audk/MdeModulePkg/Universal/Network/UefiPxeBcDxe/PxeBcImpl.c

2941 lines
98 KiB
C

/** @file
Interface routines for PxeBc.
Copyright (c) 2007 - 2011, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PxeBcImpl.h"
UINT32 mPxeDhcpTimeout[4] = { 4, 8, 16, 32 };
/**
Get and record the arp cache.
@param This Pointer to EFI_PXE_BC_PROTOCOL
@retval EFI_SUCCESS Arp cache updated successfully
@retval others If error occurs when getting arp cache
**/
EFI_STATUS
UpdateArpCache (
IN EFI_PXE_BASE_CODE_PROTOCOL * This
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_STATUS Status;
UINT32 EntryLength;
UINT32 EntryCount;
EFI_ARP_FIND_DATA *Entries;
UINT32 Index;
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
Status = Private->Arp->Find (
Private->Arp,
TRUE,
NULL,
&EntryLength,
&EntryCount,
&Entries,
TRUE
);
if (EFI_ERROR (Status)) {
return Status;
}
Mode->ArpCacheEntries = MIN (
EntryCount,
EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES
);
for (Index = 0; Index < Mode->ArpCacheEntries; Index ++) {
CopyMem (
&Mode->ArpCache[Index].IpAddr,
Entries + 1,
Entries->SwAddressLength
);
CopyMem (
&Mode->ArpCache[Index].MacAddr,
(UINT8 *) (Entries + 1) + Entries->SwAddressLength,
Entries->HwAddressLength
);
//
// Slip to the next FindData.
//
Entries = (EFI_ARP_FIND_DATA *) ((UINT8 *) Entries + EntryLength);
}
return EFI_SUCCESS;
}
/**
Timeout routine to update arp cache.
@param Event Pointer to EFI_PXE_BC_PROTOCOL
@param Context Context of the timer event
**/
VOID
EFIAPI
ArpCacheUpdateTimeout (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UpdateArpCache ((EFI_PXE_BASE_CODE_PROTOCOL *) Context);
}
/**
Do arp resolution from arp cache in PxeBcMode.
@param PxeBcMode The PXE BC mode to look into.
@param Ip4Addr The Ip4 address for resolution.
@param MacAddress The resoluted MAC address if the resolution is successful.
The value is undefined if resolution fails.
@retval TRUE The resolution is successful.
@retval FALSE Otherwise.
**/
BOOLEAN
FindInArpCache (
IN EFI_PXE_BASE_CODE_MODE *PxeBcMode,
IN EFI_IPv4_ADDRESS *Ip4Addr,
OUT EFI_MAC_ADDRESS *MacAddress
)
{
UINT32 Index;
for (Index = 0; Index < PxeBcMode->ArpCacheEntries; Index ++) {
if (EFI_IP4_EQUAL (&PxeBcMode->ArpCache[Index].IpAddr.v4, Ip4Addr)) {
CopyMem (
MacAddress,
&PxeBcMode->ArpCache[Index].MacAddr,
sizeof (EFI_MAC_ADDRESS)
);
return TRUE;
}
}
return FALSE;
}
/**
Notify function for the ICMP receive token, used to process
the received ICMP packets.
@param Context The PXEBC private data.
**/
VOID
EFIAPI
IcmpErrorListenHandlerDpc (
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_IP4_RECEIVE_DATA *RxData;
EFI_IP4_PROTOCOL *Ip4;
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
UINTN Index;
UINT32 CopiedLen;
UINT8 *CopiedPointer;
Private = (PXEBC_PRIVATE_DATA *) Context;
Mode = &Private->Mode;
Status = Private->IcmpErrorRcvToken.Status;
RxData = Private->IcmpErrorRcvToken.Packet.RxData;
Ip4 = Private->Ip4;
if (Status == EFI_ABORTED) {
//
// The reception is actively aborted by the consumer, directly return.
//
return;
}
if (EFI_ERROR (Status) || (RxData == NULL)) {
//
// Only process the normal packets and the icmp error packets, if RxData is NULL
// with Status == EFI_SUCCESS or EFI_ICMP_ERROR, just resume the receive although
// this should be a bug of the low layer (IP).
//
goto Resume;
}
if (EFI_IP4 (RxData->Header->SourceAddress) != 0 &&
!NetIp4IsUnicast (EFI_NTOHL (RxData->Header->SourceAddress), 0)) {
//
// The source address is not zero and it's not a unicast IP address, discard it.
//
goto CleanUp;
}
if (!EFI_IP4_EQUAL (&RxData->Header->DestinationAddress, &Mode->StationIp.v4)) {
//
// The dest address is not equal to Station Ip address, discard it.
//
goto CleanUp;
}
//
// Constructor ICMP error packet
//
CopiedLen = 0;
CopiedPointer = (UINT8 *) &Mode->IcmpError;
for (Index = 0; Index < RxData->FragmentCount; Index ++) {
CopiedLen += RxData->FragmentTable[Index].FragmentLength;
if (CopiedLen <= sizeof (EFI_PXE_BASE_CODE_ICMP_ERROR)) {
CopyMem (
CopiedPointer,
RxData->FragmentTable[Index].FragmentBuffer,
RxData->FragmentTable[Index].FragmentLength
);
} else {
CopyMem (
CopiedPointer,
RxData->FragmentTable[Index].FragmentBuffer,
CopiedLen - sizeof (EFI_PXE_BASE_CODE_ICMP_ERROR)
);
}
CopiedPointer += CopiedLen;
}
goto Resume;
CleanUp:
gBS->SignalEvent (RxData->RecycleSignal);
Resume:
Ip4->Receive (Ip4, &(Private->IcmpErrorRcvToken));
}
/**
Request IcmpErrorListenHandlerDpc as a DPC at TPL_CALLBACK
@param Event The event signaled.
@param Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IcmpErrorListenHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
// Request IpIoListenHandlerDpc as a DPC at TPL_CALLBACK
//
QueueDpc (TPL_CALLBACK, IcmpErrorListenHandlerDpc, Context);
}
/**
Enables the use of the PXE Base Code Protocol functions.
This function enables the use of the PXE Base Code Protocol functions. If the
Started field of the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then
EFI_ALREADY_STARTED will be returned. If UseIpv6 is TRUE, then IPv6 formatted
addresses will be used in this session. If UseIpv6 is FALSE, then IPv4 formatted
addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported
field of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will
be returned. If there is not enough memory or other resources to start the PXE
Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the
PXE Base Code Protocol will be started, and all of the fields of the EFI_PXE_BASE_CODE_MODE
structure will be initialized as follows:
StartedSet to TRUE.
Ipv6SupportedUnchanged.
Ipv6AvailableUnchanged.
UsingIpv6Set to UseIpv6.
BisSupportedUnchanged.
BisDetectedUnchanged.
AutoArpSet to TRUE.
SendGUIDSet to FALSE.
TTLSet to DEFAULT_TTL.
ToSSet to DEFAULT_ToS.
DhcpCompletedSet to FALSE.
ProxyOfferReceivedSet to FALSE.
StationIpSet to an address of all zeros.
SubnetMaskSet to a subnet mask of all zeros.
DhcpDiscoverZero-filled.
DhcpAckZero-filled.
ProxyOfferZero-filled.
PxeDiscoverValidSet to FALSE.
PxeDiscoverZero-filled.
PxeReplyValidSet to FALSE.
PxeReplyZero-filled.
PxeBisReplyValidSet to FALSE.
PxeBisReplyZero-filled.
IpFilterSet the Filters field to 0 and the IpCnt field to 0.
ArpCacheEntriesSet to 0.
ArpCacheZero-filled.
RouteTableEntriesSet to 0.
RouteTableZero-filled.
IcmpErrorReceivedSet to FALSE.
IcmpErrorZero-filled.
TftpErroReceivedSet to FALSE.
TftpErrorZero-filled.
MakeCallbacksSet to TRUE if the PXE Base Code Callback Protocol is available.
Set to FALSE if the PXE Base Code Callback Protocol is not available.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param UseIpv6 Specifies the type of IP addresses that are to be used during the session
that is being started. Set to TRUE for IPv6 addresses, and FALSE for
IPv4 addresses.
@retval EFI_SUCCESS The PXE Base Code Protocol was started.
@retval EFI_DEVICE_ERROR The network device encountered an error during this oper
@retval EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
EFI_PXE_BASE_CODE_MODE structure is FALSE.
@retval EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.
@retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.
@retval EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
PXE Base Code Protocol.
**/
EFI_STATUS
EFIAPI
EfiPxeBcStart (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN BOOLEAN UseIpv6
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_STATUS Status;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (Mode->Started) {
return EFI_ALREADY_STARTED;
}
if (UseIpv6) {
//
// IPv6 is not supported now.
//
return EFI_UNSUPPORTED;
}
//
// Configure the udp4 instance to let it receive data
//
Status = Private->Udp4Read->Configure (
Private->Udp4Read,
&Private->Udp4CfgData
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Configure block size for TFTP as a default value to handle all link layers.
//
Private->BlockSize = (UINTN) (MIN (Private->Ip4MaxPacketSize, PXEBC_DEFAULT_PACKET_SIZE) -
PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE);
//
// If PcdTftpBlockSize is set to non-zero, override the default value.
//
if (PcdGet64 (PcdTftpBlockSize) != 0) {
Private->BlockSize = (UINTN) PcdGet64 (PcdTftpBlockSize);
}
Private->AddressIsOk = FALSE;
ZeroMem (Mode, sizeof (EFI_PXE_BASE_CODE_MODE));
Mode->Started = TRUE;
Mode->TTL = DEFAULT_TTL;
Mode->ToS = DEFAULT_ToS;
Mode->AutoArp = TRUE;
//
// Create the event for Arp Cache checking.
//
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
ArpCacheUpdateTimeout,
This,
&Private->GetArpCacheEvent
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Start the timeout timer event.
