The SigningTime is later than the RevocationTime.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsValidSignatureByTimestamp (
|
|
IN EFI_TIME *SigningTime,
|
|
IN EFI_TIME *RevocationTime
|
|
)
|
|
{
|
|
if (SigningTime->Year != RevocationTime->Year) {
|
|
return (BOOLEAN)(SigningTime->Year < RevocationTime->Year);
|
|
} else if (SigningTime->Month != RevocationTime->Month) {
|
|
return (BOOLEAN)(SigningTime->Month < RevocationTime->Month);
|
|
} else if (SigningTime->Day != RevocationTime->Day) {
|
|
return (BOOLEAN)(SigningTime->Day < RevocationTime->Day);
|
|
} else if (SigningTime->Hour != RevocationTime->Hour) {
|
|
return (BOOLEAN)(SigningTime->Hour < RevocationTime->Hour);
|
|
} else if (SigningTime->Minute != RevocationTime->Minute) {
|
|
return (BOOLEAN)(SigningTime->Minute < RevocationTime->Minute);
|
|
}
|
|
|
|
return (BOOLEAN)(SigningTime->Second <= RevocationTime->Second);
|
|
}
|
|
|
|
/**
|
|
Check if the given time value is zero.
|
|
|
|
@param[in] Time Pointer of a time value.
|
|
|
|
@retval TRUE The Time is Zero.
|
|
@retval FALSE The Time is not Zero.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsTimeZero (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
if ((Time->Year == 0) && (Time->Month == 0) && (Time->Day == 0) &&
|
|
(Time->Hour == 0) && (Time->Minute == 0) && (Time->Second == 0))
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Check whether the timestamp signature is valid and the signing time is also earlier than
|
|
the revocation time.
|
|
|
|
@param[in] AuthData Pointer to the Authenticode signature retrieved from signed image.
|
|
@param[in] AuthDataSize Size of the Authenticode signature in bytes.
|
|
@param[in] RevocationTime The time that the certificate was revoked.
|
|
|
|
@retval TRUE Timestamp signature is valid and signing time is no later than the
|
|
revocation time.
|
|
@retval FALSE Timestamp signature is not valid or the signing time is later than the
|
|
revocation time.
|
|
|
|
**/
|
|
BOOLEAN
|
|
PassTimestampCheck (
|
|
IN UINT8 *AuthData,
|
|
IN UINTN AuthDataSize,
|
|
IN EFI_TIME *RevocationTime
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN VerifyStatus;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINT8 *DbtData;
|
|
UINTN DbtDataSize;
|
|
UINT8 *RootCert;
|
|
UINTN RootCertSize;
|
|
UINTN Index;
|
|
UINTN CertCount;
|
|
EFI_TIME SigningTime;
|
|
|
|
//
|
|
// Variable Initialization
|
|
//
|
|
VerifyStatus = FALSE;
|
|
DbtData = NULL;
|
|
CertList = NULL;
|
|
Cert = NULL;
|
|
RootCert = NULL;
|
|
RootCertSize = 0;
|
|
|
|
//
|
|
// If RevocationTime is zero, the certificate shall be considered to always be revoked.
|
|
//
|
|
if (IsTimeZero (RevocationTime)) {
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// RevocationTime is non-zero, the certificate should be considered to be revoked from that time and onwards.
|
|
// Using the dbt to get the trusted TSA certificates.
|
|
//
|
|
DbtDataSize = 0;
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE2, &gEfiImageSecurityDatabaseGuid, NULL, &DbtDataSize, NULL);
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
goto Done;
|
|
}
|
|
|
|
DbtData = (UINT8 *)AllocateZeroPool (DbtDataSize);
|
|
if (DbtData == NULL) {
|
|
goto Done;
|
|
}
|
|
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE2, &gEfiImageSecurityDatabaseGuid, NULL, &DbtDataSize, (VOID *)DbtData);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
CertList = (EFI_SIGNATURE_LIST *)DbtData;
|
|
while ((DbtDataSize > 0) && (DbtDataSize >= CertList->SignatureListSize)) {
|
|
if (CompareGuid (&CertList->SignatureType, &gEfiCertX509Guid)) {
|
|
Cert = (EFI_SIGNATURE_DATA *)((UINT8 *)CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
//
|
|
// Iterate each Signature Data Node within this CertList for verify.
|
|
//
|
|
RootCert = Cert->SignatureData;
|
|
RootCertSize = CertList->SignatureSize - sizeof (EFI_GUID);
|
|
//
|
|
// Get the signing time if the timestamp signature is valid.
|
|
//
|
|
if (ImageTimestampVerify (AuthData, AuthDataSize, RootCert, RootCertSize, &SigningTime)) {
|
|
//
|
|
// The signer signature is valid only when the signing time is earlier than revocation time.
