audk/BaseTools/Source/C/GenFw/GenFw.c

3637 lines
131 KiB
C

/** @file
Copyright (c) 2004 - 2009, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
GenFw.c
Abstract:
Converts a pe32+ image to an FW, Te image type, or other specific image.
**/
#include "WinNtInclude.h"
#ifndef __GNUC__
#include <windows.h>
#include <io.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <Common/UefiBaseTypes.h>
#include <IndustryStandard/PeImage.h>
#include <Common/UefiInternalFormRepresentation.h>
//
// Acpi Table definition
//
#include <IndustryStandard/Acpi.h>
#include <IndustryStandard/Acpi1_0.h>
#include <IndustryStandard/Acpi2_0.h>
#include <IndustryStandard/Acpi3_0.h>
#include <IndustryStandard/MemoryMappedConfigurationSpaceAccessTable.h>
#include "CommonLib.h"
#include "PeCoffLib.h"
#include "ParseInf.h"
#include "EfiUtilityMsgs.h"
#include "elf_common.h"
#include "elf32.h"
#include "elf64.h"
//
// Version of this utility
//
#define UTILITY_NAME "GenFw"
#define UTILITY_MAJOR_VERSION 0
#define UTILITY_MINOR_VERSION 2
#define HII_RESOURCE_SECTION_INDEX 1
#define HII_RESOURCE_SECTION_NAME "HII"
//
// Action for this tool.
//
#define FW_DUMMY_IMAGE 0
#define FW_EFI_IMAGE 1
#define FW_TE_IMAGE 2
#define FW_ACPI_IMAGE 3
#define FW_BIN_IMAGE 4
#define FW_ZERO_DEBUG_IMAGE 5
#define FW_SET_STAMP_IMAGE 6
#define FW_MCI_IMAGE 7
#define FW_MERGE_IMAGE 8
#define FW_RELOC_STRIPEED_IMAGE 9
#define FW_HII_PACKAGE_LIST_RCIMAGE 10
#define FW_HII_PACKAGE_LIST_BINIMAGE 11
#define DUMP_TE_HEADER 0x11
#define DEFAULT_MC_PAD_BYTE_VALUE 0xFF
#define DEFAULT_MC_ALIGNMENT 16
#ifndef _MAX_PATH
#define _MAX_PATH 500
#endif
#define STATUS_IGNORE 0xA
//
// Structure definition for a microcode header
//
typedef struct {
UINT32 HeaderVersion;
UINT32 PatchId;
UINT32 Date;
UINT32 CpuId;
UINT32 Checksum;
UINT32 LoaderVersion;
UINT32 PlatformId;
UINT32 DataSize; // if 0, then TotalSize = 2048, and TotalSize field is invalid
UINT32 TotalSize; // number of bytes
UINT32 Reserved[3];
} MICROCODE_IMAGE_HEADER;
static EFI_GUID mZeroGuid = {0x0, 0x0, 0x0, {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}};
static const char *gHiiPackageRCFileHeader[] = {
"//",
"// DO NOT EDIT -- auto-generated file",
"//",
NULL
};
STATIC CHAR8 *mInImageName;
STATIC
EFI_STATUS
ZeroDebugData (
IN OUT UINT8 *FileBuffer,
BOOLEAN ZeroDebug
);
STATIC
EFI_STATUS
SetStamp (
IN OUT UINT8 *FileBuffer,
IN CHAR8 *TimeStamp
);
STATIC
STATUS
MicrocodeReadData (
FILE *InFptr,
UINT32 *Data
);
STATIC
VOID
Version (
VOID
)
/*++
Routine Description:
Print out version information for this utility.
Arguments:
None
Returns:
None
--*/
{
fprintf (stdout, "%s Version %d.%d\n", UTILITY_NAME, UTILITY_MAJOR_VERSION, UTILITY_MINOR_VERSION);
}
STATIC
VOID
Usage (
VOID
)
/*++
Routine Description:
Print Help message.
Arguments:
VOID
Returns:
None
--*/
{
//
// Summary usage
//
fprintf (stdout, "\nUsage: %s [options] <input_file>\n\n", UTILITY_NAME);
//
// Copyright declaration
//
fprintf (stdout, "Copyright (c) 2007, Intel Corporation. All rights reserved.\n\n");
//
// Details Option
//
fprintf (stdout, "Options:\n");
fprintf (stdout, " -o FileName, --outputfile FileName\n\
File will be created to store the ouput content.\n");
fprintf (stdout, " -e EFI_FILETYPE, --efiImage EFI_FILETYPE\n\
Create Efi Image. EFI_FILETYPE is one of BASE,SMM_CORE,\n\
PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER, UEFI_APPLICATION,\n\
SEC, DXE_SAL_DRIVER, UEFI_DRIVER, DXE_RUNTIME_DRIVER,\n\
DXE_SMM_DRIVER, SECURITY_CORE, COMBINED_PEIM_DRIVER,\n\
PIC_PEIM, RELOCATABLE_PEIM, BS_DRIVER, RT_DRIVER,\n\
APPLICATION, SAL_RT_DRIVER to support all module types\n\
It can only be used together with --keepexceptiontable,\n\
--keepzeropending, -r, -o option.It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -c, --acpi Create Acpi table.\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -t, --terse Create Te Image.\n\
It can only be used together with --keepexceptiontable,\n\
--keepzeropending, -r, -o option.It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -u, --dump Dump TeImage Header.\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -z, --zero Zero the Debug Data Fields in the PE input image file.\n\
It also zeros the time stamp fields.\n\
This option can be used to compare the binary efi image.\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -b, --exe2bin Convert the input EXE to the output BIN file.\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");;
fprintf (stdout, " -l, --stripped Strip off the relocation info from PE or TE image.\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -s timedate, --stamp timedate\n\
timedate format is \"yyyy-mm-dd 00:00:00\". if timedata \n\
is set to NOW, current system time is used. The support\n\
date scope is 1970-1-1 8:0:0 ~ 2038-1-19 3:14:07\n\
It can't be combined with other action options\n\
except for -o, -r option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -m, --mcifile Convert input microcode txt file to microcode bin file.\n\
It can't be combined with other action options\n\
except for -o option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -j, --join Combine multi microcode bin files to one file.\n\
It can be specified with -a, -p, -o option.\n\
No other options can be combined with it.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -a NUM, --align NUM NUM is one HEX or DEC format alignment value.\n\
This option is only used together with -j option.\n");
fprintf (stdout, " -p NUM, --pad NUM NUM is one HEX or DEC format padding value.\n\
This option is only used together with -j option.\n");
fprintf (stdout, " --keepexceptiontable Don't clear exception table.\n\
This option can be used together with -e or -t.\n\
It doesn't work for other options.\n");
fprintf (stdout, " --keepzeropending Don't strip zero pending of .reloc.\n\
This option can be used together with -e or -t.\n\
It doesn't work for other options.\n");
fprintf (stdout, " -r, --replace Overwrite the input file with the output content.\n\
If more input files are specified,\n\
the last input file will be as the output file.\n");
fprintf (stdout, " -g HiiPackageListGuid, --hiiguid HiiPackageListGuid\n\
Guid is used to specify hii package list guid.\n\
Its format is xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx\n\
If not specified, the first Form FormSet guid is used.\n");
fprintf (stdout, " --hiipackage Combine all input binary hii pacakges into \n\
a single package list as the text resource data(RC).\n\
It can't be combined with other action options\n\
except for -o option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " --hiibinpackage Combine all input binary hii pacakges into \n\
a single package list as the binary resource section.\n\
It can't be combined with other action options\n\
except for -o option. It is a action option.\n\
If it is combined with other action options, the later\n\
input action option will override the previous one.\n");
fprintf (stdout, " -v, --verbose Turn on verbose output with informational messages.\n");
fprintf (stdout, " -q, --quiet Disable all messages except key message and fatal error\n");
fprintf (stdout, " -d, --debug level Enable debug messages, at input debug level.\n");
fprintf (stdout, " --version Show program's version number and exit\n");
fprintf (stdout, " -h, --help Show this help message and exit\n");
}
STATIC
STATUS
CheckAcpiTable (
VOID *AcpiTable,
UINT32 Length
)
/*++
Routine Description:
Check Acpi Table
Arguments:
AcpiTable Buffer for AcpiSection
Length AcpiSection Length
Returns:
0 success
non-zero otherwise
--*/
{
EFI_ACPI_DESCRIPTION_HEADER *AcpiHeader;
EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
UINT32 ExpectedLength;
AcpiHeader = (EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable;
//
// Generic check for AcpiTable length.