//
Status = gBS->SetTimer (
Private->GetArpCacheEvent,
TimerPeriodic,
TICKS_PER_SECOND
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Create ICMP error receiving event
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IcmpErrorListenHandler,
Private,
&(Private->IcmpErrorRcvToken.Event)
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
Status = Private->Ip4->Configure (Private->Ip4, &Private->Ip4ConfigData);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// start to listen incoming packet
//
Status = Private->Ip4->Receive (Private->Ip4, &Private->IcmpErrorRcvToken);
if (!EFI_ERROR (Status)) {
return Status;
}
ON_EXIT:
Private->Ip4->Configure (Private->Ip4, NULL);
if (Private->IcmpErrorRcvToken.Event != NULL) {
gBS->CloseEvent (Private->IcmpErrorRcvToken.Event);
}
if (Private->GetArpCacheEvent != NULL) {
gBS->SetTimer (Private->GetArpCacheEvent, TimerCancel, 0);
gBS->CloseEvent (Private->GetArpCacheEvent);
}
Mode->Started = FALSE;
Mode->TTL = 0;
Mode->ToS = 0;
Mode->AutoArp = FALSE;
return Status;
}
/**
Disables the use of the PXE Base Code Protocol functions.
This function stops all activity on the network device. All the resources allocated
in Start() are released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is
set to FALSE and EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
structure is already FALSE, then EFI_NOT_STARTED will be returned.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@retval EFI_SUCCESS The PXE Base Code Protocol was stopped.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.
@retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
**/
EFI_STATUS
EFIAPI
EfiPxeBcStop (
IN EFI_PXE_BASE_CODE_PROTOCOL *This
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
Private->Ip4->Cancel (Private->Ip4, NULL);
//
// Dispatch the DPCs queued by the NotifyFunction of the canceled rx token's
// events.
//
DispatchDpc ();
Private->Ip4->Configure (Private->Ip4, NULL);
//
// Close the ICMP error receiving event.
//
gBS->CloseEvent (Private->IcmpErrorRcvToken.Event);
//
// Cancel the TimeoutEvent timer.
//
gBS->SetTimer (Private->GetArpCacheEvent, TimerCancel, 0);
//
// Close the TimeoutEvent event.
//
gBS->CloseEvent (Private->GetArpCacheEvent);
Mode->Started = FALSE;
Private->CurrentUdpSrcPort = 0;
Private->Udp4Write->Configure (Private->Udp4Write, NULL);
Private->Udp4Read->Groups (Private->Udp4Read, FALSE, NULL);
Private->Udp4Read->Configure (Private->Udp4Read, NULL);
Private->Dhcp4->Stop (Private->Dhcp4);
Private->Dhcp4->Configure (Private->Dhcp4, NULL);
Private->FileSize = 0;
return EFI_SUCCESS;
}
/**
Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
S.A.R.R (solicit / advertise / request / reply) sequence.
This function attempts to complete the DHCP sequence. If this sequence is completed,
then EFI_SUCCESS is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp,
SubnetMask, DhcpDiscover, DhcpAck, and ProxyOffer fields of the EFI_PXE_BASE_CODE_MODE
structure are filled in.
If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before
they are tried. If SortOffers is FALSE, then the cached DHCP offer packets will
be tried in the order in which they are received. Please see the Preboot Execution
Environment (PXE) Specification for additional details on the implementation of DHCP.
This function can take at least 31 seconds to timeout and return control to the
caller. If the DHCP sequence does not complete, then EFI_TIMEOUT will be returned.
If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
then the DHCP sequence will be stopped and EFI_ABORTED will be returned.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param SortOffers TRUE if the offers received should be sorted. Set to FALSE to try the
offers in the order that they are received.
@retval EFI_SUCCESS Valid DHCP has completed.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
@retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.
@retval EFI_ABORTED The callback function aborted the DHCP Protocol.
@retval EFI_TIMEOUT The DHCP Protocol timed out.
@retval EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session.
@retval EFI_NO_RESPONSE Valid PXE offer was not received.
**/
EFI_STATUS
EFIAPI
EfiPxeBcDhcp (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN BOOLEAN SortOffers
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_DHCP4_PROTOCOL *Dhcp4;
EFI_DHCP4_CONFIG_DATA Dhcp4CfgData;
EFI_DHCP4_MODE_DATA Dhcp4Mode;
EFI_DHCP4_PACKET_OPTION *OptList[PXEBC_DHCP4_MAX_OPTION_NUM];
UINT32 OptCount;
EFI_STATUS Status;
EFI_ARP_CONFIG_DATA ArpConfigData;
EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = EFI_SUCCESS;
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
Dhcp4 = Private->Dhcp4;
Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DHCP;
Private->SortOffers = SortOffers;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
Mode->IcmpErrorReceived = FALSE;
//
// Stop Udp4Read instance
//
Private->Udp4Read->Configure (Private->Udp4Read, NULL);
//
// Initialize the DHCP options and build the option list
//
OptCount = PxeBcBuildDhcpOptions (Private, OptList, TRUE);
//
// Set the DHCP4 config data.
// The four discovery timeouts are 4, 8, 16, 32 seconds respectively.
//
ZeroMem (&Dhcp4CfgData, sizeof (EFI_DHCP4_CONFIG_DATA));
Dhcp4CfgData.OptionCount = OptCount;
Dhcp4CfgData.OptionList = OptList;
Dhcp4CfgData.Dhcp4Callback = PxeBcDhcpCallBack;
Dhcp4CfgData.CallbackContext = Private;
Dhcp4CfgData.DiscoverTryCount = 4;
Dhcp4CfgData.DiscoverTimeout = mPxeDhcpTimeout;
Status = Dhcp4->Configure (Dhcp4, &Dhcp4CfgData);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Zero those arrays to record the varies numbers of DHCP OFFERS.
//
Private->GotProxyOffer = FALSE;
Private->NumOffers = 0;
Private->BootpIndex = 0;
ZeroMem (Private->ServerCount, sizeof (Private->ServerCount));
ZeroMem (Private->ProxyIndex, sizeof (Private->ProxyIndex));
Status = Dhcp4->Start (Dhcp4, NULL);
if (EFI_ERROR (Status)) {
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
}
goto ON_EXIT;
}
Status = Dhcp4->GetModeData (Dhcp4, &Dhcp4Mode);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
ASSERT (Dhcp4Mode.State == Dhcp4Bound);
CopyMem (&Private->StationIp, &Dhcp4Mode.ClientAddress, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Private->SubnetMask, &Dhcp4Mode.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Private->GatewayIp, &Dhcp4Mode.RouterAddress, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mode->StationIp, &Private->StationIp, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mode->SubnetMask, &Private->SubnetMask, sizeof (EFI_IPv4_ADDRESS));
//
// Check the selected offer to see whether BINL is required, if no or BINL is
// finished, set the various Mode members.
//
Status = PxeBcCheckSelectedOffer (Private);
if (!EFI_ERROR (Status)) {
goto ON_EXIT;
}
ON_EXIT:
if (EFI_ERROR (Status)) {
Dhcp4->Stop (Dhcp4);
Dhcp4->Configure (Dhcp4, NULL);
} else {
//
// Remove the previously configured option list and callback function
//
ZeroMem (&Dhcp4CfgData, sizeof (EFI_DHCP4_CONFIG_DATA));
Dhcp4->Configure (Dhcp4, &Dhcp4CfgData);
Private->AddressIsOk = TRUE;
if (!Mode->UsingIpv6) {
//
// If in IPv4 mode, configure the corresponding ARP with this new
// station IP address.
//
ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA));
ArpConfigData.SwAddressType = 0x0800;
ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS);
ArpConfigData.StationAddress = &Private->StationIp.v4;
Private->Arp->Configure (Private->Arp, NULL);
Private->Arp->Configure (Private->Arp, &ArpConfigData);
//
// Updated the route table. Fill the first entry.
//
Mode->RouteTableEntries = 1;
Mode->RouteTable[0].IpAddr.Addr[0] = Private->StationIp.Addr[0] & Private->SubnetMask.Addr[0];
Mode->RouteTable[0].SubnetMask.Addr[0] = Private->SubnetMask.Addr[0];
Mode->RouteTable[0].GwAddr.Addr[0] = 0;
//
// Create the default route entry if there is a default router.
//
if (Private->GatewayIp.Addr[0] != 0) {
Mode->RouteTableEntries = 2;
Mode->RouteTable[1].IpAddr.Addr[0] = 0;
Mode->RouteTable[1].SubnetMask.Addr[0] = 0;
Mode->RouteTable[1].GwAddr.Addr[0] = Private->GatewayIp.Addr[0];
}
//
// Flush new station IP address into Udp4CfgData and Ip4ConfigData
//
CopyMem (&Private->Udp4CfgData.StationAddress, &Private->StationIp, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Private->Udp4CfgData.SubnetMask, &Private->SubnetMask, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Private->Ip4ConfigData.StationAddress, &Private->StationIp, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Private->Ip4ConfigData.SubnetMask, &Private->SubnetMask, sizeof (EFI_IPv4_ADDRESS));
//
// Reconfigure the Ip4 instance to capture background ICMP packets with new station Ip address.
//
Private->Ip4->Cancel (Private->Ip4, &Private->IcmpErrorRcvToken);
Private->Ip4->Configure (Private->Ip4, NULL);
Status = Private->Ip4->Configure (Private->Ip4, &Private->Ip4ConfigData);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
Status = Private->Ip4->Receive (Private->Ip4, &Private->IcmpErrorRcvToken);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
}
Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
//
// Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
// receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
//
ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
This->SetIpFilter (This, &IpFilter);
return Status;
}
/**
Attempts to complete the PXE Boot Server and/or boot image discovery sequence.
This function attempts to complete the PXE Boot Server and/or boot image discovery
sequence. If this sequence is completed, then EFI_SUCCESS is returned, and the
PxeDiscoverValid, PxeDiscover, PxeReplyReceived, and PxeReply fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE structure
will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to FALSE.
In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[],
has two uses: It is the Boot Server IP address list used for unicast discovery
(if the UseUCast field is TRUE), and it is the list used for Boot Server verification
(if the MustUseList field is TRUE). Also, if the MustUseList field in that structure
is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot
Server reply of that type will be accepted. If the AcceptAnyResponse field is
FALSE, only responses from Boot Servers with matching IP addresses will be accepted.
This function can take at least 10 seconds to timeout and return control to the
caller. If the Discovery sequence does not complete, then EFI_TIMEOUT will be
returned. Please see the Preboot Execution Environment (PXE) Specification for
additional details on the implementation of the Discovery sequence.