|
|
//
|
|
if (IsValidSignatureByTimestamp (&SigningTime, RevocationTime)) {
|
|
VerifyStatus = TRUE;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
Cert = (EFI_SIGNATURE_DATA *)((UINT8 *)Cert + CertList->SignatureSize);
|
|
}
|
|
}
|
|
|
|
DbtDataSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *)((UINT8 *)CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
Done:
|
|
if (DbtData != NULL) {
|
|
FreePool (DbtData);
|
|
}
|
|
|
|
return VerifyStatus;
|
|
}
|
|
|
|
/**
|
|
Check whether the image signature is forbidden by the forbidden database (dbx).
|
|
The image is forbidden to load if any certificates for signing are revoked before signing time.
|
|
|
|
@param[in] AuthData Pointer to the Authenticode signature retrieved from the signed image.
|
|
@param[in] AuthDataSize Size of the Authenticode signature in bytes.
|
|
|
|
@retval TRUE Image is forbidden by dbx.
|
|
@retval FALSE Image is not forbidden by dbx.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsForbiddenByDbx (
|
|
IN UINT8 *AuthData,
|
|
IN UINTN AuthDataSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN IsForbidden;
|
|
BOOLEAN IsFound;
|
|
UINT8 *Data;
|
|
UINTN DataSize;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
UINTN CertListSize;
|
|
EFI_SIGNATURE_DATA *CertData;
|
|
UINT8 *RootCert;
|
|
UINTN RootCertSize;
|
|
UINTN CertCount;
|
|
UINTN Index;
|
|
UINT8 *CertBuffer;
|
|
UINTN BufferLength;
|
|
UINT8 *TrustedCert;
|
|
UINTN TrustedCertLength;
|
|
UINT8 CertNumber;
|
|
UINT8 *CertPtr;
|
|
UINT8 *Cert;
|
|
UINTN CertSize;
|
|
EFI_TIME RevocationTime;
|
|
|
|
//
|
|
// Variable Initialization
|
|
//
|
|
IsForbidden = TRUE;
|
|
Data = NULL;
|
|
CertList = NULL;
|
|
CertData = NULL;
|
|
RootCert = NULL;
|
|
RootCertSize = 0;
|
|
Cert = NULL;
|
|
CertBuffer = NULL;
|
|
BufferLength = 0;
|
|
TrustedCert = NULL;
|
|
TrustedCertLength = 0;
|
|
|
|
//
|
|
// The image will not be forbidden if dbx can't be got.
|
|
//
|
|
DataSize = 0;
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE1, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, NULL);
|
|
ASSERT (EFI_ERROR (Status));
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
if (Status == EFI_NOT_FOUND) {
|
|
//
|
|
// Evidently not in dbx if the database doesn't exist.
|
|
//
|
|
IsForbidden = FALSE;
|
|
}
|
|
|
|
return IsForbidden;
|
|
}
|
|
|
|
Data = (UINT8 *)AllocateZeroPool (DataSize);
|
|
if (Data == NULL) {
|
|
return IsForbidden;
|
|
}
|
|
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE1, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, (VOID *)Data);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Verify image signature with RAW X509 certificates in DBX database.
|
|
// If passed, the image will be forbidden.
|
|
//
|
|
CertList = (EFI_SIGNATURE_LIST *)Data;
|
|
CertListSize = DataSize;
|
|
while ((CertListSize > 0) && (CertListSize >= CertList->SignatureListSize)) {
|
|
if (CompareGuid (&CertList->SignatureType, &gEfiCertX509Guid)) {
|
|
CertData = (EFI_SIGNATURE_DATA *)((UINT8 *)CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
//
|
|
// Iterate each Signature Data Node within this CertList for verify.
|
|
//
|
|
RootCert = CertData->SignatureData;
|
|
RootCertSize = CertList->SignatureSize - sizeof (EFI_GUID);
|
|
|
|
//
|
|
// Call AuthenticodeVerify library to Verify Authenticode struct.
|
|
//
|
|
IsForbidden = AuthenticodeVerify (
|
|
AuthData,
|
|
AuthDataSize,
|
|
RootCert,
|
|
RootCertSize,
|
|
mImageDigest,
|
|
mImageDigestSize
|
|
);
|
|
if (IsForbidden) {
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is signed but signature is forbidden by DBX.\n"));
|
|
goto Done;
|
|
}
|
|
|
|
CertData = (EFI_SIGNATURE_DATA *)((UINT8 *)CertData + CertList->SignatureSize);
|
|
}
|
|
}
|
|
|
|
CertListSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *)((UINT8 *)CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
//
|
|
// Check X.509 Certificate Hash & Possible Timestamp.
