audk/BaseTools/Source/C/Common/FirmwareVolumeBuffer.c

1776 lines
36 KiB
C

/** @file
EFI Firmware Volume routines which work on a Fv image in buffers.
Copyright (c) 1999 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "FirmwareVolumeBufferLib.h"
#include "BinderFuncs.h"
//
// Local macros
//
#define EFI_TEST_FFS_ATTRIBUTES_BIT(FvbAttributes, TestAttributes, Bit) \
( \
(BOOLEAN) ( \
(FvbAttributes & EFI_FVB2_ERASE_POLARITY) ? (((~TestAttributes) & Bit) == Bit) : ((TestAttributes & Bit) == Bit) \
) \
)
//
// Local prototypes
//
STATIC
UINT32
FvBufGetSecHdrLen(
IN EFI_COMMON_SECTION_HEADER *SectionHeader
)
{
if (SectionHeader == NULL) {
return 0;
}
if (FvBufExpand3ByteSize(SectionHeader->Size) == 0xffffff) {
return sizeof(EFI_COMMON_SECTION_HEADER2);
}
return sizeof(EFI_COMMON_SECTION_HEADER);
}
STATIC
UINT32
FvBufGetSecFileLen (
IN EFI_COMMON_SECTION_HEADER *SectionHeader
)
{
UINT32 Length;
if (SectionHeader == NULL) {
return 0;
}
Length = FvBufExpand3ByteSize(SectionHeader->Size);
if (Length == 0xffffff) {
Length = ((EFI_COMMON_SECTION_HEADER2 *)SectionHeader)->ExtendedSize;
}
return Length;
}
//
// Local prototypes
//
STATIC
UINT16
FvBufCalculateChecksum16 (
IN UINT16 *Buffer,
IN UINTN Size
);
STATIC
UINT8
FvBufCalculateChecksum8 (
IN UINT8 *Buffer,
IN UINTN Size
);
//
// Procedures start
//
EFI_STATUS
FvBufRemoveFileNew (
IN OUT VOID *Fv,
IN EFI_GUID *Name
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
SourceFv - Address of the Fv in memory, this firmware volume will
be modified, if SourceFfsFile exists
SourceFfsFile - Input FFS file to replace
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
--*/
{
EFI_STATUS Status;
EFI_FFS_FILE_HEADER* FileToRm;
UINTN FileToRmLength;
Status = FvBufFindFileByName(
Fv,
Name,
(VOID **)&FileToRm
);
if (EFI_ERROR (Status)) {
return Status;
}
FileToRmLength = FvBufGetFfsFileSize (FileToRm);
CommonLibBinderSetMem (
FileToRm,
FileToRmLength,
(((EFI_FIRMWARE_VOLUME_HEADER*)Fv)->Attributes & EFI_FVB2_ERASE_POLARITY)
? 0xFF : 0
);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufRemoveFile (
IN OUT VOID *Fv,
IN EFI_GUID *Name
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
SourceFv - Address of the Fv in memory, this firmware volume will
be modified, if SourceFfsFile exists
SourceFfsFile - Input FFS file to replace
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
--*/
{
EFI_STATUS Status;
EFI_FFS_FILE_HEADER *NextFile;
EFI_FIRMWARE_VOLUME_HEADER *TempFv;
UINTN FileKey;
UINTN FvLength;
Status = FvBufFindFileByName(
Fv,
Name,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FvBufGetSize (Fv, &FvLength);
if (EFI_ERROR (Status)) {
return Status;
}
TempFv = NULL;
Status = FvBufDuplicate (Fv, (VOID **)&TempFv);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FvBufClearAllFiles (TempFv);
if (EFI_ERROR (Status)) {
CommonLibBinderFree (TempFv);
return Status;
}
// TempFv has been allocated. It must now be freed
// before returning.
FileKey = 0;
while (TRUE) {
Status = FvBufFindNextFile (Fv, &FileKey, (VOID **)&NextFile);
if (Status == EFI_NOT_FOUND) {
break;
} else if (EFI_ERROR (Status)) {
CommonLibBinderFree (TempFv);
return Status;
}
if (CommonLibBinderCompareGuid (Name, &NextFile->Name)) {
continue;
}
else {
Status = FvBufAddFile (TempFv, NextFile);
if (EFI_ERROR (Status)) {
CommonLibBinderFree (TempFv);
return Status;
}
}
}
CommonLibBinderCopyMem (Fv, TempFv, FvLength);
CommonLibBinderFree (TempFv);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufChecksumFile (
IN OUT VOID *FfsFile
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
SourceFfsFile - Input FFS file to update the checksum for
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
--*/
{
EFI_FFS_FILE_HEADER* File = (EFI_FFS_FILE_HEADER*)FfsFile;
EFI_FFS_FILE_STATE StateBackup;
UINT32 FileSize;
FileSize = FvBufGetFfsFileSize (File);
//
// Fill in checksums and state, they must be 0 for checksumming.