If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
then the Discovery sequence is stopped and EFI_ABORTED will be returned.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param Type The type of bootstrap to perform.
@param Layer Pointer to the boot server layer number to discover, which must be
PXE_BOOT_LAYER_INITIAL when a new server type is being
discovered.
@param UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.
@param Info Pointer to a data structure that contains additional information on the
type of discovery operation that is to be performed.
@retval EFI_SUCCESS The Discovery sequence has been completed.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
@retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.
@retval EFI_ABORTED The callback function aborted the Discovery sequence.
@retval EFI_TIMEOUT The Discovery sequence timed out.
@retval EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
session.
**/
EFI_STATUS
EFIAPI
EfiPxeBcDiscover (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN UINT16 Type,
IN UINT16 *Layer,
IN BOOLEAN UseBis,
IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_PXE_BASE_CODE_DISCOVER_INFO DefaultInfo;
EFI_PXE_BASE_CODE_DISCOVER_INFO *CreatedInfo;
EFI_PXE_BASE_CODE_SRVLIST *SrvList;
EFI_PXE_BASE_CODE_SRVLIST DefaultSrvList;
PXEBC_CACHED_DHCP4_PACKET *Packet;
PXEBC_VENDOR_OPTION *VendorOpt;
UINT16 Index;
EFI_STATUS Status;
PXEBC_BOOT_SVR_ENTRY *BootSvrEntry;
EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
BootSvrEntry = NULL;
SrvList = NULL;
CreatedInfo = NULL;
Status = EFI_DEVICE_ERROR;
Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DISCOVER;
if (!Private->AddressIsOk) {
return EFI_INVALID_PARAMETER;
}
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
//
// Stop Udp4Read instance
//
Private->Udp4Read->Configure (Private->Udp4Read, NULL);
Mode->IcmpErrorReceived = FALSE;
//
// If layer isn't EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL,
// use the previous setting;
// If info isn't offered,
// use the cached DhcpAck and ProxyOffer packets.
//
if (*Layer != EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL) {
if (!Mode->PxeDiscoverValid || !Mode->PxeReplyReceived || (!Mode->PxeBisReplyReceived && UseBis)) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
DefaultInfo.IpCnt = 1;
DefaultInfo.UseUCast = TRUE;
DefaultSrvList.Type = Type;
DefaultSrvList.AcceptAnyResponse = FALSE;
DefaultSrvList.IpAddr.Addr[0] = Private->ServerIp.Addr[0];
SrvList = &DefaultSrvList;
Info = &DefaultInfo;
} else if (Info == NULL) {
//
// Create info by the cached packet before
//
Packet = (Mode->ProxyOfferReceived) ? &Private->ProxyOffer : &Private->Dhcp4Ack;
VendorOpt = &Packet->PxeVendorOption;
if (!Mode->DhcpAckReceived || !IS_VALID_DISCOVER_VENDOR_OPTION (VendorOpt->BitMap)) {
//
// Address is not acquired or no discovery options.
//
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
DefaultInfo.UseMCast = (BOOLEAN)!IS_DISABLE_MCAST_DISCOVER (VendorOpt->DiscoverCtrl);
DefaultInfo.UseBCast = (BOOLEAN)!IS_DISABLE_BCAST_DISCOVER (VendorOpt->DiscoverCtrl);
DefaultInfo.MustUseList = (BOOLEAN) IS_ENABLE_USE_SERVER_LIST (VendorOpt->DiscoverCtrl);
DefaultInfo.UseUCast = DefaultInfo.MustUseList;
if (DefaultInfo.UseMCast) {
//
// Get the multicast discover ip address from vendor option.
//
CopyMem (
&DefaultInfo.ServerMCastIp.Addr,
&VendorOpt->DiscoverMcastIp,
sizeof (EFI_IPv4_ADDRESS)
);
}
DefaultInfo.IpCnt = 0;
Info = &DefaultInfo;
SrvList = Info->SrvList;
if (DefaultInfo.MustUseList) {
BootSvrEntry = VendorOpt->BootSvr;
Status = EFI_INVALID_PARAMETER;
while (((UINT8) (BootSvrEntry - VendorOpt->BootSvr)) < VendorOpt->BootSvrLen) {
if (BootSvrEntry->Type == HTONS (Type)) {
Status = EFI_SUCCESS;
break;
}
BootSvrEntry = GET_NEXT_BOOT_SVR_ENTRY (BootSvrEntry);
}
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
DefaultInfo.IpCnt = BootSvrEntry->IpCnt;
if (DefaultInfo.IpCnt >= 1) {
CreatedInfo = AllocatePool (sizeof (DefaultInfo) + (DefaultInfo.IpCnt - 1) * sizeof (*SrvList));
if (CreatedInfo == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
CopyMem (CreatedInfo, &DefaultInfo, sizeof (DefaultInfo));
Info = CreatedInfo;
SrvList = Info->SrvList;
}
for (Index = 0; Index < DefaultInfo.IpCnt; Index++) {
CopyMem (&SrvList[Index].IpAddr, &BootSvrEntry->IpAddr[Index], sizeof (EFI_IPv4_ADDRESS));
SrvList[Index].AcceptAnyResponse = FALSE;
SrvList[Index].Type = BootSvrEntry->Type;
}
}
} else {
SrvList = Info->SrvList;
if (!SrvList[0].AcceptAnyResponse) {
for (Index = 1; Index < Info->IpCnt; Index++) {
if (SrvList[Index].AcceptAnyResponse) {
break;
}
}
if (Index != Info->IpCnt) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
}
}
if ((!Info->UseUCast && !Info->UseBCast && !Info->UseMCast) || (Info->MustUseList && Info->IpCnt == 0)) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
//
// Execute discover by UniCast/BroadCast/MultiCast
//
if (Info->UseUCast) {
for (Index = 0; Index < Info->IpCnt; Index++) {
if (BootSvrEntry == NULL) {
Private->ServerIp.Addr[0] = SrvList[Index].IpAddr.Addr[0];
} else {
CopyMem (
&Private->ServerIp,
&BootSvrEntry->IpAddr[Index],
sizeof (EFI_IPv4_ADDRESS)
);
}
Status = PxeBcDiscvBootService (
Private,
Type,
Layer,
UseBis,
&SrvList[Index].IpAddr,
0,
NULL,
TRUE,
&Private->PxeReply.Packet.Ack
);
if (!EFI_ERROR (Status)) {
break;
}
}
} else if (Info->UseMCast) {
Status = PxeBcDiscvBootService (
Private,
Type,
Layer,
UseBis,
&Info->ServerMCastIp,
0,
NULL,
TRUE,
&Private->PxeReply.Packet.Ack
);
} else if (Info->UseBCast) {
Status = PxeBcDiscvBootService (
Private,
Type,
Layer,
UseBis,
NULL,
Info->IpCnt,
SrvList,
TRUE,
&Private->PxeReply.Packet.Ack
);
}
if (EFI_ERROR (Status) || !Mode->PxeReplyReceived || (!Mode->PxeBisReplyReceived && UseBis)) {
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
} else {
Status = EFI_DEVICE_ERROR;
}
goto ON_EXIT;
} else {
PxeBcParseCachedDhcpPacket (&Private->PxeReply);
}
if (Mode->PxeBisReplyReceived) {
CopyMem (
&Private->ServerIp,
&Mode->PxeReply.Dhcpv4.BootpSiAddr,
sizeof (EFI_IPv4_ADDRESS)
);
}
if (CreatedInfo != NULL) {
FreePool (CreatedInfo);
}
ON_EXIT:
Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
//
// Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
// receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
//
ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
This->SetIpFilter (This, &IpFilter);
return Status;
}
/**
Used to perform TFTP and MTFTP services.
This function is used to perform TFTP and MTFTP services. This includes the
TFTP operations to get the size of a file, read a directory, read a file, and
write a file. It also includes the MTFTP operations to get the size of a file,
read a directory, and read a file. The type of operation is specified by Operation.
If the callback function that is invoked during the TFTP/MTFTP operation does
not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will
be returned.
For read operations, the return data will be placed in the buffer specified by
BufferPtr. If BufferSize is too small to contain the entire downloaded file,
then EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero
or the size of the requested file (the size of the requested file is only returned
if the TFTP server supports TFTP options). If BufferSize is large enough for the
read operation, then BufferSize will be set to the size of the downloaded file,
and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services
should use the get-file-size operations to determine the size of the downloaded
file prior to using the read-file operations-especially when downloading large
(greater than 64 MB) files-instead of making two calls to the read-file operation.
Following this recommendation will save time if the file is larger than expected
and the TFTP server does not support TFTP option extensions. Without TFTP option
extension support, the client has to download the entire file, counting and discarding
the received packets, to determine the file size.
For write operations, the data to be sent is in the buffer specified by BufferPtr.
BufferSize specifies the number of bytes to send. If the write operation completes
successfully, then EFI_SUCCESS will be returned.
For TFTP "get file size" operations, the size of the requested file or directory
is returned in BufferSize, and EFI_SUCCESS will be returned. If the TFTP server
does not support options, the file will be downloaded into a bit bucket and the
length of the downloaded file will be returned. For MTFTP "get file size" operations,
if the MTFTP server does not support the "get file size" option, EFI_UNSUPPORTED
will be returned.
This function can take up to 10 seconds to timeout and return control to the caller.
If the TFTP sequence does not complete, EFI_TIMEOUT will be returned.
If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
then the TFTP sequence is stopped and EFI_ABORTED will be returned.
The format of the data returned from a TFTP read directory operation is a null-terminated
filename followed by a null-terminated information string, of the form
"size year-month-day hour:minute:second" (i.e. %d %d-%d-%d %d:%d:%f - note that
the seconds field can be a decimal number), where the date and time are UTC. For
an MTFTP read directory command, there is additionally a null-terminated multicast
IP address preceding the filename of the form %d.%d.%d.%d for IP v4. The final
entry is itself null-terminated, so that the final information string is terminated
with two null octets.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param Operation The type of operation to perform.
@param BufferPtr A pointer to the data buffer.
@param Overwrite Only used on write file operations. TRUE if a file on a remote server can
be overwritten.
@param BufferSize For get-file-size operations, *BufferSize returns the size of the
requested file.
