audk/OvmfPkg/Library/BaseMemEncryptSevLib/PeiMemEncryptSevLibInternal.c

187 lines
4.1 KiB
C

/** @file
Secure Encrypted Virtualization (SEV) library helper function
Copyright (c) 2020, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/PcdLib.h>
#include <Register/Amd/Cpuid.h>
#include <Register/Amd/Msr.h>
#include <Register/Cpuid.h>
#include <Uefi/UefiBaseType.h>
STATIC BOOLEAN mSevStatus = FALSE;
STATIC BOOLEAN mSevEsStatus = FALSE;
STATIC BOOLEAN mSevSnpStatus = FALSE;
STATIC BOOLEAN mSevStatusChecked = FALSE;
STATIC UINT64 mSevEncryptionMask = 0;
STATIC BOOLEAN mSevEncryptionMaskSaved = FALSE;
/**
Reads and sets the status of SEV features.
**/
STATIC
VOID
EFIAPI
InternalMemEncryptSevStatus (
VOID
)
{
UINT32 RegEax;
MSR_SEV_STATUS_REGISTER Msr;
CPUID_MEMORY_ENCRYPTION_INFO_EAX Eax;
BOOLEAN ReadSevMsr;
SEC_SEV_ES_WORK_AREA *SevEsWorkArea;
ReadSevMsr = FALSE;
SevEsWorkArea = (SEC_SEV_ES_WORK_AREA *)FixedPcdGet32 (PcdSevEsWorkAreaBase);
if ((SevEsWorkArea != NULL) && (SevEsWorkArea->EncryptionMask != 0)) {
//
// The MSR has been read before, so it is safe to read it again and avoid
// having to validate the CPUID information.
//
ReadSevMsr = TRUE;
} else {
//
// Check if memory encryption leaf exist
//
AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
if (RegEax >= CPUID_MEMORY_ENCRYPTION_INFO) {
//
// CPUID Fn8000_001F[EAX] Bit 1 (Sev supported)
//
AsmCpuid (CPUID_MEMORY_ENCRYPTION_INFO, &Eax.Uint32, NULL, NULL, NULL);
if (Eax.Bits.SevBit) {
ReadSevMsr = TRUE;
}
}
}
if (ReadSevMsr) {
//
// Check MSR_0xC0010131 Bit 0 (Sev Enabled)
//
Msr.Uint32 = AsmReadMsr32 (MSR_SEV_STATUS);
if (Msr.Bits.SevBit) {
mSevStatus = TRUE;
}
//
// Check MSR_0xC0010131 Bit 1 (Sev-Es Enabled)
//
if (Msr.Bits.SevEsBit) {
mSevEsStatus = TRUE;
}
//
// Check MSR_0xC0010131 Bit 2 (Sev-Snp Enabled)
//
if (Msr.Bits.SevSnpBit) {
mSevSnpStatus = TRUE;
}
}
mSevStatusChecked = TRUE;
}
/**
Returns a boolean to indicate whether SEV-SNP is enabled.
@retval TRUE SEV-SNP is enabled
@retval FALSE SEV-SNP is not enabled
**/
BOOLEAN
EFIAPI
MemEncryptSevSnpIsEnabled (
VOID
)
{
if (!mSevStatusChecked) {
InternalMemEncryptSevStatus ();
}
return mSevSnpStatus;
}
/**
Returns a boolean to indicate whether SEV-ES is enabled.
@retval TRUE SEV-ES is enabled
@retval FALSE SEV-ES is not enabled
**/
BOOLEAN
EFIAPI
MemEncryptSevEsIsEnabled (
VOID
)
{
if (!mSevStatusChecked) {
InternalMemEncryptSevStatus ();
}
return mSevEsStatus;
}
/**
Returns a boolean to indicate whether SEV is enabled.
@retval TRUE SEV is enabled
@retval FALSE SEV is not enabled
**/
BOOLEAN
EFIAPI
MemEncryptSevIsEnabled (
VOID
)
{
if (!mSevStatusChecked) {
InternalMemEncryptSevStatus ();
}
return mSevStatus;
}
/**
Returns the SEV encryption mask.
@return The SEV pagtable encryption mask
**/
UINT64
EFIAPI
MemEncryptSevGetEncryptionMask (
VOID
)
{
if (!mSevEncryptionMaskSaved) {
SEC_SEV_ES_WORK_AREA *SevEsWorkArea;
SevEsWorkArea = (SEC_SEV_ES_WORK_AREA *)FixedPcdGet32 (PcdSevEsWorkAreaBase);
if (SevEsWorkArea != NULL) {
mSevEncryptionMask = SevEsWorkArea->EncryptionMask;
} else {
CPUID_MEMORY_ENCRYPTION_INFO_EBX Ebx;
//
// CPUID Fn8000_001F[EBX] Bit 0:5 (memory encryption bit position)
//
AsmCpuid (CPUID_MEMORY_ENCRYPTION_INFO, NULL, &Ebx.Uint32, NULL, NULL);
mSevEncryptionMask = LShiftU64 (1, Ebx.Bits.PtePosBits);
}
mSevEncryptionMaskSaved = TRUE;
}
return mSevEncryptionMask;
}