//
if (AcpiHeader->Length > Length) {
Error (NULL, 0, 3000, "Invalid", "AcpiTable length check failed.", NULL);
return STATUS_ERROR;
}
//
// Currently, we only check must-have tables: FADT, FACS, DSDT,
// and some important tables: MADT, MCFG.
//
switch (AcpiHeader->Signature) {
//
// "FACP" Fixed ACPI Description Table
//
case EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE:
switch (AcpiHeader->Revision) {
case EFI_ACPI_1_0_FIXED_ACPI_DESCRIPTION_TABLE_REVISION:
ExpectedLength = sizeof(EFI_ACPI_1_0_FIXED_ACPI_DESCRIPTION_TABLE);
break;
case EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_REVISION:
ExpectedLength = sizeof(EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE);
break;
case EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_REVISION:
ExpectedLength = sizeof(EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE);
break;
default:
if (AcpiHeader->Revision > EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_REVISION) {
ExpectedLength = AcpiHeader->Length;
break;
}
Error (NULL, 0, 3000, "Invalid", "FACP revision check failed.");
return STATUS_ERROR;
}
if (ExpectedLength != AcpiHeader->Length) {
Error (NULL, 0, 3000, "Invalid", "FACP length check failed.");
return STATUS_ERROR;
}
break;
//
// "FACS" Firmware ACPI Control Structure
//
case EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE:
Facs = (EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *)AcpiTable;
if (Facs->Version > EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) {
break;
}
if ((Facs->Version != EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) &&
(Facs->Version != EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) &&
(Facs->Version != EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION)){
Error (NULL, 0, 3000, "Invalid", "FACS version check failed.");
return STATUS_ERROR;
}
if ((Facs->Length != sizeof(EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE)) &&
(Facs->Length != sizeof(EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE)) &&
(Facs->Length != sizeof(EFI_ACPI_3_0_FIRMWARE_ACPI_CONTROL_STRUCTURE))) {
Error (NULL, 0, 3000, "Invalid", "FACS length check failed.");
return STATUS_ERROR;
}
break;
//
// "DSDT" Differentiated System Description Table
//
case EFI_ACPI_3_0_DIFFERENTIATED_SYSTEM_DESCRIPTION_TABLE_SIGNATURE:
if (AcpiHeader->Revision > EFI_ACPI_3_0_DIFFERENTIATED_SYSTEM_DESCRIPTION_TABLE_REVISION) {
break;
}
if (AcpiHeader->Length <= sizeof(EFI_ACPI_DESCRIPTION_HEADER)) {
Error (NULL, 0, 3000, "Invalid", "DSDT length check failed.");
return STATUS_ERROR;
}
break;
//
// "APIC" Multiple APIC Description Table
//
case EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_SIGNATURE:
if (AcpiHeader->Revision > EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_REVISION) {
break;
}
if ((AcpiHeader->Revision != EFI_ACPI_1_0_MULTIPLE_APIC_DESCRIPTION_TABLE_REVISION) &&
(AcpiHeader->Revision != EFI_ACPI_2_0_MULTIPLE_APIC_DESCRIPTION_TABLE_REVISION) &&
(AcpiHeader->Revision != EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_REVISION)) {
Error (NULL, 0, 3000, "Invalid", "APIC revision check failed.");
return STATUS_ERROR;
}
if (AcpiHeader->Length <= sizeof(EFI_ACPI_DESCRIPTION_HEADER) + sizeof(UINT32) + sizeof(UINT32)) {
Error (NULL, 0, 3000, "Invalid", "APIC length check failed.");
return STATUS_ERROR;
}
break;
//
// "MCFG" PCI Express Memory Mapped Configuration Space Base Address Description Table
//
case EFI_ACPI_3_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE:
if (AcpiHeader->Revision > EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_SPACE_ACCESS_TABLE_REVISION) {
break;
}
if (AcpiHeader->Revision != EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_SPACE_ACCESS_TABLE_REVISION) {
Error (NULL, 0, 3000, "Invalid", "MCFG revision check failed.");
return STATUS_ERROR;
}
if (AcpiHeader->Length <= sizeof(EFI_ACPI_DESCRIPTION_HEADER) + sizeof(UINT64)) {
Error (NULL, 0, 3000, "Invalid", "MCFG length check failed.");
return STATUS_ERROR;
}
break;
//
// Other table pass check
//
default:
break;
}
return STATUS_SUCCESS;
}
INTN
IsElfHeader(
UINT8 *FileBuffer
)
{
return (FileBuffer[EI_MAG0] == ELFMAG0
&& FileBuffer[EI_MAG1] == ELFMAG1
&& FileBuffer[EI_MAG2] == ELFMAG2
&& FileBuffer[EI_MAG3] == ELFMAG3);
}
typedef Elf32_Shdr Elf_Shdr;
typedef Elf32_Ehdr Elf_Ehdr;
typedef Elf32_Rel Elf_Rel;
typedef Elf32_Sym Elf_Sym;
typedef Elf32_Phdr Elf_Phdr;
typedef Elf32_Dyn Elf_Dyn;
#define ELFCLASS ELFCLASS32
#define ELF_R_TYPE(r) ELF32_R_TYPE(r)
#define ELF_R_SYM(r) ELF32_R_SYM(r)
#define ELF_HII_SECTION_NAME ".hii"
//
// Well known ELF structures.
//
Elf_Ehdr *Ehdr;
Elf_Shdr *ShdrBase;
Elf_Phdr *gPhdrBase;
//
// PE section alignment.
//
const UINT32 CoffAlignment = 0x20;
const UINT16 CoffNbrSections = 5;
//
// Current offset in coff file.
//
UINT32 CoffOffset;
//
// Result Coff file in memory.
//
UINT8 *CoffFile = NULL;
//
// ELF sections to offset in Coff file.
//
UINT32 *CoffSectionsOffset = NULL;
//
// Offset in Coff file of headers and sections.
//
UINT32 NtHdrOffset;
UINT32 TableOffset;
UINT32 TextOffset;
UINT32 DataOffset;
UINT32 HiiRsrcOffset;
UINT32 RelocOffset;
EFI_IMAGE_BASE_RELOCATION *CoffBaseRel;
UINT16 *CoffEntryRel;
UINT32
CoffAlign(
UINT32 Offset
)
{
return (Offset + CoffAlignment - 1) & ~(CoffAlignment - 1);
}
Elf_Shdr *
GetShdrByIndex(
UINT32 Num
)
{
if (Num >= Ehdr->e_shnum)
return NULL;
return (Elf_Shdr*)((UINT8*)ShdrBase + Num * Ehdr->e_shentsize);
}
INTN
CheckElfHeader(
VOID
)
{
//
// Note: Magic has already been tested.