@param BlockSize The requested block size to be used during a TFTP transfer.
@param ServerIp The TFTP / MTFTP server IP address.
@param Filename A Null-terminated ASCII string that specifies a directory name or a file
name.
@param Info Pointer to the MTFTP information.
@param DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation.
@retval EFI_SUCCESS The TFTP/MTFTP operation was completed.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
@retval EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.
@retval EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.
@retval EFI_TIMEOUT The TFTP/MTFTP operation timed out.
@retval EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session.
@retval EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session.
**/
EFI_STATUS
EFIAPI
EfiPxeBcMtftp (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
IN OUT VOID *BufferPtr,
IN BOOLEAN Overwrite,
IN OUT UINT64 *BufferSize,
IN UINTN *BlockSize OPTIONAL,
IN EFI_IP_ADDRESS *ServerIp,
IN UINT8 *Filename,
IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info OPTIONAL,
IN BOOLEAN DontUseBuffer
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_MTFTP4_CONFIG_DATA Mtftp4Config;
EFI_STATUS Status;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_MAC_ADDRESS TempMacAddr;
EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
if ((This == NULL) ||
(Filename == NULL) ||
(BufferSize == NULL) ||
((ServerIp == NULL) || !NetIp4IsUnicast (NTOHL (ServerIp->Addr[0]), 0)) ||
((BufferPtr == NULL) && DontUseBuffer) ||
((BlockSize != NULL) && (*BlockSize < 512))) {
return EFI_INVALID_PARAMETER;
}
Status = EFI_DEVICE_ERROR;
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = &Private->Mode;
if (!Mode->AutoArp) {
//
// If AutoArp is set false, check arp cache
//
UpdateArpCache (This);
if (!FindInArpCache (Mode, &ServerIp->v4, &TempMacAddr)) {
return EFI_DEVICE_ERROR;
}
}
//
// Stop Udp4Read instance
//
Private->Udp4Read->Configure (Private->Udp4Read, NULL);
Mode->TftpErrorReceived = FALSE;
Mode->IcmpErrorReceived = FALSE;
Mtftp4Config.UseDefaultSetting = FALSE;
Mtftp4Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
Mtftp4Config.TryCount = PXEBC_MTFTP_RETRIES;
CopyMem (
&Mtftp4Config.StationIp,
&Private->StationIp,
sizeof (EFI_IPv4_ADDRESS)
);
CopyMem (
&Mtftp4Config.SubnetMask,
&Private->SubnetMask,
sizeof (EFI_IPv4_ADDRESS)
);
CopyMem (
&Mtftp4Config.GatewayIp,
&Private->GatewayIp,
sizeof (EFI_IPv4_ADDRESS)
);
CopyMem (
&Mtftp4Config.ServerIp,
ServerIp,
sizeof (EFI_IPv4_ADDRESS)
);
switch (Operation) {
case EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE:
Status = PxeBcTftpGetFileSize (
Private,
&Mtftp4Config,
Filename,
BlockSize,
BufferSize
);
break;
case EFI_PXE_BASE_CODE_TFTP_READ_FILE:
Status = PxeBcTftpReadFile (
Private,
&Mtftp4Config,
Filename,
BlockSize,
BufferPtr,
BufferSize,
DontUseBuffer
);
break;
case EFI_PXE_BASE_CODE_TFTP_WRITE_FILE:
Status = PxeBcTftpWriteFile (
Private,
&Mtftp4Config,
Filename,
Overwrite,
BlockSize,
BufferPtr,
BufferSize
);
break;
case EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY:
Status = PxeBcTftpReadDirectory (
Private,
&Mtftp4Config,
Filename,
BlockSize,
BufferPtr,
BufferSize,
DontUseBuffer
);
break;
case EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE:
case EFI_PXE_BASE_CODE_MTFTP_READ_FILE:
case EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY:
Status = EFI_UNSUPPORTED;
break;
default:
Status = EFI_INVALID_PARAMETER;
break;
}
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
}
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
ON_EXIT:
Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
//
// Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
// receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
//
ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
This->SetIpFilter (This, &IpFilter);
return Status;
}
/**
Writes a UDP packet to the network interface.
This function writes a UDP packet specified by the (optional HeaderPtr and)
BufferPtr parameters to the network interface. The UDP header is automatically
built by this routine. It uses the parameters OpFlags, DestIp, DestPort, GatewayIp,
SrcIp, and SrcPort to build this header. If the packet is successfully built and
transmitted through the network interface, then EFI_SUCCESS will be returned.
If a timeout occurs during the transmission of the packet, then EFI_TIMEOUT will
be returned. If an ICMP error occurs during the transmission of the packet, then
the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param OpFlags The UDP operation flags.
@param DestIp The destination IP address.
@param DestPort The destination UDP port number.
@param GatewayIp The gateway IP address.
@param SrcIp The source IP address.
@param SrcPort The source UDP port number.
@param HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prefixed to the data at BufferPtr.
@param HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prefixed to the
data at BufferPtr.
@param BufferSize A pointer to the size of the data at BufferPtr.
@param BufferPtr A pointer to the data to be written.
@retval EFI_SUCCESS The UDP Write operation was completed.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.
@retval EFI_ABORTED The callback function aborted the UDP Write operation.
@retval EFI_TIMEOUT The UDP Write operation timed out.
@retval EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.
**/
EFI_STATUS
EFIAPI
EfiPxeBcUdpWrite (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN UINT16 OpFlags,
IN EFI_IP_ADDRESS *DestIp,
IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
IN EFI_IP_ADDRESS *GatewayIp OPTIONAL,
IN EFI_IP_ADDRESS *SrcIp OPTIONAL,
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
IN UINTN *HeaderSize OPTIONAL,
IN VOID *HeaderPtr OPTIONAL,
IN UINTN *BufferSize,
IN VOID *BufferPtr
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_UDP4_PROTOCOL *Udp4;
EFI_UDP4_COMPLETION_TOKEN Token;
EFI_UDP4_TRANSMIT_DATA *Udp4TxData;
UINT32 FragCount;
UINT32 DataLength;
EFI_UDP4_SESSION_DATA Udp4Session;
EFI_STATUS Status;
BOOLEAN IsDone;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_MAC_ADDRESS TempMacAddr;
IsDone = FALSE;
if ((This == NULL) || (DestIp == NULL) || (DestPort == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((GatewayIp != NULL) && !NetIp4IsUnicast (NTOHL (GatewayIp->Addr[0]), 0)) {
//
// Gateway is provided but it's not a unicast IP address.
//
return EFI_INVALID_PARAMETER;
}
if ((HeaderSize != NULL) && ((*HeaderSize == 0) || (HeaderPtr == NULL))) {
//
// The HeaderSize ptr isn't NULL and: 1. the value is zero; or 2. the HeaderPtr
// is NULL.
//
return EFI_INVALID_PARAMETER;
}
if ((BufferSize == NULL) || ((*BufferSize != 0) && (BufferPtr == NULL))) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Udp4 = Private->Udp4Write;
Mode = &Private->Mode;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
if (!Private->AddressIsOk && (SrcIp == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (!Mode->AutoArp) {
//
// If AutoArp is set false, check arp cache
//
UpdateArpCache (This);
if (!FindInArpCache (Mode, &DestIp->v4, &TempMacAddr)) {
return EFI_DEVICE_ERROR;
}
}
Mode->IcmpErrorReceived = FALSE;
if ((Private->CurrentUdpSrcPort == 0) ||
((SrcPort != NULL) && (*SrcPort != Private->CurrentUdpSrcPort))) {
//
// Port is changed, (re)configure the Udp4Write instance
//
if (SrcPort != NULL) {
Private->CurrentUdpSrcPort = *SrcPort;
}
}
Status = PxeBcConfigureUdpWriteInstance (
Udp4,
&Private->StationIp.v4,
&Private->SubnetMask.v4,
&Private->GatewayIp.v4,
&Private->CurrentUdpSrcPort
);
if (EFI_ERROR (Status)) {
Private->CurrentUdpSrcPort = 0;
return EFI_INVALID_PARAMETER;
}
ZeroMem (&Token, sizeof (EFI_UDP4_COMPLETION_TOKEN));
ZeroMem (&Udp4Session, sizeof (EFI_UDP4_SESSION_DATA));
CopyMem (&Udp4Session.DestinationAddress, DestIp, sizeof (EFI_IPv4_ADDRESS));
Udp4Session.DestinationPort = *DestPort;
if (SrcIp != NULL) {
CopyMem (&Udp4Session.SourceAddress, SrcIp, sizeof (EFI_IPv4_ADDRESS));
}
if (SrcPort != NULL) {
Udp4Session.SourcePort = *SrcPort;
}
FragCount = (HeaderSize != NULL) ? 2 : 1;
Udp4TxData = (EFI_UDP4_TRANSMIT_DATA *) AllocateZeroPool (sizeof (EFI_UDP4_TRANSMIT_DATA) + (FragCount - 1) * sizeof (EFI_UDP4_FRAGMENT_DATA));
if (Udp4TxData == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Udp4TxData->FragmentCount = FragCount;
Udp4TxData->FragmentTable[FragCount - 1].FragmentLength = (UINT32) *BufferSize;
Udp4TxData->FragmentTable[FragCount - 1].FragmentBuffer = BufferPtr;
DataLength = (UINT32) *BufferSize;
if (FragCount == 2) {
Udp4TxData->FragmentTable[0].FragmentLength = (UINT32) *HeaderSize;
Udp4TxData->FragmentTable[0].FragmentBuffer = HeaderPtr;
DataLength += (UINT32) *HeaderSize;
}
if (GatewayIp != NULL) {
Udp4TxData->GatewayAddress = (EFI_IPv4_ADDRESS *) GatewayIp;
}
Udp4TxData->UdpSessionData = &Udp4Session;
Udp4TxData->DataLength = DataLength;
Token.Packet.TxData = Udp4TxData;
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
PxeBcCommonNotify,
&IsDone,
&Token.Event
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
Status = Udp4->Transmit (Udp4, &Token);
if (EFI_ERROR (Status)) {
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
}
goto ON_EXIT;
}
while (!IsDone) {
Udp4->Poll (Udp4);
}
Status = Token.Status;
ON_EXIT:
if (Token.Event != NULL) {
gBS->CloseEvent (Token.Event);
}
FreePool (Udp4TxData);
//
// Reset the instance.