|
|
//
|
|
|
|
//
|
|
// Retrieve the certificate stack from AuthData
|
|
// The output CertStack format will be:
|
|
// UINT8 CertNumber;
|
|
// UINT32 Cert1Length;
|
|
// UINT8 Cert1[];
|
|
// UINT32 Cert2Length;
|
|
// UINT8 Cert2[];
|
|
// ...
|
|
// UINT32 CertnLength;
|
|
// UINT8 Certn[];
|
|
//
|
|
Pkcs7GetSigners (AuthData, AuthDataSize, &CertBuffer, &BufferLength, &TrustedCert, &TrustedCertLength);
|
|
if ((BufferLength == 0) || (CertBuffer == NULL) || ((*CertBuffer) == 0)) {
|
|
IsForbidden = TRUE;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Check if any hash of certificates embedded in AuthData is in the forbidden database.
|
|
//
|
|
CertNumber = (UINT8)(*CertBuffer);
|
|
CertPtr = CertBuffer + 1;
|
|
for (Index = 0; Index < CertNumber; Index++) {
|
|
CertSize = (UINTN)ReadUnaligned32 ((UINT32 *)CertPtr);
|
|
Cert = (UINT8 *)CertPtr + sizeof (UINT32);
|
|
//
|
|
// Advance CertPtr to the next cert in image signer's cert list
|
|
//
|
|
CertPtr = CertPtr + sizeof (UINT32) + CertSize;
|
|
|
|
Status = IsCertHashFoundInDbx (Cert, CertSize, (EFI_SIGNATURE_LIST *)Data, DataSize, &RevocationTime, &IsFound);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// Error in searching dbx. Consider it as 'found'. RevocationTime might
|
|
// not be valid in such situation.
|
|
//
|
|
IsForbidden = TRUE;
|
|
} else if (IsFound) {
|
|
//
|
|
// Found Cert in dbx successfully. Check the timestamp signature and
|
|
// signing time to determine if the image can be trusted.
|
|
//
|
|
if (PassTimestampCheck (AuthData, AuthDataSize, &RevocationTime)) {
|
|
IsForbidden = FALSE;
|
|
//
|
|
// Pass DBT check. Continue to check other certs in image signer's cert list against DBX, DBT
|
|
//
|
|
continue;
|
|
} else {
|
|
IsForbidden = TRUE;
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is signed but signature failed the timestamp check.\n"));
|
|
goto Done;
|
|
}
|
|
}
|
|
}
|
|
|
|
IsForbidden = FALSE;
|
|
|
|
Done:
|
|
if (Data != NULL) {
|
|
FreePool (Data);
|
|
}
|
|
|
|
Pkcs7FreeSigners (CertBuffer);
|
|
Pkcs7FreeSigners (TrustedCert);
|
|
|
|
return IsForbidden;
|
|
}
|
|
|
|
/**
|
|
Check whether the image signature can be verified by the trusted certificates in DB database.
|
|
|
|
@param[in] AuthData Pointer to the Authenticode signature retrieved from signed image.
|
|
@param[in] AuthDataSize Size of the Authenticode signature in bytes.
|
|
|
|
@retval TRUE Image passed verification using certificate in db.
|
|
@retval FALSE Image didn't pass verification using certificate in db.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsAllowedByDb (
|
|
IN UINT8 *AuthData,
|
|
IN UINTN AuthDataSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN VerifyStatus;
|
|
BOOLEAN IsFound;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
EFI_SIGNATURE_DATA *CertData;
|
|
UINTN DataSize;
|
|
UINT8 *Data;
|
|
UINT8 *RootCert;
|
|
UINTN RootCertSize;
|
|
UINTN Index;
|
|
UINTN CertCount;
|
|
UINTN DbxDataSize;
|
|
UINT8 *DbxData;
|
|
EFI_TIME RevocationTime;
|
|
|
|
Data = NULL;
|
|
CertList = NULL;
|
|
CertData = NULL;
|
|
RootCert = NULL;
|
|
DbxData = NULL;
|
|
RootCertSize = 0;
|
|
VerifyStatus = FALSE;
|
|
|
|
//
|
|
// Fetch 'db' content. If 'db' doesn't exist or encounters problem to get the
|
|
// data, return not-allowed-by-db (FALSE).
|
|
//
|
|
DataSize = 0;
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, NULL);
|
|
ASSERT (EFI_ERROR (Status));
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
return VerifyStatus;
|
|
}
|
|
|
|
Data = (UINT8 *)AllocateZeroPool (DataSize);
|
|
if (Data == NULL) {
|
|
return VerifyStatus;
|
|
}
|
|
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, (VOID *)Data);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Fetch 'dbx' content. If 'dbx' doesn't exist, continue to check 'db'.