//
if (Ehdr->e_ident[EI_CLASS] != ELFCLASS) {
Error (NULL, 0, 3000, "Unsupported", "%s needs to be ported for 64-bit ELF.", mInImageName);
return 0;
}
if (Ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
return 0;
}
if ((Ehdr->e_type != ET_EXEC) && (Ehdr->e_type != ET_DYN)) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
return 0;
}
if (!((Ehdr->e_machine == EM_386) || (Ehdr->e_machine == EM_ARM))) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_386 or EM_ARM");
return 0;
}
if (Ehdr->e_version != EV_CURRENT) {
Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) Ehdr->e_version, EV_CURRENT);
return 0;
}
//
// Find the section header table
//
ShdrBase = (Elf_Shdr *)((UINT8 *)Ehdr + Ehdr->e_shoff);
gPhdrBase = (Elf_Phdr *)((UINT8 *)Ehdr + Ehdr->e_phoff);
CoffSectionsOffset = (UINT32 *)malloc(Ehdr->e_shnum * sizeof (UINT32));
memset(CoffSectionsOffset, 0, Ehdr->e_shnum * sizeof(UINT32));
return 1;
}
int
IsTextShdr(
Elf_Shdr *Shdr
)
{
return (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC;
}
int
IsHiiRsrcShdr(
Elf_Shdr *Shdr
)
{
Elf_Shdr *Namedr = GetShdrByIndex(Ehdr->e_shstrndx);
if (strcmp((CHAR8*)Ehdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0) {
return 1;
}
return 0;
}
int
IsDataShdr(
Elf_Shdr *Shdr
)
{
if (IsHiiRsrcShdr(Shdr)) {
return 0;
}
return (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
}
VOID
CreateSectionHeader(
const CHAR8 *Name,
UINT32 Offset,
UINT32 Size,
UINT32 Flags
)
{
EFI_IMAGE_SECTION_HEADER *Hdr;
Hdr = (EFI_IMAGE_SECTION_HEADER*)(CoffFile + TableOffset);
strcpy((char *)Hdr->Name, Name);
Hdr->Misc.VirtualSize = Size;
Hdr->VirtualAddress = Offset;
Hdr->SizeOfRawData = Size;
Hdr->PointerToRawData = Offset;
Hdr->PointerToRelocations = 0;
Hdr->PointerToLinenumbers = 0;
Hdr->NumberOfRelocations = 0;
Hdr->NumberOfLinenumbers = 0;
Hdr->Characteristics = Flags;
TableOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
}
VOID
SetHiiResourceHeader (
UINT8 *HiiBinData,
UINT32 OffsetToFile
)
{
UINT32 Index;
EFI_IMAGE_RESOURCE_DIRECTORY *ResourceDirectory;
EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *ResourceDirectoryEntry;
EFI_IMAGE_RESOURCE_DIRECTORY_STRING *ResourceDirectoryString;
EFI_IMAGE_RESOURCE_DATA_ENTRY *ResourceDataEntry;
//
// Fill Resource section entry
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiBinData);
ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1);
for (Index = 0; Index < ResourceDirectory->NumberOfNamedEntries; Index ++) {
if (ResourceDirectoryEntry->u1.s.NameIsString) {
ResourceDirectoryString = (EFI_IMAGE_RESOURCE_DIRECTORY_STRING *) (HiiBinData + ResourceDirectoryEntry->u1.s.NameOffset);
if (ResourceDirectoryString->Length == 3 &&
ResourceDirectoryString->String[0] == L'H' &&
ResourceDirectoryString->String[1] == L'I' &&
ResourceDirectoryString->String[2] == L'I') {
//
// Resource Type "HII" found
//
if (ResourceDirectoryEntry->u2.s.DataIsDirectory) {
//
// Move to next level - resource Name
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiBinData + ResourceDirectoryEntry->u2.s.OffsetToDirectory);
ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1);
if (ResourceDirectoryEntry->u2.s.DataIsDirectory) {
//
// Move to next level - resource Language
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiBinData + ResourceDirectoryEntry->u2.s.OffsetToDirectory);
ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1);
}
}
//
// Now it ought to be resource Data and update its OffsetToData value
//
if (!ResourceDirectoryEntry->u2.s.DataIsDirectory) {
ResourceDataEntry = (EFI_IMAGE_RESOURCE_DATA_ENTRY *) (HiiBinData + ResourceDirectoryEntry->u2.OffsetToData);
ResourceDataEntry->OffsetToData = ResourceDataEntry->OffsetToData + OffsetToFile;
break;
}
}
}
ResourceDirectoryEntry++;
}
return;
}
VOID
ScanSections(
VOID
)
{
UINT32 i;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
UINT32 CoffEntry;
CoffEntry = 0;
CoffOffset = 0;
//
// Coff file start with a DOS header.
//
CoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
NtHdrOffset = CoffOffset;
switch (Ehdr->e_machine) {
case EM_386:
case EM_ARM:
CoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
break;
case EM_X86_64:
case EM_IA_64:
CoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
break;
default:
VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)Ehdr->e_machine);
CoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
break;
}
TableOffset = CoffOffset;
CoffOffset += CoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
//
// First text sections.
//
CoffOffset = CoffAlign(CoffOffset);
TextOffset = CoffOffset;
for (i = 0; i < Ehdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsTextShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
CoffOffset = (CoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else if ((shdr->sh_addr % shdr->sh_addralign) != (CoffOffset % shdr->sh_addralign)) {
// ARM RVCT tools have behavior outside of the ELF specification to try
// and make images smaller. If sh_addr is not aligned to sh_addralign
// then the section needs to preserve sh_addr MOD sh_addralign.
// Normally doing nothing here works great.
Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
}
}
/* Relocate entry. */
if ((Ehdr->e_entry >= shdr->sh_addr) &&
(Ehdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
CoffEntry = CoffOffset + Ehdr->e_entry - shdr->sh_addr;
}
CoffSectionsOffset[i] = CoffOffset;
CoffOffset += shdr->sh_size;
}
}
if (Ehdr->e_machine != EM_ARM) {
CoffOffset = CoffAlign(CoffOffset);
}
//
// Then data sections.
//
DataOffset = CoffOffset;
for (i = 0; i < Ehdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsDataShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
CoffOffset = (CoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else if ((shdr->sh_addr % shdr->sh_addralign) != (CoffOffset % shdr->sh_addralign)) {
// ARM RVCT tools have behavior outside of the ELF specification to try
// and make images smaller. If sh_addr is not aligned to sh_addralign
// then the section needs to preserve sh_addr MOD sh_addralign.
// Normally doing nothing here works great.
Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
}
}
CoffSectionsOffset[i] = CoffOffset;
CoffOffset += shdr->sh_size;
}
}
CoffOffset = CoffAlign(CoffOffset);
//
// The HII resource sections.