//
File->IntegrityCheck.Checksum.Header = 0;
File->IntegrityCheck.Checksum.File = 0;
StateBackup = File->State;
File->State = 0;
File->IntegrityCheck.Checksum.Header =
FvBufCalculateChecksum8 (
(UINT8 *) File,
FvBufGetFfsHeaderSize (File)
);
if (File->Attributes & FFS_ATTRIB_CHECKSUM) {
File->IntegrityCheck.Checksum.File = FvBufCalculateChecksum8 (
(VOID*)((UINT8 *)File + FvBufGetFfsHeaderSize (File)),
FileSize - FvBufGetFfsHeaderSize (File)
);
} else {
File->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
}
File->State = StateBackup;
return EFI_SUCCESS;
}
EFI_STATUS
FvBufChecksumHeader (
IN OUT VOID *Fv
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
SourceFv - Address of the Fv in memory, this firmware volume will
be modified, if SourceFfsFile exists
SourceFfsFile - Input FFS file to replace
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
--*/
{
EFI_FIRMWARE_VOLUME_HEADER* FvHeader = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
FvHeader->Checksum = 0;
FvHeader->Checksum =
FvBufCalculateChecksum16 (
(UINT16*) FvHeader,
FvHeader->HeaderLength / sizeof (UINT16)
);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufDuplicate (
IN VOID *SourceFv,
IN OUT VOID **DestinationFv
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
SourceFv - Address of the Fv in memory
DestinationFv - Output for destination Fv
DestinationFv == NULL - invalid parameter
*DestinationFv == NULL - memory will be allocated
*DestinationFv != NULL - this address will be the destination
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
UINTN size;
if (DestinationFv == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = FvBufGetSize (SourceFv, &size);
if (EFI_ERROR (Status)) {
return Status;
}
if (*DestinationFv == NULL) {
*DestinationFv = CommonLibBinderAllocate (size);
if (*DestinationFv == NULL) {
return EFI_OUT_OF_RESOURCES;
}
}
CommonLibBinderCopyMem (*DestinationFv, SourceFv, size);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufExtend (
IN VOID **Fv,
IN UINTN Size
)
/*++
Routine Description:
Extends a firmware volume by the given number of bytes.
BUGBUG: Does not handle the case where the firmware volume has a
VTF (Volume Top File). The VTF will not be moved to the
end of the extended FV.
Arguments:
Fv - Source and destination firmware volume.
Note: The original firmware volume buffer is freed!
Size - The minimum size that the firmware volume is to be extended by.
The FV may be extended more than this size.
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
UINTN OldSize;
UINTN NewSize;
UINTN BlockCount;
VOID* NewFv;
EFI_FIRMWARE_VOLUME_HEADER* hdr;
EFI_FV_BLOCK_MAP_ENTRY* blk;
Status = FvBufGetSize (*Fv, &OldSize);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Locate the block map in the fv header
//
hdr = (EFI_FIRMWARE_VOLUME_HEADER*)*Fv;
blk = hdr->BlockMap;
//
// Calculate the number of blocks needed to achieve the requested
// size extension
//
BlockCount = ((Size + (blk->Length - 1)) / blk->Length);
//
// Calculate the new size from the number of blocks that will be added
//
NewSize = OldSize + (BlockCount * blk->Length);
NewFv = CommonLibBinderAllocate (NewSize);
if (NewFv == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Copy the old data
//
CommonLibBinderCopyMem (NewFv, *Fv, OldSize);
//
// Free the old fv buffer
//
CommonLibBinderFree (*Fv);
//
// Locate the block map in the new fv header
//
hdr = (EFI_FIRMWARE_VOLUME_HEADER*)NewFv;
hdr->FvLength = NewSize;
blk = hdr->BlockMap;
//
// Update the block map for the new fv
//
blk->NumBlocks += (UINT32)BlockCount;
//
// Update the FV header checksum
//
FvBufChecksumHeader (NewFv);
//
// Clear out the new area of the FV
//
CommonLibBinderSetMem (
(UINT8*)NewFv + OldSize,
(NewSize - OldSize),
(hdr->Attributes & EFI_FVB2_ERASE_POLARITY) ? 0xFF : 0
);
//
// Set output with new fv that was created
//