|
|
// If any other errors occurred, no need to check 'db' but just return
|
|
// not-allowed-by-db (FALSE) to avoid bypass.
|
|
//
|
|
DbxDataSize = 0;
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE1, &gEfiImageSecurityDatabaseGuid, NULL, &DbxDataSize, NULL);
|
|
ASSERT (EFI_ERROR (Status));
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
if (Status != EFI_NOT_FOUND) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 'dbx' does not exist. Continue to check 'db'.
|
|
//
|
|
} else {
|
|
//
|
|
// 'dbx' exists. Get its content.
|
|
//
|
|
DbxData = (UINT8 *)AllocateZeroPool (DbxDataSize);
|
|
if (DbxData == NULL) {
|
|
goto Done;
|
|
}
|
|
|
|
Status = gRT->GetVariable (EFI_IMAGE_SECURITY_DATABASE1, &gEfiImageSecurityDatabaseGuid, NULL, &DbxDataSize, (VOID *)DbxData);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Find X509 certificate in Signature List to verify the signature in pkcs7 signed data.
|
|
//
|
|
CertList = (EFI_SIGNATURE_LIST *)Data;
|
|
while ((DataSize > 0) && (DataSize >= CertList->SignatureListSize)) {
|
|
if (CompareGuid (&CertList->SignatureType, &gEfiCertX509Guid)) {
|
|
CertData = (EFI_SIGNATURE_DATA *)((UINT8 *)CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
//
|
|
// Iterate each Signature Data Node within this CertList for verify.
|
|
//
|
|
RootCert = CertData->SignatureData;
|
|
RootCertSize = CertList->SignatureSize - sizeof (EFI_GUID);
|
|
|
|
//
|
|
// Call AuthenticodeVerify library to Verify Authenticode struct.
|
|
//
|
|
VerifyStatus = AuthenticodeVerify (
|
|
AuthData,
|
|
AuthDataSize,
|
|
RootCert,
|
|
RootCertSize,
|
|
mImageDigest,
|
|
mImageDigestSize
|
|
);
|
|
if (VerifyStatus) {
|
|
//
|
|
// The image is signed and its signature is found in 'db'.
|
|
//
|
|
if (DbxData != NULL) {
|
|
//
|
|
// Here We still need to check if this RootCert's Hash is revoked
|
|
//
|
|
Status = IsCertHashFoundInDbx (RootCert, RootCertSize, (EFI_SIGNATURE_LIST *)DbxData, DbxDataSize, &RevocationTime, &IsFound);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// Error in searching dbx. Consider it as 'found'. RevocationTime might
|
|
// not be valid in such situation.
|
|
//
|
|
VerifyStatus = FALSE;
|
|
} else if (IsFound) {
|
|
//
|
|
// Check the timestamp signature and signing time to determine if the RootCert can be trusted.
|
|
//
|
|
VerifyStatus = PassTimestampCheck (AuthData, AuthDataSize, &RevocationTime);
|
|
if (!VerifyStatus) {
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is signed and signature is accepted by DB, but its root cert failed the timestamp check.\n"));
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// There's no 'dbx' to check revocation time against (must-be pass),
|
|
// or, there's revocation time found in 'dbx' and checked againt 'dbt'
|
|
// (maybe pass or fail, depending on timestamp compare result). Either
|
|
// way the verification job has been completed at this point.
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
CertData = (EFI_SIGNATURE_DATA *)((UINT8 *)CertData + CertList->SignatureSize);
|
|
}
|
|
}
|
|
|
|
DataSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *)((UINT8 *)CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
Done:
|
|
|
|
if (VerifyStatus) {
|
|
SecureBootHook (EFI_IMAGE_SECURITY_DATABASE, &gEfiImageSecurityDatabaseGuid, CertList->SignatureSize, CertData);
|
|
}
|
|
|
|
if (Data != NULL) {
|
|
FreePool (Data);
|
|
}
|
|
|
|
if (DbxData != NULL) {
|
|
FreePool (DbxData);
|
|
}
|
|
|
|
return VerifyStatus;
|
|
}
|
|
|
|
/**
|
|
Provide verification service for signed images, which include both signature validation
|
|
and platform policy control. For signature types, both UEFI WIN_CERTIFICATE_UEFI_GUID and
|
|
MSFT Authenticode type signatures are supported.
|
|
|
|
In this implementation, only verify external executables when in USER MODE.
|
|
Executables from FV is bypass, so pass in AuthenticationStatus is ignored.
|
|
|
|
The image verification policy is:
|
|
If the image is signed,
|
|
At least one valid signature or at least one hash value of the image must match a record
|
|
in the security database "db", and no valid signature nor any hash value of the image may
|
|
be reflected in the security database "dbx".
|
|
Otherwise, the image is not signed,
|
|
The SHA256 hash value of the image must match a record in the security database "db", and
|
|
not be reflected in the security data base "dbx".