//
HiiRsrcOffset = CoffOffset;
for (i = 0; i < Ehdr->e_shnum; i++) {
Elf_Shdr *shdr = GetShdrByIndex(i);
if (IsHiiRsrcShdr(shdr)) {
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
// the alignment field is valid
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
// if the section address is aligned we must align PE/COFF
CoffOffset = (CoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
} else if ((shdr->sh_addr % shdr->sh_addralign) != (CoffOffset % shdr->sh_addralign)) {
// ARM RVCT tools have behavior outside of the ELF specification to try
// and make images smaller. If sh_addr is not aligned to sh_addralign
// then the section needs to preserve sh_addr MOD sh_addralign.
// Normally doing nothing here works great.
Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
}
}
if (shdr->sh_size != 0) {
CoffSectionsOffset[i] = CoffOffset;
CoffOffset += shdr->sh_size;
CoffOffset = CoffAlign(CoffOffset);
SetHiiResourceHeader ((UINT8*) Ehdr + shdr->sh_offset, HiiRsrcOffset);
}
break;
}
}
RelocOffset = CoffOffset;
//
// Allocate base Coff file. Will be expanded later for relocations.
//
CoffFile = (UINT8 *)malloc(CoffOffset);
memset(CoffFile, 0, CoffOffset);
//
// Fill headers.
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)CoffFile;
DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
DosHdr->e_lfanew = NtHdrOffset;
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(CoffFile + NtHdrOffset);
NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;
switch (Ehdr->e_machine) {
case EM_386:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
break;
case EM_X86_64:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
break;
case EM_IA_64:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IPF;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
break;
case EM_ARM:
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
break;
default:
VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)Ehdr->e_machine);
NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
}
NtHdr->Pe32.FileHeader.NumberOfSections = CoffNbrSections;
NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
| EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
| EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
| EFI_IMAGE_FILE_32BIT_MACHINE;
NtHdr->Pe32.OptionalHeader.SizeOfCode = DataOffset - TextOffset;
NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = RelocOffset - DataOffset;
NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;
NtHdr->Pe32.OptionalHeader.BaseOfCode = TextOffset;
NtHdr->Pe32.OptionalHeader.BaseOfData = DataOffset;
NtHdr->Pe32.OptionalHeader.ImageBase = 0;
NtHdr->Pe32.OptionalHeader.SectionAlignment = CoffAlignment;
NtHdr->Pe32.OptionalHeader.FileAlignment = CoffAlignment;
NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;
NtHdr->Pe32.OptionalHeader.SizeOfHeaders = TextOffset;
NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
//
// Section headers.
//
if ((DataOffset - TextOffset) > 0) {
CreateSectionHeader (".text", TextOffset, DataOffset - TextOffset,
EFI_IMAGE_SCN_CNT_CODE
| EFI_IMAGE_SCN_MEM_EXECUTE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
if ((HiiRsrcOffset - DataOffset) > 0) {
CreateSectionHeader (".data", DataOffset, HiiRsrcOffset - DataOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_WRITE
| EFI_IMAGE_SCN_MEM_READ);
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
if ((RelocOffset - HiiRsrcOffset) > 0) {
CreateSectionHeader (".rsrc", HiiRsrcOffset, RelocOffset - HiiRsrcOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_READ);
NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = RelocOffset - HiiRsrcOffset;
NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = HiiRsrcOffset;
} else {
// Don't make a section of size 0.
NtHdr->Pe32.FileHeader.NumberOfSections--;
}
}
VOID
WriteSections(
int (*Filter)(Elf_Shdr *)
)
{
UINT32 Idx;
Elf_Shdr *SecShdr;
UINT32 SecOffset;
//
// First: copy sections.
//
for (Idx = 0; Idx < Ehdr->e_shnum; Idx++) {
Elf_Shdr *Shdr = GetShdrByIndex(Idx);
if ((*Filter)(Shdr)) {
switch (Shdr->sh_type) {
case SHT_PROGBITS:
/* Copy. */
memcpy(CoffFile + CoffSectionsOffset[Idx],
(UINT8*)Ehdr + Shdr->sh_offset,
Shdr->sh_size);
break;
case SHT_NOBITS:
memset(CoffFile + CoffSectionsOffset[Idx], 0, Shdr->sh_size);
break;
default:
//
// Ignore for unkown section type.
//
VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
break;
}
}
}
//
// Second: apply relocations.
//
for (Idx = 0; Idx < Ehdr->e_shnum; Idx++) {
Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
if (RelShdr->sh_type != SHT_REL)
continue;
SecShdr = GetShdrByIndex(RelShdr->sh_info);
SecOffset = CoffSectionsOffset[RelShdr->sh_info];
if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) {
UINT32 RelIdx;
Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
UINT8 *Symtab = (UINT8*)Ehdr + SymtabShdr->sh_offset;
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
Elf_Rel *Rel = (Elf_Rel *)((UINT8*)Ehdr + RelShdr->sh_offset + RelIdx);
Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
Elf_Shdr *SymShdr;
UINT8 *Targ;
if (Sym->st_shndx == SHN_UNDEF
|| Sym->st_shndx == SHN_ABS
|| Sym->st_shndx > Ehdr->e_shnum) {
Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName);
}
SymShdr = GetShdrByIndex(Sym->st_shndx);
//
// Note: r_offset in a memory address.
// Convert it to a pointer in the coff file.
//
Targ = CoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
if (Ehdr->e_machine == EM_386) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_386_NONE:
break;
case R_386_32:
//
// Absolute relocation.
//
*(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr
+ CoffSectionsOffset[Sym->st_shndx];
break;
case R_386_PC32:
//
// Relative relocation: Symbol - Ip + Addend
//
*(UINT32 *)Targ = *(UINT32 *)Targ
+ (CoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
- (SecOffset - SecShdr->sh_addr);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unhandled section type %x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (Ehdr->e_machine == EM_ARM) {
switch (ELF32_R_TYPE(Rel->r_info)) {
case R_ARM_RBASE: // No relocation - no action required
case R_ARM_PC24: // PC-relative relocations don't require modification
case R_ARM_XPC25: // PC-relative relocations don't require modification
break;
case R_ARM_ABS32:
case R_ARM_RABS32:
//
// Absolute relocation.
//
*(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + CoffSectionsOffset[Sym->st_shndx];
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unhandled section type %x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
}
}
}
}
}
}
VOID
CoffAddFixupEntry(
UINT16 Val
)
{
*CoffEntryRel = Val;
CoffEntryRel++;
CoffBaseRel->SizeOfBlock += 2;
CoffOffset += 2;
}
VOID
CoffAddFixup(
UINT32 Offset,
UINT8 Type
)
{
if (CoffBaseRel == NULL
|| CoffBaseRel->VirtualAddress != (Offset & ~0xfff)) {
if (CoffBaseRel != NULL) {
//
// Add a null entry (is it required ?)
//
CoffAddFixupEntry (0);
//
// Pad for alignment.
//
if (CoffOffset % 4 != 0)
CoffAddFixupEntry (0);
}
CoffFile = realloc
(CoffFile,
CoffOffset + sizeof(EFI_IMAGE_BASE_RELOCATION) + 2*0x1000);
memset(CoffFile + CoffOffset, 0,
sizeof(EFI_IMAGE_BASE_RELOCATION) + 2*0x1000);
CoffBaseRel = (EFI_IMAGE_BASE_RELOCATION*)(CoffFile + CoffOffset);
CoffBaseRel->VirtualAddress = Offset & ~0xfff;
CoffBaseRel->SizeOfBlock = sizeof(EFI_IMAGE_BASE_RELOCATION);
CoffEntryRel = (UINT16 *)(CoffBaseRel + 1);
CoffOffset += sizeof(EFI_IMAGE_BASE_RELOCATION);
}
//
// Fill the entry.