//
Udp4->Configure (Udp4, NULL);
return Status;
}
/**
Decide whether the incoming UDP packet is acceptable per IP filter settings
in provided PxeBcMode.
@param PxeBcMode Pointer to EFI_PXE_BASE_CODE_MODE.
@param Session Received UDP session.
@retval TRUE The UDP package matches IP filters.
@retval FALSE The UDP package doesn't matches IP filters.
**/
BOOLEAN
CheckIpByFilter (
IN EFI_PXE_BASE_CODE_MODE *PxeBcMode,
IN EFI_UDP4_SESSION_DATA *Session
)
{
UINTN Index;
EFI_IPv4_ADDRESS Ip4Address;
EFI_IPv4_ADDRESS DestIp4Address;
if ((PxeBcMode->IpFilter.Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0) {
return TRUE;
}
CopyMem (&DestIp4Address, &Session->DestinationAddress, sizeof (DestIp4Address));
if (((PxeBcMode->IpFilter.Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0) &&
IP4_IS_MULTICAST (EFI_NTOHL (DestIp4Address))
) {
return TRUE;
}
if (((PxeBcMode->IpFilter.Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) &&
IP4_IS_LOCAL_BROADCAST (EFI_NTOHL (DestIp4Address))
) {
return TRUE;
}
CopyMem (&Ip4Address, &PxeBcMode->StationIp.v4, sizeof (Ip4Address));
if (((PxeBcMode->IpFilter.Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) &&
EFI_IP4_EQUAL (&Ip4Address, &DestIp4Address)
) {
return TRUE;
}
ASSERT (PxeBcMode->IpFilter.IpCnt < EFI_PXE_BASE_CODE_MAX_IPCNT);
for (Index = 0; Index < PxeBcMode->IpFilter.IpCnt; Index++) {
CopyMem (
&Ip4Address,
&PxeBcMode->IpFilter.IpList[Index].v4,
sizeof (Ip4Address)
);
if (EFI_IP4_EQUAL (&Ip4Address, &DestIp4Address)) {
return TRUE;
}
}
return FALSE;
}
/**
Reads a UDP packet from the network interface.
This function reads a UDP packet from a network interface. The data contents
are returned in (the optional HeaderPtr and) BufferPtr, and the size of the
buffer received is returned in BufferSize . If the input BufferSize is smaller
than the UDP packet received (less optional HeaderSize), it will be set to the
required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the
contents of BufferPtr are undefined, and the packet is lost. If a UDP packet is
successfully received, then EFI_SUCCESS will be returned, and the information
from the UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if
they are not NULL. Depending on the values of OpFlags and the DestIp, DestPort,
SrcIp, and SrcPort input values, different types of UDP packet receive filtering
will be performed. The following tables summarize these receive filter operations.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param OpFlags The UDP operation flags.
@param DestIp The destination IP address.
@param DestPort The destination UDP port number.
@param SrcIp The source IP address.
@param SrcPort The source UDP port number.
@param HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prefixed to the data at BufferPtr.
@param HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prefixed to the
data at BufferPtr.
@param BufferSize A pointer to the size of the data at BufferPtr.
@param BufferPtr A pointer to the data to be read.
@retval EFI_SUCCESS The UDP Read operation was completed.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
@retval EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.
@retval EFI_ABORTED The callback function aborted the UDP Read operation.
@retval EFI_TIMEOUT The UDP Read operation timed out.
**/
EFI_STATUS
EFIAPI
EfiPxeBcUdpRead (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN UINT16 OpFlags,
IN OUT EFI_IP_ADDRESS *DestIp OPTIONAL,
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort OPTIONAL,
IN OUT EFI_IP_ADDRESS *SrcIp OPTIONAL,
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
IN UINTN *HeaderSize OPTIONAL,
IN VOID *HeaderPtr OPTIONAL,
IN OUT UINTN *BufferSize,
IN VOID *BufferPtr
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_UDP4_PROTOCOL *Udp4;
EFI_UDP4_COMPLETION_TOKEN Token;
EFI_UDP4_RECEIVE_DATA *RxData;
EFI_UDP4_SESSION_DATA *Session;
EFI_STATUS Status;
BOOLEAN IsDone;
BOOLEAN Matched;
UINTN CopiedLen;
UINTN HeaderLen;
UINTN HeaderCopiedLen;
UINTN BufferCopiedLen;
UINT32 FragmentLength;
UINTN FragmentIndex;
UINT8 *FragmentBuffer;
if (This == NULL || DestIp == NULL || DestPort == NULL) {
return EFI_INVALID_PARAMETER;
}
if (((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && (DestPort == NULL)) ||
((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && (SrcIp == NULL)) ||
((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) == 0 && (SrcPort == NULL))) {
return EFI_INVALID_PARAMETER;
}
if (((HeaderSize != NULL) && (*HeaderSize == 0)) || ((HeaderSize != NULL) && (HeaderPtr == NULL))) {
return EFI_INVALID_PARAMETER;
}
if ((BufferSize == NULL) || (BufferPtr == NULL)) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
Udp4 = Private->Udp4Read;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
Mode->IcmpErrorReceived = FALSE;
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
PxeBcCommonNotify,
&IsDone,
&Token.Event
);
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
TRY_AGAIN:
IsDone = FALSE;
Status = Udp4->Receive (Udp4, &Token);
if (EFI_ERROR (Status)) {
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
}
goto ON_EXIT;
}
Udp4->Poll (Udp4);
if (!IsDone) {
Status = EFI_TIMEOUT;
} else {
//
// check whether this packet matches the filters
//
if (EFI_ERROR (Token.Status)){
goto ON_EXIT;
}
RxData = Token.Packet.RxData;
Session = &RxData->UdpSession;
Matched = TRUE;
if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER) != 0) {
Matched = FALSE;
//
// Check UDP package by IP filter settings
//
if (CheckIpByFilter (Mode, Session)) {
Matched = TRUE;
}
}
if (Matched) {
Matched = FALSE;
//
// Match the destination ip of the received udp dgram
//
if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP) != 0) {
Matched = TRUE;
if (DestIp != NULL) {
CopyMem (DestIp, &Session->DestinationAddress, sizeof (EFI_IPv4_ADDRESS));
}
} else {
if (DestIp != NULL) {
if (EFI_IP4_EQUAL (DestIp, &Session->DestinationAddress)) {
Matched = TRUE;
}
} else {
if (EFI_IP4_EQUAL (&Private->StationIp, &Session->DestinationAddress)) {
Matched = TRUE;
}
}
}
}
if (Matched) {
//
// Match the destination port of the received udp dgram
//
if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) != 0) {
if (DestPort != NULL) {
*DestPort = Session->DestinationPort;
}
} else {
if (*DestPort != Session->DestinationPort) {
Matched = FALSE;
}
}
}
if (Matched) {
//
// Match the source ip of the received udp dgram
//
if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP) != 0) {
if (SrcIp != NULL) {
CopyMem (SrcIp, &Session->SourceAddress, sizeof (EFI_IPv4_ADDRESS));
}
} else {
if (!EFI_IP4_EQUAL (SrcIp, &Session->SourceAddress)) {
Matched = FALSE;
}
}
}
if (Matched) {
//
// Match the source port of the received udp dgram
//
if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) != 0) {
if (SrcPort != NULL) {
*SrcPort = Session->SourcePort;
}
} else {
if (*SrcPort != Session->SourcePort) {
Matched = FALSE;
}
}
}
if (Matched) {
ASSERT (RxData != NULL);
HeaderLen = 0;
if (HeaderSize != NULL) {
HeaderLen = MIN (*HeaderSize, RxData->DataLength);
}
if (RxData->DataLength - HeaderLen > *BufferSize) {
Status = EFI_BUFFER_TOO_SMALL;
} else {
*HeaderSize = HeaderLen;
*BufferSize = RxData->DataLength - HeaderLen;
HeaderCopiedLen = 0;
BufferCopiedLen = 0;
for (FragmentIndex = 0; FragmentIndex < RxData->FragmentCount; FragmentIndex++) {
FragmentLength = RxData->FragmentTable[FragmentIndex].FragmentLength;
FragmentBuffer = RxData->FragmentTable[FragmentIndex].FragmentBuffer;
if (HeaderCopiedLen + FragmentLength < HeaderLen) {
//
// Copy the header part of received data.
//
CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
HeaderCopiedLen += FragmentLength;
} else if (HeaderCopiedLen < HeaderLen) {
//
// Copy the header part of received data.
//
CopiedLen = HeaderLen - HeaderCopiedLen;
CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
HeaderCopiedLen += CopiedLen;
//
// Copy the other part of received data.
//
CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
BufferCopiedLen += (FragmentLength - CopiedLen);
} else {
//
// Copy the other part of received data.
//
CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
BufferCopiedLen += FragmentLength;
}
}
}
} else {
Status = EFI_TIMEOUT;
}
//
// Recycle the RxData
//
gBS->SignalEvent (RxData->RecycleSignal);
if (!Matched) {
goto TRY_AGAIN;
}
}
ON_EXIT:
Udp4->Cancel (Udp4, &Token);
gBS->CloseEvent (Token.Event);
return Status;
}
/**
Updates the IP receive filters of a network device and enables software filtering.
The NewFilter field is used to modify the network device's current IP receive
filter settings and to enable a software filter. This function updates the IpFilter
field of the EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter.
The software filter is used when the USE_FILTER in OpFlags is set to UdpRead().
The current hardware filter remains in effect no matter what the settings of OpFlags
are, so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those
packets whose reception is enabled in hardware-physical NIC address (unicast),
broadcast address, logical address or addresses (multicast), or all (promiscuous).
UdpRead() does not modify the IP filter settings.
Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive
filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
If an application or driver wishes to preserve the IP receive filter settings,
it will have to preserve the IP receive filter settings before these calls, and
use SetIpFilter() to restore them after the calls. If incompatible filtering is
requested (for example, PROMISCUOUS with anything else) or if the device does not
support a requested filter setting and it cannot be accommodated in software
(for example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned.