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will validate its data structure
|
|
within this image buffer before use.
|
|
|
|
@param[in] AuthenticationStatus
|
|
This is the authentication status returned from the security
|
|
measurement services for the input file.
|
|
@param[in] File This is a pointer to the device path of the file that is
|
|
being dispatched. This will optionally be used for logging.
|
|
@param[in] FileBuffer File buffer matches the input file device path.
|
|
@param[in] FileSize Size of File buffer matches the input file device path.
|
|
@param[in] BootPolicy A boot policy that was used to call LoadImage() UEFI service.
|
|
|
|
@retval EFI_SUCCESS The file specified by DevicePath and non-NULL
|
|
FileBuffer did authenticate, and the platform policy dictates
|
|
that the DXE Foundation may use the file.
|
|
@retval EFI_SUCCESS The device path specified by NULL device path DevicePath
|
|
and non-NULL FileBuffer did authenticate, and the platform
|
|
policy dictates that the DXE Foundation may execute the image in
|
|
FileBuffer.
|
|
@retval EFI_SECURITY_VIOLATION The file specified by File did not authenticate, and
|
|
the platform policy dictates that File should be placed
|
|
in the untrusted state. The image has been added to the file
|
|
execution table.
|
|
@retval EFI_ACCESS_DENIED The file specified by File and FileBuffer did not
|
|
authenticate, and the platform policy dictates that the DXE
|
|
Foundation may not use File. The image has
|
|
been added to the file execution table.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationHandler (
|
|
IN UINT32 AuthenticationStatus,
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *File OPTIONAL,
|
|
IN VOID *FileBuffer,
|
|
IN UINTN FileSize,
|
|
IN BOOLEAN BootPolicy
|
|
)
|
|
{
|
|
EFI_IMAGE_DOS_HEADER *DosHdr;
|
|
BOOLEAN IsVerified;
|
|
EFI_SIGNATURE_LIST *SignatureList;
|
|
UINTN SignatureListSize;
|
|
EFI_SIGNATURE_DATA *Signature;
|
|
EFI_IMAGE_EXECUTION_ACTION Action;
|
|
WIN_CERTIFICATE *WinCertificate;
|
|
UINT32 Policy;
|
|
UINT8 SecureBoot;
|
|
UINTN SecureBootSize;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
UINT32 NumberOfRvaAndSizes;
|
|
WIN_CERTIFICATE_EFI_PKCS *PkcsCertData;
|
|
WIN_CERTIFICATE_UEFI_GUID *WinCertUefiGuid;
|
|
UINT8 *AuthData;
|
|
UINTN AuthDataSize;
|
|
EFI_IMAGE_DATA_DIRECTORY *SecDataDir;
|
|
UINT32 SecDataDirEnd;
|
|
UINT32 SecDataDirLeft;
|
|
UINT32 OffSet;
|
|
CHAR16 *NameStr;
|
|
RETURN_STATUS PeCoffStatus;
|
|
EFI_STATUS HashStatus;
|
|
EFI_STATUS DbStatus;
|
|
EFI_STATUS VarStatus;
|
|
UINT32 VarAttr;
|
|
BOOLEAN IsFound;
|
|
|
|
SignatureList = NULL;
|
|
SignatureListSize = 0;
|
|
WinCertificate = NULL;
|
|
SecDataDir = NULL;
|
|
PkcsCertData = NULL;
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_UNTESTED;
|
|
IsVerified = FALSE;
|
|
IsFound = FALSE;
|
|
|
|
//
|
|
// Check the image type and get policy setting.
|
|
//
|
|
switch (GetImageType (File)) {
|
|
case IMAGE_FROM_FV:
|
|
Policy = ALWAYS_EXECUTE;
|
|
break;
|
|
|
|
case IMAGE_FROM_OPTION_ROM:
|
|
Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy);
|
|
break;
|
|
|
|
case IMAGE_FROM_REMOVABLE_MEDIA:
|
|
Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy);
|
|
break;
|
|
|
|
case IMAGE_FROM_FIXED_MEDIA:
|
|
Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy);
|
|
break;
|
|
|
|
default:
|
|
Policy = DENY_EXECUTE_ON_SECURITY_VIOLATION;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// If policy is always/never execute, return directly.