*Fv = NewFv;
return EFI_SUCCESS;
}
EFI_STATUS
FvBufClearAllFiles (
IN OUT VOID *Fv
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
Fv - Address of the Fv in memory
Returns:
EFI_SUCCESS
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_STATUS Status;
UINTN size = 0;
Status = FvBufGetSize (Fv, &size);
if (EFI_ERROR (Status)) {
return Status;
}
CommonLibBinderSetMem(
(UINT8*)hdr + hdr->HeaderLength,
size - hdr->HeaderLength,
(hdr->Attributes & EFI_FVB2_ERASE_POLARITY) ? 0xFF : 0
);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufGetSize (
IN VOID *Fv,
OUT UINTN *Size
)
/*++
Routine Description:
Clears out all files from the Fv buffer in memory
Arguments:
Fv - Address of the Fv in memory
Returns:
EFI_SUCCESS
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_FV_BLOCK_MAP_ENTRY *blk = hdr->BlockMap;
*Size = 0;
while (blk->Length != 0 || blk->NumBlocks != 0) {
*Size = *Size + (blk->Length * blk->NumBlocks);
if (*Size >= 0x40000000) {
// If size is greater than 1GB, then assume it is corrupted
return EFI_VOLUME_CORRUPTED;
}
blk++;
}
if (*Size == 0) {
// If size is 0, then assume the volume is corrupted
return EFI_VOLUME_CORRUPTED;
}
return EFI_SUCCESS;
}
EFI_STATUS
FvBufAddFile (
IN OUT VOID *Fv,
IN VOID *File
)
/*++
Routine Description:
Adds a new FFS file
Arguments:
Fv - Address of the Fv in memory
File - FFS file to add to Fv
Returns:
EFI_SUCCESS
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_FFS_FILE_HEADER *fhdr = NULL;
EFI_FVB_ATTRIBUTES_2 FvbAttributes;
UINTN offset;
UINTN fsize;
UINTN newSize;
UINTN clearLoop;
EFI_STATUS Status;
UINTN fvSize;
Status = FvBufGetSize (Fv, &fvSize);
if (EFI_ERROR (Status)) {
return Status;
}
FvbAttributes = hdr->Attributes;
newSize = FvBufGetFfsFileSize ((EFI_FFS_FILE_HEADER*)File);
for(
offset = (UINTN)ALIGN_POINTER (hdr->HeaderLength, 8);
offset + newSize <= fvSize;
offset = (UINTN)ALIGN_POINTER (offset, 8)
) {
fhdr = (EFI_FFS_FILE_HEADER*) ((UINT8*)hdr + offset);
if (EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_HEADER_VALID
)
) {
// BUGBUG: Need to make sure that the new file does not already
// exist.
fsize = FvBufGetFfsFileSize (fhdr);
if (fsize == 0 || (offset + fsize > fvSize)) {
return EFI_VOLUME_CORRUPTED;
}
offset = offset + fsize;
continue;
}
clearLoop = 0;
while ((clearLoop < newSize) &&
(((UINT8*)fhdr)[clearLoop] ==
(UINT8)((hdr->Attributes & EFI_FVB2_ERASE_POLARITY) ? 0xFF : 0)
)
) {
clearLoop++;
}
//
// We found a place in the FV which is empty and big enough for
// the new file
//
if (clearLoop >= newSize) {
break;
}
offset = offset + 1; // Make some forward progress
}
if (offset + newSize > fvSize) {
return EFI_OUT_OF_RESOURCES;
}
CommonLibBinderCopyMem (fhdr, File, newSize);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufAddFileWithExtend (
IN OUT VOID **Fv,
IN VOID *File
)
/*++
Routine Description:
Adds a new FFS file. Extends the firmware volume if needed.
Arguments:
Fv - Source and destination firmware volume.
Note: If the FV is extended, then the original firmware volume
buffer is freed!
Size - The minimum size that the firmware volume is to be extended by.
The FV may be extended more than this size.
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
EFI_FFS_FILE_HEADER* NewFile;
NewFile = (EFI_FFS_FILE_HEADER*)File;
//
// Try to add to the capsule volume
//
Status = FvBufAddFile (*Fv, NewFile);
if (Status == EFI_OUT_OF_RESOURCES) {
//
// Try to extend the capsule volume by the size of the file
//
Status = FvBufExtend (Fv, FvBufExpand3ByteSize (NewFile->Size));
if (EFI_ERROR (Status)) {
return Status;
}
//
// Now, try to add the file again
//
Status = FvBufAddFile (*Fv, NewFile);
}
return Status;
}
EFI_STATUS
FvBufAddVtfFile (
IN OUT VOID *Fv,
IN VOID *File
)
/*++
Routine Description:
Adds a new FFS VFT (Volume Top File) file. In other words, adds the
file to the end of the firmware volume.