The IPlist field is used to enable IPs other than the StationIP. They may be
multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP,
then both the StationIP and the IPs from the IPlist will be used.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param NewFilter Pointer to the new set of IP receive filters.
@retval EFI_SUCCESS The IP receive filter settings were updated.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
EfiPxeBcSetIpFilter (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
)
{
EFI_STATUS Status;
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
UINTN Index;
EFI_UDP4_CONFIG_DATA *Udp4Cfg;
BOOLEAN PromiscuousNeed;
BOOLEAN AcceptPromiscuous;
BOOLEAN AcceptBroadcast;
BOOLEAN MultiCastUpdate;
if (This == NULL) {
DEBUG ((EFI_D_ERROR, "This == NULL.\n"));
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (NewFilter == NULL) {
DEBUG ((EFI_D_ERROR, "NewFilter == NULL.\n"));
return EFI_INVALID_PARAMETER;
}
if (NewFilter->IpCnt > EFI_PXE_BASE_CODE_MAX_IPCNT) {
DEBUG ((EFI_D_ERROR, "NewFilter->IpCnt > %d.\n", EFI_PXE_BASE_CODE_MAX_IPCNT));
return EFI_INVALID_PARAMETER;
}
if (!Mode->Started) {
DEBUG ((EFI_D_ERROR, "BC was not started.\n"));
return EFI_NOT_STARTED;
}
if (Mode->UsingIpv6) {
DEBUG ((EFI_D_ERROR, "This driver is PXE for IPv4 Only.\n"));
return EFI_INVALID_PARAMETER;
}
PromiscuousNeed = FALSE;
for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
if (IP4_IS_LOCAL_BROADCAST (EFI_IP4 (NewFilter->IpList[Index].v4))) {
//
// The IP is a broadcast address.
//
DEBUG ((EFI_D_ERROR, "There is broadcast address in NewFilter.\n"));
return EFI_INVALID_PARAMETER;
}
if (NetIp4IsUnicast (EFI_IP4 (NewFilter->IpList[Index].v4), 0) &&
((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0)
) {
//
// If EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP is set and IP4 address is in IpList,
// promiscuous mode is needed.
//
PromiscuousNeed = TRUE;
}
}
AcceptPromiscuous = FALSE;
AcceptBroadcast = FALSE;
MultiCastUpdate = FALSE;
if (PromiscuousNeed ||
((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0) ||
((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0)
) {
//
// Configure the udp4 filter to receive all packages.
//
AcceptPromiscuous = TRUE;
} else if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) {
//
// Configure the udp4 filter to receive all broadcast packages.
//
AcceptBroadcast = TRUE;
}
//
// In multicast condition when Promiscuous FALSE and IpCnt no-zero.
// Here check if there is any update of the multicast ip address. If yes,
// we need leave the old multicast group (by Config UDP instance to NULL),
// and join the new multicast group.
//
if (!AcceptPromiscuous) {
if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) {
if (Mode->IpFilter.IpCnt != NewFilter->IpCnt) {
MultiCastUpdate = TRUE;
} else if (CompareMem (Mode->IpFilter.IpList, NewFilter->IpList, NewFilter->IpCnt * sizeof (EFI_IP_ADDRESS)) != 0 ) {
MultiCastUpdate = TRUE;
}
}
}
//
// Check whether we need reconfigure the UDP instance.
//
Udp4Cfg = &Private->Udp4CfgData;
if ((AcceptPromiscuous != Udp4Cfg->AcceptPromiscuous) ||
(AcceptBroadcast != Udp4Cfg->AcceptBroadcast) || MultiCastUpdate) {
//
// Clear the UDP instance configuration, all joined groups will be left
// during the operation.
//
Private->Udp4Read->Configure (Private->Udp4Read, NULL);
//
// Configure the UDP instance with the new configuration.
//
Udp4Cfg->AcceptPromiscuous = AcceptPromiscuous;
Udp4Cfg->AcceptBroadcast = AcceptBroadcast;
Status = Private->Udp4Read->Configure (Private->Udp4Read, Udp4Cfg);
if (EFI_ERROR (Status)) {
return Status;
}
//
// In not Promiscuous mode, need to join the new multicast group.
//
if (!AcceptPromiscuous) {
for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
if (IP4_IS_MULTICAST (EFI_NTOHL (NewFilter->IpList[Index].v4))) {
//
// Join the mutilcast group.
//
Status = Private->Udp4Read->Groups (Private->Udp4Read, TRUE, &NewFilter->IpList[Index].v4);
if (EFI_ERROR (Status)) {
return Status;
}
}
}
}
}
//
// Save the new filter.
//
CopyMem (&Mode->IpFilter, NewFilter, sizeof (Mode->IpFilter));
return EFI_SUCCESS;
}
/**
Uses the ARP protocol to resolve a MAC address.
This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field
of the EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6
addresses are being used. The IP address specified by IpAddr is used to resolve
a MAC address. If the ARP protocol succeeds in resolving the specified address,
then the ArpCacheEntries and ArpCache fields of the EFI_PXE_BASE_CODE_MODE structure
are updated, and EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved
MAC address is placed there as well. If the PXE Base Code protocol is in the
stopped state, then EFI_NOT_STARTED is returned. If the ARP protocol encounters
a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is
returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
then EFI_ABORTED is returned.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param IpAddr Pointer to the IP address that is used to resolve a MAC address.
@param MacAddr If not NULL, a pointer to the MAC address that was resolved with the
ARP protocol.
@retval EFI_SUCCESS The IP or MAC address was resolved.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
@retval EFI_ICMP_ERROR Something error occur with the ICMP packet message.
**/
EFI_STATUS
EFIAPI
EfiPxeBcArp (
IN EFI_PXE_BASE_CODE_PROTOCOL * This,
IN EFI_IP_ADDRESS * IpAddr,
IN EFI_MAC_ADDRESS * MacAddr OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_STATUS Status;
EFI_MAC_ADDRESS TempMacAddr;
if (This == NULL || IpAddr == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
if (!Private->AddressIsOk || Mode->UsingIpv6) {
//
// We can't resolve the IP address if we don't have a local address now.
// Don't have ARP for IPv6.
//
return EFI_INVALID_PARAMETER;
}
Mode->IcmpErrorReceived = FALSE;
if (!Mode->AutoArp) {
//
// If AutoArp is set false, check arp cache
//
UpdateArpCache (This);
if (!FindInArpCache (Mode, &IpAddr->v4, &TempMacAddr)) {
return EFI_DEVICE_ERROR;
}
} else {
Status = Private->Arp->Request (Private->Arp, &IpAddr->v4, NULL, &TempMacAddr);
if (EFI_ERROR (Status)) {
if (Status == EFI_ICMP_ERROR) {
Mode->IcmpErrorReceived = TRUE;
}
return Status;
}
}
if (MacAddr != NULL) {
CopyMem (MacAddr, &TempMacAddr, sizeof (EFI_MAC_ADDRESS));
}
return EFI_SUCCESS;
}
/**
Updates the parameters that affect the operation of the PXE Base Code Protocol.
This function sets parameters that affect the operation of the PXE Base Code Protocol.
The parameter specified by NewAutoArp is used to control the generation of ARP
protocol packets. If NewAutoArp is TRUE, then ARP Protocol packets will be generated
as required by the PXE Base Code Protocol. If NewAutoArp is FALSE, then no ARP
Protocol packets will be generated. In this case, the only mappings that are
available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure.
If there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol
service, then the service will fail. This function updates the AutoArp field of
the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.
The SetParameters() call must be invoked after a Callback Protocol is installed
to enable the use of callbacks.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
current value of AutoARP.
@param NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
current value of SendGUID.
@param NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
the "time to live" field of the IP header.
@param NewToS If not NULL, a pointer to be used in place of the current value of ToS,
the "type of service" field of the IP header.
@param NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
current value of the MakeCallback field of the Mode structure.
@retval EFI_SUCCESS The new parameters values were updated.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
EfiPxeBcSetParameters (
IN EFI_PXE_BASE_CODE_PROTOCOL *This,
IN BOOLEAN *NewAutoArp OPTIONAL,
IN BOOLEAN *NewSendGUID OPTIONAL,
IN UINT8 *NewTTL OPTIONAL,
IN UINT8 *NewToS OPTIONAL,
IN BOOLEAN *NewMakeCallback // OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_STATUS Status;
Status = EFI_SUCCESS;
if (This == NULL) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (NewSendGUID != NULL && *NewSendGUID) {
//
// FixMe, cann't locate SendGuid
//
}
if (NewMakeCallback != NULL && *NewMakeCallback) {
Status = gBS->HandleProtocol (
Private->Controller,
&gEfiPxeBaseCodeCallbackProtocolGuid,
(VOID **) &Private->PxeBcCallback
);
if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
}
if (!Mode->Started) {
Status = EFI_NOT_STARTED;
goto ON_EXIT;
}
if (NewMakeCallback != NULL) {
if (*NewMakeCallback) {
//
// Update the Callback protocol.
//
Status = gBS->HandleProtocol (
Private->Controller,
&gEfiPxeBaseCodeCallbackProtocolGuid,
(VOID **) &Private->PxeBcCallback
);
if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) {
Status = EFI_INVALID_PARAMETER;
goto ON_EXIT;
}
} else {
Private->PxeBcCallback = NULL;
}
Mode->MakeCallbacks = *NewMakeCallback;
}
if (NewAutoArp != NULL) {
Mode->AutoArp = *NewAutoArp;
}
if (NewSendGUID != NULL) {
Mode->SendGUID = *NewSendGUID;
}
if (NewTTL != NULL) {
Mode->TTL = *NewTTL;
}
if (NewToS != NULL) {
Mode->ToS = *NewToS;
}
ON_EXIT:
return Status;
}
/**
Updates the station IP address and/or subnet mask values of a network device.
This function updates the station IP address and/or subnet mask values of a network
device. The NewStationIp field is used to modify the network device's current IP address.
If NewStationIP is NULL, then the current IP address will not be modified. Otherwise,
this function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure
with NewStationIp. The NewSubnetMask field is used to modify the network device's current subnet
mask. If NewSubnetMask is NULL, then the current subnet mask will not be modified.
Otherwise, this function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE
structure with NewSubnetMask.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param NewStationIp Pointer to the new IP address to be used by the network device.