|
|
//
|
|
if (Policy == ALWAYS_EXECUTE) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
if (Policy == NEVER_EXECUTE) {
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
//
|
|
// The policy QUERY_USER_ON_SECURITY_VIOLATION and ALLOW_EXECUTE_ON_SECURITY_VIOLATION
|
|
// violates the UEFI spec and has been removed.
|
|
//
|
|
ASSERT (Policy != QUERY_USER_ON_SECURITY_VIOLATION && Policy != ALLOW_EXECUTE_ON_SECURITY_VIOLATION);
|
|
if ((Policy == QUERY_USER_ON_SECURITY_VIOLATION) || (Policy == ALLOW_EXECUTE_ON_SECURITY_VIOLATION)) {
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
SecureBootSize = sizeof (SecureBoot);
|
|
VarStatus = gRT->GetVariable (EFI_SECURE_BOOT_MODE_NAME, &gEfiGlobalVariableGuid, &VarAttr, &SecureBootSize, &SecureBoot);
|
|
//
|
|
// Skip verification if SecureBoot variable doesn't exist.
|
|
//
|
|
if (VarStatus == EFI_NOT_FOUND) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Skip verification if SecureBoot is disabled but not AuditMode
|
|
//
|
|
if ((VarStatus == EFI_SUCCESS) &&
|
|
(VarAttr == (EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_RUNTIME_ACCESS)) &&
|
|
(SecureBoot == SECURE_BOOT_MODE_DISABLE))
|
|
{
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Read the Dos header.
|
|
//
|
|
if (FileBuffer == NULL) {
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
mImageBase = (UINT8 *)FileBuffer;
|
|
mImageSize = FileSize;
|
|
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = (VOID *)FileBuffer;
|
|
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE)DxeImageVerificationLibImageRead;
|
|
|
|
//
|
|
// Get information about the image being loaded
|
|
//
|
|
PeCoffStatus = PeCoffLoaderGetImageInfo (&ImageContext);
|
|
if (RETURN_ERROR (PeCoffStatus)) {
|
|
//
|
|
// The information can't be got from the invalid PeImage
|
|
//
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: PeImage invalid. Cannot retrieve image information.\n"));
|
|
goto Failed;
|
|
}
|
|
|
|
DosHdr = (EFI_IMAGE_DOS_HEADER *)mImageBase;
|
|
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
|
|
//
|
|
// DOS image header is present,
|
|
// so read the PE header after the DOS image header.
|
|
//
|
|
mPeCoffHeaderOffset = DosHdr->e_lfanew;
|
|
} else {
|
|
mPeCoffHeaderOffset = 0;
|
|
}
|
|
|
|
//
|
|
// Check PE/COFF image.
|
|
//
|
|
mNtHeader.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(mImageBase + mPeCoffHeaderOffset);
|
|
if (mNtHeader.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
|
|
//
|
|
// It is not a valid Pe/Coff file.
|
|
//
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Not a valid PE/COFF image.\n"));
|
|
goto Failed;
|
|
}
|
|
|
|
if (mNtHeader.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32->OptionalHeader.NumberOfRvaAndSizes;
|
|
if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
SecDataDir = (EFI_IMAGE_DATA_DIRECTORY *)&mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
}
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes;
|
|
if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
SecDataDir = (EFI_IMAGE_DATA_DIRECTORY *)&mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
}
|
|
}
|
|
|
|
//
|
|
// Start Image Validation.
|
|
//
|
|
if ((SecDataDir == NULL) || (SecDataDir->Size == 0)) {
|
|
//
|
|
// This image is not signed. The SHA256 hash value of the image must match a record in the security database "db",
|
|
// and not be reflected in the security data base "dbx".
|
|
//
|
|
if (!HashPeImage (HASHALG_SHA256)) {
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Failed to hash this image using %s.\n", mHashTypeStr));
|
|
goto Failed;
|
|
}
|
|
|
|
DbStatus = IsSignatureFoundInDatabase (
|
|
EFI_IMAGE_SECURITY_DATABASE1,
|
|
mImageDigest,
|
|
&mCertType,
|
|
mImageDigestSize,
|
|
&IsFound
|
|
);
|
|
if (EFI_ERROR (DbStatus) || IsFound) {
|
|
//
|
|
// Image Hash is in forbidden database (DBX).
|
|
//
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is not signed and %s hash of image is forbidden by DBX.\n", mHashTypeStr));
|
|
goto Failed;
|
|
}
|
|
|
|
DbStatus = IsSignatureFoundInDatabase (
|
|
EFI_IMAGE_SECURITY_DATABASE,
|
|
mImageDigest,
|
|
&mCertType,
|
|
mImageDigestSize,
|
|
&IsFound
|
|
);
|
|
if (!EFI_ERROR (DbStatus) && IsFound) {
|
|
//
|
|
// Image Hash is in allowed database (DB).