Arguments:
Fv - Address of the Fv in memory
File - FFS file to add to Fv
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_FFS_FILE_HEADER* NewFile;
UINTN NewFileSize;
UINT8 erasedUint8;
UINTN clearLoop;
EFI_FFS_FILE_HEADER *LastFile;
UINTN LastFileSize;
UINTN fvSize;
UINTN Key;
Status = FvBufGetSize (Fv, &fvSize);
if (EFI_ERROR (Status)) {
return Status;
}
erasedUint8 = (UINT8)((hdr->Attributes & EFI_FVB2_ERASE_POLARITY) ? 0xFF : 0);
NewFileSize = FvBufGetFfsFileSize ((EFI_FFS_FILE_HEADER*)File);
if (NewFileSize != (UINTN)ALIGN_POINTER (NewFileSize, 8)) {
return EFI_INVALID_PARAMETER;
}
//
// Find the last file in the FV
//
Key = 0;
LastFile = NULL;
LastFileSize = 0;
do {
Status = FvBufFindNextFile (Fv, &Key, (VOID **)&LastFile);
LastFileSize = FvBufGetFfsFileSize ((EFI_FFS_FILE_HEADER*)File);
} while (!EFI_ERROR (Status));
//
// If no files were found, then we start at the beginning of the FV
//
if (LastFile == NULL) {
LastFile = (EFI_FFS_FILE_HEADER*)((UINT8*)hdr + hdr->HeaderLength);
}
//
// We want to put the new file (VTF) at the end of the FV
//
NewFile = (EFI_FFS_FILE_HEADER*)((UINT8*)hdr + (fvSize - NewFileSize));
//
// Check to see if there is enough room for the VTF after the last file
// found in the FV
//
if ((UINT8*)NewFile < ((UINT8*)LastFile + LastFileSize)) {
return EFI_OUT_OF_RESOURCES;
}
//
// Loop to determine if the end of the FV is empty
//
clearLoop = 0;
while ((clearLoop < NewFileSize) &&
(((UINT8*)NewFile)[clearLoop] == erasedUint8)
) {
clearLoop++;
}
//
// Check to see if there was not enough room for the file
//
if (clearLoop < NewFileSize) {
return EFI_OUT_OF_RESOURCES;
}
CommonLibBinderCopyMem (NewFile, File, NewFileSize);
return EFI_SUCCESS;
}
VOID
FvBufCompact3ByteSize (
OUT VOID* SizeDest,
IN UINT32 Size
)
/*++
Routine Description:
Expands the 3 byte size commonly used in Firmware Volume data structures
Arguments:
Size - Address of the 3 byte array representing the size
Returns:
UINT32
--*/
{
((UINT8*)SizeDest)[0] = (UINT8)Size;
((UINT8*)SizeDest)[1] = (UINT8)(Size >> 8);
((UINT8*)SizeDest)[2] = (UINT8)(Size >> 16);
}
UINT32
FvBufGetFfsFileSize (
IN EFI_FFS_FILE_HEADER *Ffs
)
/*++
Routine Description:
Get the FFS file size.
Arguments:
Ffs - Pointer to FFS header
Returns:
UINT32
--*/
{
if (Ffs == NULL) {
return 0;
}
if (Ffs->Attributes & FFS_ATTRIB_LARGE_FILE) {
return (UINT32) ((EFI_FFS_FILE_HEADER2 *)Ffs)->ExtendedSize;
}
return FvBufExpand3ByteSize(Ffs->Size);
}
UINT32
FvBufGetFfsHeaderSize (
IN EFI_FFS_FILE_HEADER *Ffs
)
/*++
Routine Description:
Get the FFS header size.
Arguments:
Ffs - Pointer to FFS header
Returns:
UINT32
--*/
{
if (Ffs == NULL) {
return 0;
}
if (Ffs->Attributes & FFS_ATTRIB_LARGE_FILE) {
return sizeof(EFI_FFS_FILE_HEADER2);
}
return sizeof(EFI_FFS_FILE_HEADER);
}
UINT32
FvBufExpand3ByteSize (
IN VOID* Size
)
/*++
Routine Description:
Expands the 3 byte size commonly used in Firmware Volume data structures
Arguments:
Size - Address of the 3 byte array representing the size
Returns:
UINT32
--*/
{
return (((UINT8*)Size)[2] << 16) +
(((UINT8*)Size)[1] << 8) +
((UINT8*)Size)[0];
}
EFI_STATUS
FvBufFindNextFile (
IN VOID *Fv,
IN OUT UINTN *Key,
OUT VOID **File
)
/*++
Routine Description:
Iterates through the files contained within the firmware volume
Arguments:
Fv - Address of the Fv in memory
Key - Should be 0 to get the first file. After that, it should be
passed back in without modifying its contents to retrieve
subsequent files.