//
CoffAddFixupEntry((UINT16) ((Type << 12) | (Offset & 0xfff)));
}
Elf_Phdr *
GetPhdrByIndex (
UINT32 num
)
{
if (num >= Ehdr->e_phnum) {
return NULL;
}
return (Elf32_Phdr *)((UINT8*)gPhdrBase + num * Ehdr->e_phentsize);
}
VOID
WriteRelocations(
VOID
)
{
UINT32 Index;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *Dir;
BOOLEAN FoundRelocations;
Elf_Dyn *Dyn;
Elf_Rel *Rel;
UINTN RelElementSize;
UINTN RelSize;
UINTN RelOffset;
UINTN K;
UINT8 *Targ;
Elf32_Phdr *DynamicSegment;
Elf32_Phdr *TargetSegment;
for (Index = 0, FoundRelocations = FALSE; Index < Ehdr->e_shnum; Index++) {
Elf_Shdr *RelShdr = GetShdrByIndex(Index);
if (RelShdr->sh_type == SHT_REL) {
Elf_Shdr *SecShdr = GetShdrByIndex(RelShdr->sh_info);
if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
UINT32 RelIdx;
FoundRelocations = TRUE;
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
Elf_Rel *Rel = (Elf_Rel *)
((UINT8*)Ehdr + RelShdr->sh_offset + RelIdx);
if (Ehdr->e_machine == EM_386) {
switch (ELF_R_TYPE(Rel->r_info)) {
case R_386_NONE:
case R_386_PC32:
break;
case R_386_32:
CoffAddFixup(CoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr),
EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unhandled section type %x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
}
} else if (Ehdr->e_machine == EM_ARM) {
switch (ELF32_R_TYPE(Rel->r_info)) {
case R_ARM_RBASE:
case R_ARM_PC24:
case R_ARM_XPC25:
break;
case R_ARM_ABS32:
case R_ARM_RABS32:
CoffAddFixup (
CoffSectionsOffset[RelShdr->sh_info]
+ (Rel->r_offset - SecShdr->sh_addr),
EFI_IMAGE_REL_BASED_HIGHLOW
);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s unhandled section type %x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
}
} else {
Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) Ehdr->e_machine);
}
}
}
}
}
if (!FoundRelocations && (Ehdr->e_machine == EM_ARM)) {
/* Try again, but look for PT_DYNAMIC instead of SHT_REL */
for (Index = 0; Index < Ehdr->e_phnum; Index++) {
RelElementSize = 0;
RelSize = 0;
RelOffset = 0;
DynamicSegment = GetPhdrByIndex (Index);
if (DynamicSegment->p_type == PT_DYNAMIC) {
Dyn = (Elf32_Dyn *) ((UINT8 *)Ehdr + DynamicSegment->p_offset);
while (Dyn->d_tag != DT_NULL) {
switch (Dyn->d_tag) {
case DT_REL:
RelOffset = Dyn->d_un.d_val;
break;
case DT_RELSZ:
RelSize = Dyn->d_un.d_val;
break;
case DT_RELENT:
RelElementSize = Dyn->d_un.d_val;
break;
}
Dyn++;
}
if (( RelOffset == 0 ) || ( RelSize == 0 ) || ( RelElementSize == 0 )) {
Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations.", mInImageName);
}
for (K = 0; K < RelSize; K += RelElementSize) {
Rel = (Elf32_Rel *) ((UINT8 *) Ehdr + DynamicSegment->p_offset + RelOffset + K);
switch (ELF32_R_TYPE (Rel->r_info)) {
case R_ARM_RBASE:
break;
case R_ARM_RABS32:
TargetSegment = GetPhdrByIndex (ELF32_R_SYM (Rel->r_info) - 1);
// Note: r_offset in a memory address. Convert it to a pointer in the coff file.
Targ = CoffFile + CoffSectionsOffset[ ELF32_R_SYM( Rel->r_info ) ] + Rel->r_offset - TargetSegment->p_vaddr;
*(UINT32 *)Targ = *(UINT32 *)Targ + CoffSectionsOffset [ELF32_R_SYM( Rel->r_info )];
CoffAddFixup (CoffSectionsOffset[ELF32_R_SYM (Rel->r_info)] + (Rel->r_offset - TargetSegment->p_vaddr), EFI_IMAGE_REL_BASED_HIGHLOW);
break;
default:
Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations, unkown type.", mInImageName);
}
}
break;
}
}
}
//
// Pad by adding empty entries.
//
while (CoffOffset & (CoffAlignment - 1)) {
CoffAddFixupEntry(0);
}
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(CoffFile + NtHdrOffset);
Dir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
Dir->Size = CoffOffset - RelocOffset;
if (Dir->Size == 0) {
// If no relocations, null out the directory entry and don't add the .reloc section
Dir->VirtualAddress = 0;
NtHdr->Pe32.FileHeader.NumberOfSections--;
} else {
Dir->VirtualAddress = RelocOffset;
CreateSectionHeader (".reloc", RelocOffset, CoffOffset - RelocOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_DISCARDABLE
| EFI_IMAGE_SCN_MEM_READ);
}
}
VOID
WriteDebug(
VOID
)
{
UINT32 Len;
UINT32 DebugOffset;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
EFI_IMAGE_DATA_DIRECTORY *DataDir;
EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
Len = strlen(mInImageName) + 1;
DebugOffset = CoffOffset;
CoffOffset += sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY)
+ sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY)
+ Len;
CoffOffset = CoffAlign(CoffOffset);
CoffFile = realloc(CoffFile, CoffOffset);
memset(CoffFile + DebugOffset, 0, CoffOffset - DebugOffset);
Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(CoffFile + DebugOffset);
Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
Dir->RVA = DebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Dir->FileOffset = DebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
strcpy ((char *)(Nb10 + 1), mInImageName);
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(CoffFile + NtHdrOffset);
DataDir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
DataDir->VirtualAddress = DebugOffset;
DataDir->Size = CoffOffset - DebugOffset;
if (DataDir->Size == 0) {
// If no debug, null out the directory entry and don't add the .debug section
DataDir->VirtualAddress = 0;
NtHdr->Pe32.FileHeader.NumberOfSections--;
} else {
DataDir->VirtualAddress = DebugOffset;
CreateSectionHeader (".debug", DebugOffset, CoffOffset - DebugOffset,
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
| EFI_IMAGE_SCN_MEM_DISCARDABLE
| EFI_IMAGE_SCN_MEM_READ);
}
}
VOID
ConvertElf (
UINT8 **FileBuffer,
UINT32 *FileLength
)
{
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
//
// Check header, read section table.
//
Ehdr = (Elf32_Ehdr*)*FileBuffer;
if (!CheckElfHeader())
return;
VerboseMsg ("Check Efl Image Header");
//
// Compute sections new address.
//
ScanSections();
VerboseMsg ("Compute sections new address.");
//
// Write and relocate sections.
//
WriteSections(IsTextShdr);
WriteSections(IsDataShdr);
WriteSections(IsHiiRsrcShdr);
VerboseMsg ("Write and relocate sections.");
//
// Translate and write relocations.
//
WriteRelocations();
VerboseMsg ("Translate and write relocations.");
//
// Write debug info.
//
WriteDebug();
VerboseMsg ("Write debug info.");
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(CoffFile + NtHdrOffset);
NtHdr->Pe32.OptionalHeader.SizeOfImage = CoffOffset;
//
// Replace.