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Image Hash is not found in both forbidden and allowed database.
|
|
//
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is not signed and %s hash of image is not found in DB/DBX.\n", mHashTypeStr));
|
|
goto Failed;
|
|
}
|
|
|
|
//
|
|
// Verify the signature of the image, multiple signatures are allowed as per PE/COFF Section 4.7
|
|
// "Attribute Certificate Table".
|
|
// The first certificate starts at offset (SecDataDir->VirtualAddress) from the start of the file.
|
|
//
|
|
SecDataDirEnd = SecDataDir->VirtualAddress + SecDataDir->Size;
|
|
for (OffSet = SecDataDir->VirtualAddress;
|
|
OffSet < SecDataDirEnd;
|
|
OffSet += (WinCertificate->dwLength + ALIGN_SIZE (WinCertificate->dwLength)))
|
|
{
|
|
SecDataDirLeft = SecDataDirEnd - OffSet;
|
|
if (SecDataDirLeft <= sizeof (WIN_CERTIFICATE)) {
|
|
break;
|
|
}
|
|
|
|
WinCertificate = (WIN_CERTIFICATE *)(mImageBase + OffSet);
|
|
if ((SecDataDirLeft < WinCertificate->dwLength) ||
|
|
(SecDataDirLeft - WinCertificate->dwLength <
|
|
ALIGN_SIZE (WinCertificate->dwLength)))
|
|
{
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Verify the image's Authenticode signature, only DER-encoded PKCS#7 signed data is supported.
|
|
//
|
|
if (WinCertificate->wCertificateType == WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
|
|
//
|
|
// The certificate is formatted as WIN_CERTIFICATE_EFI_PKCS which is described in the
|
|
// Authenticode specification.
|
|
//
|
|
PkcsCertData = (WIN_CERTIFICATE_EFI_PKCS *)WinCertificate;
|
|
if (PkcsCertData->Hdr.dwLength <= sizeof (PkcsCertData->Hdr)) {
|
|
break;
|
|
}
|
|
|
|
AuthData = PkcsCertData->CertData;
|
|
AuthDataSize = PkcsCertData->Hdr.dwLength - sizeof (PkcsCertData->Hdr);
|
|
} else if (WinCertificate->wCertificateType == WIN_CERT_TYPE_EFI_GUID) {
|
|
//
|
|
// The certificate is formatted as WIN_CERTIFICATE_UEFI_GUID which is described in UEFI Spec.
|
|
//
|
|
WinCertUefiGuid = (WIN_CERTIFICATE_UEFI_GUID *)WinCertificate;
|
|
if (WinCertUefiGuid->Hdr.dwLength <= OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
|
|
break;
|
|
}
|
|
|
|
if (!CompareGuid (&WinCertUefiGuid->CertType, &gEfiCertPkcs7Guid)) {
|
|
continue;
|
|
}
|
|
|
|
AuthData = WinCertUefiGuid->CertData;
|
|
AuthDataSize = WinCertUefiGuid->Hdr.dwLength - OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData);
|
|
} else {
|
|
if (WinCertificate->dwLength < sizeof (WIN_CERTIFICATE)) {
|
|
break;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
HashStatus = HashPeImageByType (AuthData, AuthDataSize);
|
|
if (EFI_ERROR (HashStatus)) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Check the digital signature against the revoked certificate in forbidden database (dbx).
|
|
//
|
|
if (IsForbiddenByDbx (AuthData, AuthDataSize)) {
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED;
|
|
IsVerified = FALSE;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Check the digital signature against the valid certificate in allowed database (db).
|
|
//
|
|
if (!IsVerified) {
|
|
if (IsAllowedByDb (AuthData, AuthDataSize)) {
|
|
IsVerified = TRUE;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Check the image's hash value.
|
|
//
|
|
DbStatus = IsSignatureFoundInDatabase (
|
|
EFI_IMAGE_SECURITY_DATABASE1,
|
|
mImageDigest,
|
|
&mCertType,
|
|
mImageDigestSize,
|
|
&IsFound
|
|
);
|
|
if (EFI_ERROR (DbStatus) || IsFound) {
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND;
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is signed but %s hash of image is found in DBX.\n", mHashTypeStr));
|
|
IsVerified = FALSE;
|
|
break;
|
|
}
|
|
|
|
if (!IsVerified) {
|
|
DbStatus = IsSignatureFoundInDatabase (
|
|
EFI_IMAGE_SECURITY_DATABASE,
|
|
mImageDigest,
|
|
&mCertType,
|
|
mImageDigestSize,
|
|
&IsFound
|
|
);
|
|
if (!EFI_ERROR (DbStatus) && IsFound) {
|
|
IsVerified = TRUE;
|
|
} else {
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_NOT_FOUND;
|
|
DEBUG ((DEBUG_INFO, "DxeImageVerificationLib: Image is signed but signature is not allowed by DB and %s hash of image is not found in DB/DBX.\n", mHashTypeStr));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (OffSet != SecDataDirEnd) {
|
|
//
|
|
// The Size in Certificate Table or the attribute certificate table is corrupted.