File - Output file pointer
File == NULL - invalid parameter
otherwise - *File will be update to the location of the file
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_FFS_FILE_HEADER *fhdr = NULL;
EFI_FVB_ATTRIBUTES_2 FvbAttributes;
UINTN fsize;
EFI_STATUS Status;
UINTN fvSize;
if (Fv == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = FvBufGetSize (Fv, &fvSize);
if (EFI_ERROR (Status)) {
return Status;
}
if (*Key == 0) {
*Key = hdr->HeaderLength;
}
FvbAttributes = hdr->Attributes;
for(
*Key = (UINTN)ALIGN_POINTER (*Key, 8);
(*Key + sizeof (*fhdr)) < fvSize;
*Key = (UINTN)ALIGN_POINTER (*Key, 8)
) {
fhdr = (EFI_FFS_FILE_HEADER*) ((UINT8*)hdr + *Key);
fsize = FvBufGetFfsFileSize (fhdr);
if (!EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_HEADER_VALID
) ||
EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_HEADER_INVALID
)
) {
*Key = *Key + 1; // Make some forward progress
continue;
} else if(
EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_MARKED_FOR_UPDATE
) ||
EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_DELETED
)
) {
*Key = *Key + fsize;
continue;
} else if (EFI_TEST_FFS_ATTRIBUTES_BIT(
FvbAttributes,
fhdr->State,
EFI_FILE_DATA_VALID
)
) {
*File = (UINT8*)hdr + *Key;
*Key = *Key + fsize;
return EFI_SUCCESS;
}
*Key = *Key + 1; // Make some forward progress
}
return EFI_NOT_FOUND;
}
EFI_STATUS
FvBufFindFileByName (
IN VOID *Fv,
IN EFI_GUID *Name,
OUT VOID **File
)
/*++
Routine Description:
Searches the Fv for a file by its name
Arguments:
Fv - Address of the Fv in memory
Name - Guid filename to search for in the firmware volume
File - Output file pointer
File == NULL - Only determine if the file exists, based on return
value from the function call.
otherwise - *File will be update to the location of the file
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_STATUS Status;
UINTN Key;
EFI_FFS_FILE_HEADER *NextFile;
Key = 0;
while (TRUE) {
Status = FvBufFindNextFile (Fv, &Key, (VOID **)&NextFile);
if (EFI_ERROR (Status)) {
return Status;
}
if (CommonLibBinderCompareGuid (Name, &NextFile->Name)) {
if (File != NULL) {
*File = NextFile;
}
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
EFI_STATUS
FvBufFindFileByType (
IN VOID *Fv,
IN EFI_FV_FILETYPE Type,
OUT VOID **File
)
/*++
Routine Description:
Searches the Fv for a file by its type
Arguments:
Fv - Address of the Fv in memory
Type - FFS FILE type to search for
File - Output file pointer
(File == NULL) -> Only determine if the file exists, based on return
value from the function call.
otherwise -> *File will be update to the location of the file
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_STATUS Status;
UINTN Key;
EFI_FFS_FILE_HEADER *NextFile;
Key = 0;
while (TRUE) {
Status = FvBufFindNextFile (Fv, &Key, (VOID **)&NextFile);
if (EFI_ERROR (Status)) {
return Status;
}
if (Type == NextFile->Type) {
if (File != NULL) {
*File = NextFile;
}
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
EFI_STATUS
FvBufGetFileRawData (
IN VOID* FfsFile,
OUT VOID** RawData,
OUT UINTN* RawDataSize
)
/*++
Routine Description:
Searches the requested file for raw data.
This routine either returns all the payload of a EFI_FV_FILETYPE_RAW file,
or finds the EFI_SECTION_RAW section within the file and returns its data.
Arguments:
FfsFile - Address of the FFS file in memory
RawData - Pointer to the raw data within the file
(This is NOT allocated. It is within the file.)
RawDataSize - Size of the raw data within the file
Returns:
EFI_STATUS
--*/
{
EFI_STATUS Status;
EFI_FFS_FILE_HEADER* File;
EFI_RAW_SECTION* Section;
File = (EFI_FFS_FILE_HEADER*)FfsFile;
//
// Is the file type == EFI_FV_FILETYPE_RAW?
//
if (File->Type == EFI_FV_FILETYPE_RAW) {
//
// Raw filetypes don't have sections, so we just return the raw data
//
*RawData = (VOID*)((UINT8 *)File + FvBufGetFfsHeaderSize (File));
*RawDataSize = FvBufGetFfsFileSize (File) - FvBufGetFfsHeaderSize (File);
return EFI_SUCCESS;
}
//
// Within the file, we now need to find the EFI_SECTION_RAW section.