@param NewSubnetMask Pointer to the new subnet mask to be used by the network device.
@retval EFI_SUCCESS The new station IP address and/or subnet mask were updated.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
EfiPxeBcSetStationIP (
IN EFI_PXE_BASE_CODE_PROTOCOL * This,
IN EFI_IP_ADDRESS * NewStationIp OPTIONAL,
IN EFI_IP_ADDRESS * NewSubnetMask OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_ARP_CONFIG_DATA ArpConfigData;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
if (NewStationIp != NULL && !NetIp4IsUnicast (NTOHL (NewStationIp->Addr[0]), 0)) {
return EFI_INVALID_PARAMETER;
}
if (NewSubnetMask != NULL && !IP4_IS_VALID_NETMASK (NTOHL (NewSubnetMask->Addr[0]))) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
if (NewStationIp != NULL) {
CopyMem (&Mode->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
CopyMem (&Private->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
}
if (NewSubnetMask != NULL) {
CopyMem (&Mode->SubnetMask, NewSubnetMask, sizeof (EFI_IP_ADDRESS));
CopyMem (&Private->SubnetMask ,NewSubnetMask, sizeof (EFI_IP_ADDRESS));
}
Private->AddressIsOk = TRUE;
if (!Mode->UsingIpv6) {
//
// If in IPv4 mode, configure the corresponding ARP with this new
// station IP address.
//
ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA));
ArpConfigData.SwAddressType = 0x0800;
ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS);
ArpConfigData.StationAddress = &Private->StationIp.v4;
Private->Arp->Configure (Private->Arp, NULL);
Private->Arp->Configure (Private->Arp, &ArpConfigData);
//
// Update the route table.
//
Mode->RouteTableEntries = 1;
Mode->RouteTable[0].IpAddr.Addr[0] = Private->StationIp.Addr[0] & Private->SubnetMask.Addr[0];
Mode->RouteTable[0].SubnetMask.Addr[0] = Private->SubnetMask.Addr[0];
Mode->RouteTable[0].GwAddr.Addr[0] = 0;
}
return EFI_SUCCESS;
}
/**
Updates the contents of the cached DHCP and Discover packets.
The pointers to the new packets are used to update the contents of the cached
packets in the EFI_PXE_BASE_CODE_MODE structure.
@param This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
@param NewDhcpDiscoverValid Pointer to a value that will replace the current
DhcpDiscoverValid field.
@param NewDhcpAckReceived Pointer to a value that will replace the current
DhcpAckReceived field.
@param NewProxyOfferReceived Pointer to a value that will replace the current
ProxyOfferReceived field.
@param NewPxeDiscoverValid Pointer to a value that will replace the current
ProxyOfferReceived field.
@param NewPxeReplyReceived Pointer to a value that will replace the current
PxeReplyReceived field.
@param NewPxeBisReplyReceived Pointer to a value that will replace the current
PxeBisReplyReceived field.
@param NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents.
@param NewDhcpAck Pointer to the new cached DHCP Ack packet contents.
@param NewProxyOffer Pointer to the new cached Proxy Offer packet contents.
@param NewPxeDiscover Pointer to the new cached PXE Discover packet contents.
@param NewPxeReply Pointer to the new cached PXE Reply packet contents.
@param NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents.
@retval EFI_SUCCESS The cached packet contents were updated.
@retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
@retval EFI_INVALID_PARAMETER This is NULL or not point to a valid EFI_PXE_BASE_CODE_PROTOCOL structure.
**/
EFI_STATUS
EFIAPI
EfiPxeBcSetPackets (
IN EFI_PXE_BASE_CODE_PROTOCOL * This,
IN BOOLEAN * NewDhcpDiscoverValid OPTIONAL,
IN BOOLEAN * NewDhcpAckReceived OPTIONAL,
IN BOOLEAN * NewProxyOfferReceived OPTIONAL,
IN BOOLEAN * NewPxeDiscoverValid OPTIONAL,
IN BOOLEAN * NewPxeReplyReceived OPTIONAL,
IN BOOLEAN * NewPxeBisReplyReceived OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewDhcpDiscover OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewDhcpAck OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewProxyOffer OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewPxeDiscover OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewPxeReply OPTIONAL,
IN EFI_PXE_BASE_CODE_PACKET * NewPxeBisReply OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_MODE *Mode;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
Mode = Private->PxeBc.Mode;
if (!Mode->Started) {
return EFI_NOT_STARTED;
}
if (NewDhcpDiscoverValid != NULL) {
Mode->DhcpDiscoverValid = *NewDhcpDiscoverValid;
}
if (NewDhcpAckReceived != NULL) {
Mode->DhcpAckReceived = *NewDhcpAckReceived;
}
if (NewProxyOfferReceived != NULL) {
Mode->ProxyOfferReceived = *NewProxyOfferReceived;
}
if (NewPxeDiscoverValid != NULL) {
Mode->PxeDiscoverValid = *NewPxeDiscoverValid;
}
if (NewPxeReplyReceived != NULL) {
Mode->PxeReplyReceived = *NewPxeReplyReceived;
}
if (NewPxeBisReplyReceived != NULL) {
Mode->PxeBisReplyReceived = *NewPxeBisReplyReceived;
}
if (NewDhcpDiscover != NULL) {
CopyMem (&Mode->DhcpDiscover, NewDhcpDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
if (NewDhcpAck != NULL) {
CopyMem (&Mode->DhcpAck, NewDhcpAck, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
if (NewProxyOffer != NULL) {
CopyMem (&Mode->ProxyOffer, NewProxyOffer, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
if (NewPxeDiscover != NULL) {
CopyMem (&Mode->PxeDiscover, NewPxeDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
if (NewPxeReply != NULL) {
CopyMem (&Mode->PxeReply, NewPxeReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
if (NewPxeBisReply != NULL) {
CopyMem (&Mode->PxeBisReply, NewPxeBisReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
}
return EFI_SUCCESS;
}
EFI_PXE_BASE_CODE_PROTOCOL mPxeBcProtocolTemplate = {
EFI_PXE_BASE_CODE_PROTOCOL_REVISION,
EfiPxeBcStart,
EfiPxeBcStop,
EfiPxeBcDhcp,
EfiPxeBcDiscover,
EfiPxeBcMtftp,
EfiPxeBcUdpWrite,
EfiPxeBcUdpRead,
EfiPxeBcSetIpFilter,
EfiPxeBcArp,
EfiPxeBcSetParameters,
EfiPxeBcSetStationIP,
EfiPxeBcSetPackets,
NULL
};
/**
Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
received, or is waiting to receive a packet.
This function is invoked when the PXE Base Code Protocol is about to transmit, has received,
or is waiting to receive a packet. Parameters Function and Received specify the type of event.
Parameters PacketLen and Packet specify the packet that generated the event. If these fields
are zero and NULL respectively, then this is a status update callback. If the operation specified
by Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the operation
specified by Function should be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to
the polling nature of UEFI device drivers, a callback function should not execute for more than 5 ms.
The SetParameters() function must be called after a Callback Protocol is installed to enable the
use of callbacks.
@param This Pointer to the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL instance.
@param Function The PXE Base Code Protocol function that is waiting for an event.
@param Received TRUE if the callback is being invoked due to a receive event. FALSE if
the callback is being invoked due to a transmit event.
@param PacketLength The length, in bytes, of Packet. This field will have a value of zero if
this is a wait for receive event.
@param PacketPtr If Received is TRUE, a pointer to the packet that was just received;
otherwise a pointer to the packet that is about to be transmitted.
@retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE if Function specifies a continue operation
@retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT if Function specifies an abort operation
**/
EFI_PXE_BASE_CODE_CALLBACK_STATUS
EFIAPI
EfiPxeLoadFileCallback (
IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL * This,
IN EFI_PXE_BASE_CODE_FUNCTION Function,
IN BOOLEAN Received,
IN UINT32 PacketLength,
IN EFI_PXE_BASE_CODE_PACKET * PacketPtr OPTIONAL
)
{
EFI_INPUT_KEY Key;
EFI_STATUS Status;
//
// Catch Ctrl-C or ESC to abort.
//
Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
if (!EFI_ERROR (Status)) {
if (Key.ScanCode == SCAN_ESC || Key.UnicodeChar == (0x1F & 'c')) {
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT;
}
}
//
// No print if receive packet
//
if (Received) {
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
}
//
// Print only for three functions
//
switch (Function) {
case EFI_PXE_BASE_CODE_FUNCTION_MTFTP:
//
// Print only for open MTFTP packets, not every MTFTP packets
//
if (PacketLength != 0 && PacketPtr != NULL) {
if (PacketPtr->Raw[0x1C] != 0x00 || PacketPtr->Raw[0x1D] != 0x01) {
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
}
}
break;
case EFI_PXE_BASE_CODE_FUNCTION_DHCP:
case EFI_PXE_BASE_CODE_FUNCTION_DISCOVER:
break;
default:
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
}
if (PacketLength != 0 && PacketPtr != NULL) {
//
// Print '.' when transmit a packet
//
AsciiPrint (".");
}
return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
}
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL mPxeBcCallBackTemplate = {
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION,
EfiPxeLoadFileCallback
};
/**
Find the boot file.
@param Private Pointer to PxeBc private data.
@param BufferSize Pointer to buffer size.
@param Buffer Pointer to buffer.
@retval EFI_SUCCESS Discover the boot file successfully.
@retval EFI_TIMEOUT The TFTP/MTFTP operation timed out.
@retval EFI_ABORTED PXE bootstrap server, so local boot need abort.
@retval EFI_BUFFER_TOO_SMALL The buffer is too small to load the boot file.
**/
EFI_STATUS
DiscoverBootFile (
IN PXEBC_PRIVATE_DATA *Private,
IN OUT UINT64 *BufferSize,
IN VOID *Buffer
)
{
EFI_PXE_BASE_CODE_PROTOCOL *PxeBc;
EFI_PXE_BASE_CODE_MODE *Mode;
EFI_STATUS Status;
UINT16 Type;
UINT16 Layer;
BOOLEAN UseBis;
PXEBC_CACHED_DHCP4_PACKET *Packet;
UINT16 Value;
PxeBc = &Private->PxeBc;
Mode = PxeBc->Mode;
Type = EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP;
Layer = EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL;
//
// do DHCP.