//
free(*FileBuffer);
*FileBuffer = CoffFile;
*FileLength = CoffOffset;
//
// Free memory space
//
if (CoffSectionsOffset != NULL) {
free (CoffSectionsOffset);
}
}
EFI_IMAGE_OPTIONAL_HEADER_UNION *
GetPeCoffHeader (
void *Data
)
{
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *PeHdr;
//
// Read the dos & pe hdrs of the image
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)Data;
if (DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
// NO DOS header, check for PE/COFF header
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(Data);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
return NULL;
}
} else {
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(((UINT8 *)Data) + DosHdr->e_lfanew);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
return NULL;
}
}
return PeHdr;
}
void
PeCoffConvertImageToXip (
UINT8 **FileBuffer,
UINT32 *FileLength
)
{
EFI_IMAGE_OPTIONAL_HEADER_UNION *PeHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *NewPeHdr;
EFI_IMAGE_SECTION_HEADER *SectionHeader;
UINTN TotalNecessaryFileSize;
UINTN SectionSize;
UINT8 *XipFile;
UINT32 XipLength;
UINTN Index;
UINTN FirstSectionOffset;
BOOLEAN ConversionNeeded;
PeHdr = GetPeCoffHeader ((void *) *FileBuffer);
if (PeHdr == NULL) {
return;
}
if (PeHdr->Pe32.OptionalHeader.SectionAlignment != PeHdr->Pe32.OptionalHeader.FileAlignment) {
//
// The only reason to expand zero fill sections is to make them compatible with XIP images.
// If SectionAlignment is not equal to FileAlginment then it is not an XIP type image.
//
return;
}
//
// Calculate size of XIP file, and determine if the conversion is needed.
//
ConversionNeeded = FALSE;
XipLength = 0;
FirstSectionOffset = *FileLength;
TotalNecessaryFileSize = 0;
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index ++, SectionHeader ++) {
SectionSize = MAX (SectionHeader->Misc.VirtualSize, SectionHeader->SizeOfRawData);
TotalNecessaryFileSize += SectionSize;
if (SectionSize > 0) {
FirstSectionOffset = MIN (FirstSectionOffset, SectionHeader->VirtualAddress);
XipLength = MAX (XipLength, SectionHeader->VirtualAddress + SectionSize);
if (SectionHeader->VirtualAddress != SectionHeader->PointerToRawData) {
ConversionNeeded = TRUE;
}
}
if (SectionHeader->Misc.VirtualSize > SectionHeader->SizeOfRawData) {
ConversionNeeded = TRUE;
}
}
if (FirstSectionOffset < PeHdr->Pe32.OptionalHeader.SizeOfHeaders) {
//
// If one of the sections should be loaded to an offset overlapping with
// the executable header, then it cannot be made into an XIP image.
//
VerboseMsg ("PE/COFF conversion to XIP is impossible due to overlap");
VerboseMsg ("of section data with the executable header.");
return;
}
if (FirstSectionOffset == *FileLength) {
//
// If we never found a section with a non-zero size, then we
// skip the conversion.
//
return;
}
TotalNecessaryFileSize += FirstSectionOffset;
if (!ConversionNeeded) {
return;
}
if (XipLength > (2 * TotalNecessaryFileSize)) {
VerboseMsg ("PE/COFF conversion to XIP appears to be larger than necessary.");
VerboseMsg ("The image linking process may have left unused memory ranges.");
}
if (PeHdr->Pe32.FileHeader.PointerToSymbolTable != 0) {
//
// This field is obsolete and should be zero
//
PeHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
}
//
// Allocate the extra space that we need to grow the image
//
XipFile = malloc (XipLength);
memset (XipFile, 0, XipLength);
//
// Copy the file headers
//
memcpy (XipFile, *FileBuffer, PeHdr->Pe32.OptionalHeader.SizeOfHeaders);
NewPeHdr = GetPeCoffHeader ((void *)XipFile);
if (NewPeHdr == NULL) {
free (XipFile);
return;
}
//
// Copy the section data over to the appropriate XIP offsets
//
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(NewPeHdr->Pe32.OptionalHeader) + NewPeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index ++, SectionHeader ++) {
if (SectionHeader->SizeOfRawData > 0) {
memcpy (
XipFile + SectionHeader->VirtualAddress,
*FileBuffer + SectionHeader->PointerToRawData,
SectionHeader->SizeOfRawData
);
}
SectionHeader->SizeOfRawData = SectionHeader->Misc.VirtualSize;
SectionHeader->PointerToRawData = SectionHeader->VirtualAddress;
}
free (*FileBuffer);
*FileLength = XipLength;
*FileBuffer = XipFile;
}
UINT8 *
CreateHiiResouceSectionHeader (
UINT32 *pSectionHeaderSize,
UINT32 HiiDataSize
)
/*++
Routine Description:
Create COFF resource section header
Arguments:
pSectionHeaderSize - Pointer to section header size.
HiiDataSize - Size of the total HII data in section.
Returns:
The created section header buffer.
--*/
{
UINT32 HiiSectionHeaderSize;
UINT32 HiiSectionOffset;
UINT8 *HiiSectionHeader;
EFI_IMAGE_RESOURCE_DIRECTORY *ResourceDirectory;
EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *TypeResourceDirectoryEntry;
EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *NameResourceDirectoryEntry;
EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *LanguageResourceDirectoryEntry;
EFI_IMAGE_RESOURCE_DIRECTORY_STRING *ResourceDirectoryString;
EFI_IMAGE_RESOURCE_DATA_ENTRY *ResourceDataEntry;
//
// Calculate the total size for the resource header (include Type, Name and Language)
// then allocate memory for the resource header.