//
Status = FvBufFindSectionByType (File, EFI_SECTION_RAW, (VOID **)&Section);
if (EFI_ERROR (Status)) {
return Status;
}
*RawData = (VOID*)((UINT8 *)Section + FvBufGetSecHdrLen(Section));
*RawDataSize =
FvBufGetSecFileLen (Section) - FvBufGetSecHdrLen(Section);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufPackageFreeformRawFile (
IN EFI_GUID* Filename,
IN VOID* RawData,
IN UINTN RawDataSize,
OUT VOID** FfsFile
)
/*++
Routine Description:
Packages up a FFS file containing the input raw data.
The file created will have a type of EFI_FV_FILETYPE_FREEFORM, and will
contain one EFI_FV_FILETYPE_RAW section.
Arguments:
RawData - Pointer to the raw data to be packed
RawDataSize - Size of the raw data to be packed
FfsFile - Address of the packaged FFS file.
Note: The called must deallocate this memory!
Returns:
EFI_STATUS
--*/
{
EFI_FFS_FILE_HEADER* NewFile;
UINT32 NewFileSize;
EFI_RAW_SECTION* NewSection;
UINT32 NewSectionSize;
UINT32 FfsHdrLen;
UINT32 SecHdrLen;
//
// The section size is the DataSize + the size of the section header
//
NewSectionSize = (UINT32)sizeof (EFI_RAW_SECTION) + (UINT32)RawDataSize;
SecHdrLen = sizeof (EFI_RAW_SECTION);
if (NewSectionSize >= MAX_SECTION_SIZE) {
NewSectionSize = (UINT32)sizeof (EFI_RAW_SECTION2) + (UINT32)RawDataSize;
SecHdrLen = sizeof (EFI_RAW_SECTION2);
}
//
// The file size is the size of the file header + the section size
//
NewFileSize = sizeof (EFI_FFS_FILE_HEADER) + NewSectionSize;
FfsHdrLen = sizeof (EFI_FFS_FILE_HEADER);
if (NewFileSize >= MAX_FFS_SIZE) {
NewFileSize = sizeof (EFI_FFS_FILE_HEADER2) + NewSectionSize;
FfsHdrLen = sizeof (EFI_FFS_FILE_HEADER2);
}
//
// Try to allocate a buffer to build the new FFS file in
//
NewFile = CommonLibBinderAllocate (NewFileSize);
if (NewFile == NULL) {
return EFI_OUT_OF_RESOURCES;
}
CommonLibBinderSetMem (NewFile, NewFileSize, 0);
//
// The NewSection follow right after the FFS file header
//
NewSection = (EFI_RAW_SECTION*)((UINT8*)NewFile + FfsHdrLen);
if (NewSectionSize >= MAX_SECTION_SIZE) {
FvBufCompact3ByteSize (NewSection->Size, 0xffffff);
((EFI_RAW_SECTION2 *)NewSection)->ExtendedSize = NewSectionSize;
} else {
FvBufCompact3ByteSize (NewSection->Size, NewSectionSize);
}
NewSection->Type = EFI_SECTION_RAW;
//
// Copy the actual file data into the buffer
//
CommonLibBinderCopyMem ((UINT8 *)NewSection + SecHdrLen, RawData, RawDataSize);
//
// Initialize the FFS file header
//
CommonLibBinderCopyMem (&NewFile->Name, Filename, sizeof (EFI_GUID));
NewFile->Attributes = 0;
if (NewFileSize >= MAX_FFS_SIZE) {
FvBufCompact3ByteSize (NewFile->Size, 0x0);
((EFI_FFS_FILE_HEADER2 *)NewFile)->ExtendedSize = NewFileSize;
NewFile->Attributes |= FFS_ATTRIB_LARGE_FILE;
} else {
FvBufCompact3ByteSize (NewFile->Size, NewFileSize);
}
NewFile->Type = EFI_FV_FILETYPE_FREEFORM;
NewFile->IntegrityCheck.Checksum.Header =
FvBufCalculateChecksum8 ((UINT8*)NewFile, FfsHdrLen);
NewFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
NewFile->State = (UINT8)~( EFI_FILE_HEADER_CONSTRUCTION |
EFI_FILE_HEADER_VALID |
EFI_FILE_DATA_VALID
);
*FfsFile = NewFile;
return EFI_SUCCESS;
}
EFI_STATUS
FvBufFindNextSection (
IN VOID *SectionsStart,
IN UINTN TotalSectionsSize,
IN OUT UINTN *Key,
OUT VOID **Section
)
/*++
Routine Description:
Iterates through the sections contained within a given array of sections
Arguments:
SectionsStart - Address of the start of the FFS sections array
TotalSectionsSize - Total size of all the sections
Key - Should be 0 to get the first section. After that, it should be
passed back in without modifying its contents to retrieve
subsequent files.