//
Status = PxeBc->Dhcp (PxeBc, TRUE);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Select a boot server
//
Status = PxeBcSelectBootPrompt (Private);
if (Status == EFI_SUCCESS) {
Status = PxeBcSelectBootMenu (Private, &Type, TRUE);
} else if (Status == EFI_TIMEOUT) {
Status = PxeBcSelectBootMenu (Private, &Type, FALSE);
}
if (!EFI_ERROR (Status)) {
if (Type == EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP) {
//
// Local boot(PXE bootstrap server) need abort
//
return EFI_ABORTED;
}
UseBis = (BOOLEAN) (Mode->BisSupported && Mode->BisDetected);
Status = PxeBc->Discover (PxeBc, Type, &Layer, UseBis, NULL);
if (EFI_ERROR (Status)) {
return Status;
}
}
*BufferSize = 0;
//
// Get bootfile name and (m)tftp server ip addresss
//
if (Mode->PxeReplyReceived) {
Packet = &Private->PxeReply;
} else if (Mode->ProxyOfferReceived) {
Packet = &Private->ProxyOffer;
} else {
Packet = &Private->Dhcp4Ack;
}
//
// Use siaddr(next server) in DHCPOFFER packet header, if zero, use option 54(server identifier)
// in DHCPOFFER packet.
// (It does not comply with PXE Spec, Ver2.1)
//
if (EFI_IP4_EQUAL (&Packet->Packet.Offer.Dhcp4.Header.ServerAddr, &mZeroIp4Addr)) {
CopyMem (
&Private->ServerIp,
Packet->Dhcp4Option[PXEBC_DHCP4_TAG_INDEX_SERVER_ID]->Data,
sizeof (EFI_IPv4_ADDRESS)
);
} else {
CopyMem (
&Private->ServerIp,
&Packet->Packet.Offer.Dhcp4.Header.ServerAddr,
sizeof (EFI_IPv4_ADDRESS)
);
}
if (Private->ServerIp.Addr[0] == 0) {
return EFI_DEVICE_ERROR;
}
ASSERT (Packet->Dhcp4Option[PXEBC_DHCP4_TAG_INDEX_BOOTFILE] != NULL);
//
// bootlfile name
//
Private->BootFileName = (CHAR8 *) (Packet->Dhcp4Option[PXEBC_DHCP4_TAG_INDEX_BOOTFILE]->Data);
if (Packet->Dhcp4Option[PXEBC_DHCP4_TAG_INDEX_BOOTFILE_LEN] != NULL) {
//
// Already have the bootfile length option, compute the file size
//
CopyMem (&Value, Packet->Dhcp4Option[PXEBC_DHCP4_TAG_INDEX_BOOTFILE_LEN]->Data, sizeof (Value));
Value = NTOHS (Value);
*BufferSize = 512 * Value;
Status = EFI_BUFFER_TOO_SMALL;
} else {
//
// Get the bootfile size from tftp
//
Status = PxeBc->Mtftp (
PxeBc,
EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
Buffer,
FALSE,
BufferSize,
&Private->BlockSize,
&Private->ServerIp,
(UINT8 *) Private->BootFileName,
NULL,
FALSE
);
}
Private->FileSize = (UINTN) *BufferSize;
return Status;
}
/**
Causes the driver to load a specified file.
@param This Protocol instance pointer.
@param FilePath The device specific path of the file to load.
@param BootPolicy If TRUE, indicates that the request originates from the
boot manager is attempting to load FilePath as a boot
selection. If FALSE, then FilePath must match as exact file
to be loaded.
@param BufferSize On input the size of Buffer in bytes. On output with a return
code of EFI_SUCCESS, the amount of data transferred to
Buffer. On output with a return code of EFI_BUFFER_TOO_SMALL,
the size of Buffer required to retrieve the requested file.
@param Buffer The memory buffer to transfer the file to. IF Buffer is NULL,
then no the size of the requested file is returned in
BufferSize.
@retval EFI_SUCCESS The file was loaded.
@retval EFI_UNSUPPORTED The device does not support the provided BootPolicy
@retval EFI_INVALID_PARAMETER FilePath is not a valid device path, or
BufferSize is NULL.
@retval EFI_NO_MEDIA No medium was present to load the file.
@retval EFI_DEVICE_ERROR The file was not loaded due to a device error.
@retval EFI_NO_RESPONSE The remote system did not respond.
@retval EFI_NOT_FOUND The file was not found.
@retval EFI_ABORTED The file load process was manually cancelled.
**/
EFI_STATUS
EFIAPI
EfiPxeLoadFile (
IN EFI_LOAD_FILE_PROTOCOL * This,
IN EFI_DEVICE_PATH_PROTOCOL * FilePath,
IN BOOLEAN BootPolicy,
IN OUT UINTN *BufferSize,
IN VOID *Buffer OPTIONAL
)
{
PXEBC_PRIVATE_DATA *Private;
EFI_PXE_BASE_CODE_PROTOCOL *PxeBc;
BOOLEAN NewMakeCallback;
EFI_STATUS Status;
UINT64 TmpBufSize;
BOOLEAN MediaPresent;
Private = PXEBC_PRIVATE_DATA_FROM_LOADFILE (This);
PxeBc = &Private->PxeBc;
NewMakeCallback = FALSE;
Status = EFI_DEVICE_ERROR;
if (This == NULL || BufferSize == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Only support BootPolicy
//
if (!BootPolicy) {
return EFI_UNSUPPORTED;
}
//
// Check media status before PXE start
//
MediaPresent = TRUE;
NetLibDetectMedia (Private->Controller, &MediaPresent);
if (!MediaPresent) {
return EFI_NO_MEDIA;
}
Status = PxeBc->Start (PxeBc, FALSE);
if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) {
return Status;
}
Status = gBS->HandleProtocol (
Private->Controller,
&gEfiPxeBaseCodeCallbackProtocolGuid,
(VOID **) &Private->PxeBcCallback
);
if (Status == EFI_UNSUPPORTED) {
CopyMem (&Private->LoadFileCallback, &mPxeBcCallBackTemplate, sizeof (Private->LoadFileCallback));
Status = gBS->InstallProtocolInterface (
&Private->Controller,
&gEfiPxeBaseCodeCallbackProtocolGuid,
EFI_NATIVE_INTERFACE,
&Private->LoadFileCallback
);
NewMakeCallback = (BOOLEAN) (Status == EFI_SUCCESS);
Status = PxeBc->SetParameters (PxeBc, NULL, NULL, NULL, NULL, &NewMakeCallback);
if (EFI_ERROR (Status)) {
PxeBc->Stop (PxeBc);
return Status;
}
}
if (Private->FileSize == 0) {
TmpBufSize = 0;
Status = DiscoverBootFile (Private, &TmpBufSize, Buffer);
if (sizeof (UINTN) < sizeof (UINT64) && (TmpBufSize > 0xFFFFFFFF)) {
Status = EFI_DEVICE_ERROR;
} else if (TmpBufSize > 0 && *BufferSize >= (UINTN) TmpBufSize && Buffer != NULL) {
*BufferSize = (UINTN) TmpBufSize;
Status = PxeBc->Mtftp (
PxeBc,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
Buffer,
FALSE,
&TmpBufSize,
&Private->BlockSize,
&Private->ServerIp,
(UINT8 *) Private->BootFileName,
NULL,
FALSE
);
} else if (TmpBufSize > 0) {
*BufferSize = (UINTN) TmpBufSize;
Status = EFI_BUFFER_TOO_SMALL;
}
} else if (Buffer == NULL || Private->FileSize > *BufferSize) {
*BufferSize = Private->FileSize;
Status = EFI_BUFFER_TOO_SMALL;
} else {
//
// Download the file.
//
TmpBufSize = (UINT64) (*BufferSize);
Status = PxeBc->Mtftp (
PxeBc,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
Buffer,
FALSE,
&TmpBufSize,
&Private->BlockSize,
&Private->ServerIp,
(UINT8 *) Private->BootFileName,
NULL,
FALSE
);
}
//
// If we added a callback protocol, now is the time to remove it.
//
if (NewMakeCallback) {
NewMakeCallback = FALSE;
PxeBc->SetParameters (PxeBc, NULL, NULL, NULL, NULL, &NewMakeCallback);
gBS->UninstallProtocolInterface (
Private->Controller,
&gEfiPxeBaseCodeCallbackProtocolGuid,
&Private->LoadFileCallback
);
}
//
// Check download status
//
if (Status == EFI_SUCCESS) {
//
// The functionality of PXE Base Code protocol will not be stopped,
// when downloading is successfully.
//
return EFI_SUCCESS;
} else if (Status == EFI_BUFFER_TOO_SMALL) {
if (Buffer != NULL) {
AsciiPrint ("PXE-E05: Download buffer is smaller than requested file.\n");
} else {
//
// The functionality of PXE Base Code protocol will not be stopped.
//
return Status;
}
} else if (Status == EFI_DEVICE_ERROR) {
AsciiPrint ("PXE-E07: Network device error.\n");
} else if (Status == EFI_OUT_OF_RESOURCES) {
AsciiPrint ("PXE-E09: Could not allocate I/O buffers.\n");
} else if (Status == EFI_NO_MEDIA) {
AsciiPrint ("PXE-E12: Could not detect network connection.\n");
} else if (Status == EFI_NO_RESPONSE) {
AsciiPrint ("PXE-E16: No offer received.\n");
} else if (Status == EFI_TIMEOUT) {
AsciiPrint ("PXE-E18: Server response timeout.\n");
} else if (Status == EFI_ABORTED) {
AsciiPrint ("PXE-E21: Remote boot cancelled.\n");
} else if (Status == EFI_ICMP_ERROR) {
AsciiPrint ("PXE-E22: Client received ICMP error from server.\n");
} else if (Status == EFI_TFTP_ERROR) {
AsciiPrint ("PXE-E23: Client received TFTP error from server.\n");
} else {
AsciiPrint ("PXE-E99: Unexpected network error.\n");
}
PxeBc->Stop (PxeBc);
return Status;
}
EFI_LOAD_FILE_PROTOCOL mLoadFileProtocolTemplate = { EfiPxeLoadFile };