//
HiiSectionHeaderSize = 3 * (sizeof (EFI_IMAGE_RESOURCE_DIRECTORY) + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY))
+ 3 * (sizeof (UINT16) + 3 * sizeof (CHAR16))
+ sizeof (EFI_IMAGE_RESOURCE_DATA_ENTRY);
HiiSectionHeader = malloc (HiiSectionHeaderSize);
memset (HiiSectionHeader, 0, HiiSectionHeaderSize);
HiiSectionOffset = 0;
//
// Create Type entry
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY);
ResourceDirectory->NumberOfNamedEntries = 1;
TypeResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY);
TypeResourceDirectoryEntry->u1.s.NameIsString = 1;
TypeResourceDirectoryEntry->u2.s.DataIsDirectory = 1;
TypeResourceDirectoryEntry->u2.s.OffsetToDirectory = HiiSectionOffset;
//
// Create Name entry
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY);
ResourceDirectory->NumberOfNamedEntries = 1;
NameResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY);
NameResourceDirectoryEntry->u1.s.NameIsString = 1;
NameResourceDirectoryEntry->u2.s.DataIsDirectory = 1;
NameResourceDirectoryEntry->u2.s.OffsetToDirectory = HiiSectionOffset;
//
// Create Language entry
//
ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY);
ResourceDirectory->NumberOfNamedEntries = 1;
LanguageResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY);
LanguageResourceDirectoryEntry->u1.s.NameIsString = 1;
//
// Create string entry for Type
//
TypeResourceDirectoryEntry->u1.s.NameOffset = HiiSectionOffset;
ResourceDirectoryString = (EFI_IMAGE_RESOURCE_DIRECTORY_STRING *) (HiiSectionHeader + HiiSectionOffset);
ResourceDirectoryString->Length = 3;
ResourceDirectoryString->String[0] = L'H';
ResourceDirectoryString->String[1] = L'I';
ResourceDirectoryString->String[2] = L'I';
HiiSectionOffset = HiiSectionOffset + sizeof (ResourceDirectoryString->Length) + ResourceDirectoryString->Length * sizeof (ResourceDirectoryString->String[0]);
//
// Create string entry for Name
//
NameResourceDirectoryEntry->u1.s.NameOffset = HiiSectionOffset;
ResourceDirectoryString = (EFI_IMAGE_RESOURCE_DIRECTORY_STRING *) (HiiSectionHeader + HiiSectionOffset);
ResourceDirectoryString->Length = 3;
ResourceDirectoryString->String[0] = L'E';
ResourceDirectoryString->String[1] = L'F';
ResourceDirectoryString->String[2] = L'I';
HiiSectionOffset = HiiSectionOffset + sizeof (ResourceDirectoryString->Length) + ResourceDirectoryString->Length * sizeof (ResourceDirectoryString->String[0]);
//
// Create string entry for Language
//
LanguageResourceDirectoryEntry->u1.s.NameOffset = HiiSectionOffset;
ResourceDirectoryString = (EFI_IMAGE_RESOURCE_DIRECTORY_STRING *) (HiiSectionHeader + HiiSectionOffset);
ResourceDirectoryString->Length = 3;
ResourceDirectoryString->String[0] = L'B';
ResourceDirectoryString->String[1] = L'I';
ResourceDirectoryString->String[2] = L'N';
HiiSectionOffset = HiiSectionOffset + sizeof (ResourceDirectoryString->Length) + ResourceDirectoryString->Length * sizeof (ResourceDirectoryString->String[0]);
//
// Create Leaf data
//
LanguageResourceDirectoryEntry->u2.OffsetToData = HiiSectionOffset;
ResourceDataEntry = (EFI_IMAGE_RESOURCE_DATA_ENTRY *) (HiiSectionHeader + HiiSectionOffset);
HiiSectionOffset += sizeof (EFI_IMAGE_RESOURCE_DATA_ENTRY);
ResourceDataEntry->OffsetToData = HiiSectionOffset;
ResourceDataEntry->Size = HiiDataSize;
*pSectionHeaderSize = HiiSectionHeaderSize;
return HiiSectionHeader;
}
int
main (
int argc,
char *argv[]
)
/*++
Routine Description:
Main function.
Arguments:
argc - Number of command line parameters.
argv - Array of pointers to command line parameter strings.
Returns:
STATUS_SUCCESS - Utility exits successfully.
STATUS_ERROR - Some error occurred during execution.
--*/
{
UINT32 Type;
UINT32 InputFileNum;
CHAR8 **InputFileName;
char *OutImageName;
char *ModuleType;
CHAR8 *TimeStamp;
UINT32 OutImageType;
FILE *fpIn;
FILE *fpOut;
FILE *fpInOut;
UINT32 Data;
UINT32 *DataPointer;
UINT32 *OldDataPointer;
UINT32 CheckSum;
UINT32 Index;
UINT32 Index1;
UINT32 Index2;
UINT64 Temp64;
UINT32 MciAlignment;
UINT8 MciPadValue;
UINT32 AllignedRelocSize;
UINT8 *FileBuffer;
UINT32 FileLength;
UINT8 *OutputFileBuffer;
UINT32 OutputFileLength;
RUNTIME_FUNCTION *RuntimeFunction;
UNWIND_INFO *UnwindInfo;
STATUS Status;
BOOLEAN ReplaceFlag;
BOOLEAN KeepExceptionTableFlag;
BOOLEAN KeepZeroPendingFlag;
UINT64 LogLevel;
EFI_TE_IMAGE_HEADER TEImageHeader;
EFI_TE_IMAGE_HEADER *TeHdr;
EFI_IMAGE_SECTION_HEADER *SectionHeader;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_OPTIONAL_HEADER_UNION *PeHdr;
EFI_IMAGE_OPTIONAL_HEADER32 *Optional32;
EFI_IMAGE_OPTIONAL_HEADER64 *Optional64;
EFI_IMAGE_DOS_HEADER BackupDosHdr;
MICROCODE_IMAGE_HEADER *MciHeader;
UINT8 *HiiPackageListBuffer;
UINT8 *HiiPackageDataPointer;
EFI_GUID HiiPackageListGuid;
EFI_HII_PACKAGE_LIST_HEADER HiiPackageListHeader;
EFI_HII_PACKAGE_HEADER HiiPackageHeader;
EFI_IFR_FORM_SET IfrFormSet;
UINT8 NumberOfFormPacakge;
EFI_HII_PACKAGE_HEADER EndPackage;
UINT32 HiiSectionHeaderSize;
UINT8 *HiiSectionHeader;
SetUtilityName (UTILITY_NAME);
//
// Assign to fix compile warning
//
InputFileNum = 0;
InputFileName = NULL;
mInImageName = NULL;
OutImageName = NULL;
ModuleType = NULL;
OutImageType = FW_DUMMY_IMAGE;
Type = 0;
Status = STATUS_SUCCESS;
FileBuffer = NULL;
fpIn = NULL;
fpOut = NULL;
fpInOut = NULL;
TimeStamp = NULL;
MciAlignment = DEFAULT_MC_ALIGNMENT;
MciPadValue = DEFAULT_MC_PAD_BYTE_VALUE;
FileLength = 0;
MciHeader = NULL;
CheckSum = 0;
ReplaceFlag = FALSE;
LogLevel = 0;
OutputFileBuffer = NULL;
OutputFileLength = 0;
Optional32 = NULL;
Optional64 = NULL;
KeepExceptionTableFlag = FALSE;
KeepZeroPendingFlag = FALSE;
NumberOfFormPacakge = 0;
HiiPackageListBuffer = NULL;
HiiPackageDataPointer = NULL;
EndPackage.Length = sizeof (EFI_HII_PACKAGE_HEADER);
EndPackage.Type = EFI_HII_PACKAGE_END;
memset (&HiiPackageListGuid, 0, sizeof (HiiPackageListGuid));
HiiSectionHeaderSize = 0;
HiiSectionHeader = NULL;
if (argc == 1) {
Error (NULL, 0, 1001, "Missing options", "No input options.");
Usage ();
return STATUS_ERROR;
}
argc --;
argv ++;
if ((stricmp (argv[0], "-h") == 0) || (stricmp (argv[0], "--help") == 0)) {
Version ();
Usage ();
return STATUS_SUCCESS;
}
if (stricmp (argv[0], "--version") == 0) {
Version ();
return STATUS_SUCCESS;
}
while (argc > 0) {
if ((stricmp (argv[0], "-o") == 0) || (stricmp (argv[0], "--outputfile") == 0)) {
if (argv[1] == NULL || argv[1][0] == '-') {
Error (NULL, 0, 1003, "Invalid option value", "Output file name is missing for -o option");
goto Finish;
}
OutImageName = argv[1];
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-e") == 0) || (stricmp (argv[0], "--efiImage") == 0)) {
if (argv[1] == NULL || argv[1][0] == '-') {