Section - Output section pointer
(Section == NULL) -> invalid parameter
otherwise -> *Section will be update to the location of the file
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_COMMON_SECTION_HEADER *sectionHdr;
UINTN sectionSize;
*Key = (UINTN)ALIGN_POINTER (*Key, 4); // Sections are DWORD aligned
if ((*Key + sizeof (*sectionHdr)) > TotalSectionsSize) {
return EFI_NOT_FOUND;
}
sectionHdr = (EFI_COMMON_SECTION_HEADER*)((UINT8*)SectionsStart + *Key);
sectionSize = FvBufGetSecFileLen (sectionHdr);
if (sectionSize < sizeof (EFI_COMMON_SECTION_HEADER)) {
return EFI_NOT_FOUND;
}
if ((*Key + sectionSize) > TotalSectionsSize) {
return EFI_NOT_FOUND;
}
*Section = (UINT8*)sectionHdr;
*Key = *Key + sectionSize;
return EFI_SUCCESS;
}
EFI_STATUS
FvBufCountSections (
IN VOID* FfsFile,
IN UINTN* Count
)
/*++
Routine Description:
Searches the FFS file and counts the number of sections found.
The sections are NOT recursed.
Arguments:
FfsFile - Address of the FFS file in memory
Count - The location to store the section count in
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_STATUS Status;
UINTN Key;
VOID* SectionStart;
UINTN TotalSectionsSize;
EFI_COMMON_SECTION_HEADER* NextSection;
SectionStart = (VOID*)((UINTN)FfsFile + FvBufGetFfsHeaderSize(FfsFile));
TotalSectionsSize =
FvBufGetFfsFileSize ((EFI_FFS_FILE_HEADER*)FfsFile) -
FvBufGetFfsHeaderSize(FfsFile);
Key = 0;
*Count = 0;
while (TRUE) {
Status = FvBufFindNextSection (
SectionStart,
TotalSectionsSize,
&Key,
(VOID **)&NextSection
);
if (Status == EFI_NOT_FOUND) {
return EFI_SUCCESS;
} else if (EFI_ERROR (Status)) {
return Status;
}
//
// Increment the section counter
//
*Count += 1;
}
return EFI_NOT_FOUND;
}
EFI_STATUS
FvBufFindSectionByType (
IN VOID *FfsFile,
IN UINT8 Type,
OUT VOID **Section
)
/*++
Routine Description:
Searches the FFS file for a section by its type
Arguments:
FfsFile - Address of the FFS file in memory
Type - FFS FILE section type to search for
Section - Output section pointer
(Section == NULL) -> Only determine if the section exists, based on return
value from the function call.
otherwise -> *Section will be update to the location of the file
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_STATUS Status;
UINTN Key;
VOID* SectionStart;
UINTN TotalSectionsSize;
EFI_COMMON_SECTION_HEADER* NextSection;
SectionStart = (VOID*)((UINTN)FfsFile + FvBufGetFfsHeaderSize(FfsFile));
TotalSectionsSize =
FvBufGetFfsFileSize ((EFI_FFS_FILE_HEADER*)FfsFile) -
FvBufGetFfsHeaderSize(FfsFile);
Key = 0;
while (TRUE) {
Status = FvBufFindNextSection (
SectionStart,
TotalSectionsSize,
&Key,
(VOID **)&NextSection
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Type == NextSection->Type) {
if (Section != NULL) {
*Section = NextSection;
}
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
EFI_STATUS
FvBufShrinkWrap (
IN VOID *Fv
)
/*++
Routine Description:
Shrinks a firmware volume (in place) to provide a minimal FV.
BUGBUG: Does not handle the case where the firmware volume has a
VTF (Volume Top File). The VTF will not be moved to the
end of the extended FV.
Arguments:
Fv - Firmware volume.
Returns:
EFI_SUCCESS
--*/
{
EFI_STATUS Status;
UINTN OldSize;
UINT32 BlockCount;
UINT32 NewBlockSize = 128;
UINTN Key;
EFI_FFS_FILE_HEADER* FileIt;
VOID* EndOfLastFile;
EFI_FIRMWARE_VOLUME_HEADER* FvHdr;
Status = FvBufGetSize (Fv, &OldSize);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FvBufUnifyBlockSizes (Fv, NewBlockSize);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Locate the block map in the fv header
//
FvHdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
//
// Find the end of the last file
//
Key = 0;
EndOfLastFile = (UINT8*)FvHdr + FvHdr->FvLength;
while (!EFI_ERROR (FvBufFindNextFile (Fv, &Key, (VOID **)&FileIt))) {
EndOfLastFile =
(VOID*)((UINT8*)FileIt + FvBufGetFfsFileSize (FileIt));
}
//
// Set the BlockCount to have the minimal number of blocks for the Fv.