|
|
//
|
|
IsVerified = FALSE;
|
|
}
|
|
|
|
if (IsVerified) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
if ((Action == EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED) || (Action == EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND)) {
|
|
//
|
|
// Get image hash value as signature of executable.
|
|
//
|
|
SignatureListSize = sizeof (EFI_SIGNATURE_LIST) + sizeof (EFI_SIGNATURE_DATA) - 1 + mImageDigestSize;
|
|
SignatureList = (EFI_SIGNATURE_LIST *)AllocateZeroPool (SignatureListSize);
|
|
if (SignatureList == NULL) {
|
|
SignatureListSize = 0;
|
|
goto Failed;
|
|
}
|
|
|
|
SignatureList->SignatureHeaderSize = 0;
|
|
SignatureList->SignatureListSize = (UINT32)SignatureListSize;
|
|
SignatureList->SignatureSize = (UINT32)(sizeof (EFI_SIGNATURE_DATA) - 1 + mImageDigestSize);
|
|
CopyMem (&SignatureList->SignatureType, &mCertType, sizeof (EFI_GUID));
|
|
Signature = (EFI_SIGNATURE_DATA *)((UINT8 *)SignatureList + sizeof (EFI_SIGNATURE_LIST));
|
|
CopyMem (Signature->SignatureData, mImageDigest, mImageDigestSize);
|
|
}
|
|
|
|
Failed:
|
|
//
|
|
// Policy decides to defer or reject the image; add its information in image
|
|
// executable information table in either case.
|
|
//
|
|
NameStr = ConvertDevicePathToText (File, FALSE, TRUE);
|
|
AddImageExeInfo (Action, NameStr, File, SignatureList, SignatureListSize);
|
|
if (NameStr != NULL) {
|
|
DEBUG ((DEBUG_INFO, "The image doesn't pass verification: %s\n", NameStr));
|
|
FreePool (NameStr);
|
|
}
|
|
|
|
if (SignatureList != NULL) {
|
|
FreePool (SignatureList);
|
|
}
|
|
|
|
if (Policy == DEFER_EXECUTE_ON_SECURITY_VIOLATION) {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
/**
|
|
On Ready To Boot Services Event notification handler.
|
|
|
|
Add the image execution information table if it is not in system configuration table.
|
|
|
|
@param[in] Event Event whose notification function is being invoked
|
|
@param[in] Context Pointer to the notification function's context
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
OnReadyToBoot (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *ImageExeInfoTable;
|
|
UINTN ImageExeInfoTableSize;
|
|
|
|
EfiGetSystemConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID **)&ImageExeInfoTable);
|
|
if (ImageExeInfoTable != NULL) {
|
|
return;
|
|
}
|
|
|
|
ImageExeInfoTableSize = sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE);
|
|
ImageExeInfoTable = (EFI_IMAGE_EXECUTION_INFO_TABLE *)AllocateRuntimePool (ImageExeInfoTableSize);
|
|
if (ImageExeInfoTable == NULL) {
|
|
return;
|
|
}
|
|
|
|
ImageExeInfoTable->NumberOfImages = 0;
|
|
gBS->InstallConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID *)ImageExeInfoTable);
|
|
}
|
|
|
|
/**
|
|
Register security measurement handler.
|
|
|
|
@param ImageHandle ImageHandle of the loaded driver.
|
|
@param SystemTable Pointer to the EFI System Table.
|
|
|
|
@retval EFI_SUCCESS The handlers were registered successfully.
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationLibConstructor (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
{
|
|
EFI_EVENT Event;
|
|
|
|
//
|
|
// Register the event to publish the image execution table.
|
|
//
|
|
EfiCreateEventReadyToBootEx (
|
|
TPL_CALLBACK,
|
|
OnReadyToBoot,
|
|
NULL,
|
|
&Event
|
|
);
|
|
|
|
return RegisterSecurity2Handler (
|
|
DxeImageVerificationHandler,
|
|
EFI_AUTH_OPERATION_VERIFY_IMAGE | EFI_AUTH_OPERATION_IMAGE_REQUIRED
|
|
);
|
|
}
|