//
BlockCount = (UINT32)((UINTN)EndOfLastFile - (UINTN)Fv);
BlockCount = BlockCount + NewBlockSize - 1;
BlockCount = BlockCount / NewBlockSize;
//
// Adjust the block count to shrink the Fv in place.
//
FvHdr->BlockMap[0].NumBlocks = BlockCount;
FvHdr->FvLength = BlockCount * NewBlockSize;
//
// Update the FV header checksum
//
FvBufChecksumHeader (Fv);
return EFI_SUCCESS;
}
EFI_STATUS
FvBufUnifyBlockSizes (
IN OUT VOID *Fv,
IN UINTN BlockSize
)
/*++
Routine Description:
Searches the FFS file for a section by its type
Arguments:
Fv - Address of the Fv in memory
BlockSize - The size of the blocks to convert the Fv to. If the total size
of the Fv is not evenly divisible by this size, then
EFI_INVALID_PARAMETER will be returned.
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
EFI_VOLUME_CORRUPTED
--*/
{
EFI_FIRMWARE_VOLUME_HEADER *hdr = (EFI_FIRMWARE_VOLUME_HEADER*)Fv;
EFI_FV_BLOCK_MAP_ENTRY *blk = hdr->BlockMap;
UINT32 Size;
Size = 0;
//
// Scan through the block map list, performing error checking, and adding
// up the total Fv size.
//
while( blk->Length != 0 ||
blk->NumBlocks != 0
) {
Size = Size + (blk->Length * blk->NumBlocks);
blk++;
if ((UINT8*)blk > ((UINT8*)hdr + hdr->HeaderLength)) {
return EFI_VOLUME_CORRUPTED;
}
}
//
// Make sure that the Fv size is a multiple of the new block size.
//
if ((Size % BlockSize) != 0) {
return EFI_INVALID_PARAMETER;
}
//
// Zero out the entire block map.
//
CommonLibBinderSetMem (
&hdr->BlockMap,
(UINTN)blk - (UINTN)&hdr->BlockMap,
0
);
//
// Write out the single block map entry.
//
hdr->BlockMap[0].Length = (UINT32)BlockSize;
hdr->BlockMap[0].NumBlocks = Size / (UINT32)BlockSize;
return EFI_SUCCESS;
}
STATIC
UINT16
FvBufCalculateSum16 (
IN UINT16 *Buffer,
IN UINTN Size
)
/*++
Routine Description:
This function calculates the UINT16 sum for the requested region.
Arguments:
Buffer Pointer to buffer containing byte data of component.
Size Size of the buffer
Returns:
The 16 bit checksum
--*/
{
UINTN Index;
UINT16 Sum;
Sum = 0;
//
// Perform the word sum for buffer
//
for (Index = 0; Index < Size; Index++) {
Sum = (UINT16) (Sum + Buffer[Index]);
}
return (UINT16) Sum;
}
STATIC
UINT16
FvBufCalculateChecksum16 (
IN UINT16 *Buffer,
IN UINTN Size
)
/*++
Routine Description::
This function calculates the value needed for a valid UINT16 checksum
Arguments:
Buffer Pointer to buffer containing byte data of component.
Size Size of the buffer
Returns:
The 16 bit checksum value needed.
--*/
{
return (UINT16)(0x10000 - FvBufCalculateSum16 (Buffer, Size));
}
STATIC
UINT8
FvBufCalculateSum8 (
IN UINT8 *Buffer,
IN UINTN Size
)
/*++
Description:
This function calculates the UINT8 sum for the requested region.
Input:
Buffer Pointer to buffer containing byte data of component.
Size Size of the buffer
Return:
The 8 bit checksum value needed.
--*/
{
UINTN Index;
UINT8 Sum;
Sum = 0;
//
// Perform the byte sum for buffer
//
for (Index = 0; Index < Size; Index++) {
Sum = (UINT8) (Sum + Buffer[Index]);
}
return Sum;
}
STATIC
UINT8
FvBufCalculateChecksum8 (
IN UINT8 *Buffer,
IN UINTN Size
)
/*++
Description:
This function calculates the value needed for a valid UINT8 checksum
Input:
Buffer Pointer to buffer containing byte data of component.
Size Size of the buffer
Return:
The 8 bit checksum value needed.
--*/
{
return (UINT8)(0x100 - FvBufCalculateSum8 (Buffer, Size));
}