Error (NULL, 0, 1003, "Invalid option value", "Module Type is missing for -o option");
goto Finish;
}
ModuleType = argv[1];
if (OutImageType != FW_TE_IMAGE) {
OutImageType = FW_EFI_IMAGE;
}
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-l") == 0) || (stricmp (argv[0], "--stripped") == 0)) {
OutImageType = FW_RELOC_STRIPEED_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-c") == 0) || (stricmp (argv[0], "--acpi") == 0)) {
OutImageType = FW_ACPI_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-t") == 0) || (stricmp (argv[0], "--terse") == 0)) {
OutImageType = FW_TE_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-u") == 0) || (stricmp (argv[0], "--dump") == 0)) {
OutImageType = DUMP_TE_HEADER;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-b") == 0) || (stricmp (argv[0], "--exe2bin") == 0)) {
OutImageType = FW_BIN_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-z") == 0) || (stricmp (argv[0], "--zero") == 0)) {
OutImageType = FW_ZERO_DEBUG_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-s") == 0) || (stricmp (argv[0], "--stamp") == 0)) {
OutImageType = FW_SET_STAMP_IMAGE;
if (argv[1] == NULL || argv[1][0] == '-') {
Error (NULL, 0, 1003, "Invalid option value", "time stamp is missing for -s option");
goto Finish;
}
TimeStamp = argv[1];
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-r") == 0) || (stricmp (argv[0], "--replace") == 0)) {
ReplaceFlag = TRUE;
argc --;
argv ++;
continue;
}
if (stricmp (argv[0], "--keepexceptiontable") == 0) {
KeepExceptionTableFlag = TRUE;
argc --;
argv ++;
continue;
}
if (stricmp (argv[0], "--keepzeropending") == 0) {
KeepZeroPendingFlag = TRUE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-m") == 0) || (stricmp (argv[0], "--mcifile") == 0)) {
OutImageType = FW_MCI_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-j") == 0) || (stricmp (argv[0], "--join") == 0)) {
OutImageType = FW_MERGE_IMAGE;
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-a") == 0) || (stricmp (argv[0], "--align") == 0)) {
if (AsciiStringToUint64 (argv[1], FALSE, &Temp64) != EFI_SUCCESS) {
Error (NULL, 0, 1003, "Invalid option value", "%s = %s", argv[0], argv[1]);
goto Finish;
}
MciAlignment = (UINT32) Temp64;
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-p") == 0) || (stricmp (argv[0], "--pad") == 0)) {
if (AsciiStringToUint64 (argv[1], FALSE, &Temp64) != EFI_SUCCESS) {
Error (NULL, 0, 1003, "Invalid option value", "%s = %s", argv[0], argv[1]);
goto Finish;
}
MciPadValue = (UINT8) Temp64;
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-v") == 0) || (stricmp (argv[0], "--verbose") == 0)) {
SetPrintLevel (VERBOSE_LOG_LEVEL);
VerboseMsg ("Verbose output Mode Set!");
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-q") == 0) || (stricmp (argv[0], "--quiet") == 0)) {
SetPrintLevel (KEY_LOG_LEVEL);
KeyMsg ("Quiet output Mode Set!");
argc --;
argv ++;
continue;
}
if ((stricmp (argv[0], "-d") == 0) || (stricmp (argv[0], "--debug") == 0)) {
Status = AsciiStringToUint64 (argv[1], FALSE, &LogLevel);
if (EFI_ERROR (Status)) {
Error (NULL, 0, 1003, "Invalid option value", "%s = %s", argv[0], argv[1]);
goto Finish;
}
if (LogLevel > 9) {
Error (NULL, 0, 1003, "Invalid option value", "Debug Level range is 0-9, currnt input level is %d", (int) LogLevel);
goto Finish;
}
SetPrintLevel (LogLevel);
DebugMsg (NULL, 0, 9, "Debug Mode Set", "Debug Output Mode Level %s is set!", argv[1]);
argc -= 2;
argv += 2;
continue;
}
if ((stricmp (argv[0], "-g") == 0) || (stricmp (argv[0], "--hiiguid") == 0)) {
Status = StringToGuid (argv[1], &HiiPackageListGuid);
if (EFI_ERROR (Status)) {
Error (NULL, 0, 1003, "Invalid option value", "%s = %s", argv[0], argv[1]);
goto Finish;
}
argc -= 2;
argv += 2;
continue;
}
if (stricmp (argv[0], "--hiipackage") == 0) {
OutImageType = FW_HII_PACKAGE_LIST_RCIMAGE;
argc --;
argv ++;
continue;
}
if (stricmp (argv[0], "--hiibinpackage") == 0) {
OutImageType = FW_HII_PACKAGE_LIST_BINIMAGE;
argc --;
argv ++;
continue;
}
if (argv[0][0] == '-') {
Error (NULL, 0, 1000, "Unknown option", argv[0]);
goto Finish;
}
//
// Get Input file name
//
if ((InputFileNum == 0) && (InputFileName == NULL)) {
InputFileName = (CHAR8 **) malloc (MAXIMUM_INPUT_FILE_NUM * sizeof (CHAR8 *));
if (InputFileName == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
goto Finish;
}
memset (InputFileName, 0, (MAXIMUM_INPUT_FILE_NUM * sizeof (CHAR8 *)));
} else if (InputFileNum % MAXIMUM_INPUT_FILE_NUM == 0) {
//
// InputFileName buffer too small, need to realloc
//
InputFileName = (CHAR8 **) realloc (
InputFileName,
(InputFileNum + MAXIMUM_INPUT_FILE_NUM) * sizeof (CHAR8 *)
);
if (InputFileName == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
goto Finish;
}
memset (&(InputFileName[InputFileNum]), 0, (MAXIMUM_INPUT_FILE_NUM * sizeof (CHAR8 *)));
}
InputFileName [InputFileNum ++] = argv[0];
argc --;
argv ++;
}
VerboseMsg ("%s tool start.", UTILITY_NAME);
if (OutImageType == FW_DUMMY_IMAGE) {
Error (NULL, 0, 1001, "Missing option", "No create file action specified; pls specify -e, -c or -t option to create efi image, or acpi table or TeImage!");
if (ReplaceFlag) {
Error (NULL, 0, 1001, "Missing option", "-r option is not supported as the independent option. It can be used together with other create file option specified at the above.");
}
goto Finish;
}
//
// check input files
//
if (InputFileNum == 0) {
Error (NULL, 0, 1001, "Missing option", "Input files");
goto Finish;
}
//
// Combine MciBinary files to one file
//
if ((OutImageType == FW_MERGE_IMAGE) && ReplaceFlag) {
Error (NULL, 0, 1002, "Conflicting option", "-r replace option cannot be used with -j merge files option.");
goto Finish;
}
//
// Combine HiiBinary packages to a single package list
//
if ((OutImageType == FW_HII_PACKAGE_LIST_RCIMAGE) && ReplaceFlag) {
Error (NULL, 0, 1002, "Conflicting option", "-r replace option cannot be used with --hiipackage merge files option.");
goto Finish;
}
if ((OutImageType == FW_HII_PACKAGE_LIST_BINIMAGE) && ReplaceFlag) {
Error (NULL, 0, 1002, "Conflicting option", "-r replace option cannot be used with --hiibinpackage merge files option.");
goto Finish;
}
//
// Input image file
//
mInImageName = InputFileName [InputFileNum - 1];
VerboseMsg ("the input file name is %s", mInImageName);
//
// Action will be taken for the input file.
//
switch (OutImageType) {
case FW_EFI_IMAGE:
VerboseMsg ("Create efi image on module type %s based on the input PE image.", ModuleType);
break;
case FW_TE_IMAGE:
VerboseMsg ("Create Te Image based on the input PE image.");
break;
case FW_ACPI_IMAGE:
VerboseMsg ("Get acpi table data from the input PE image.");
break;
case FW_RELOC_STRIPEED_IMAGE:
VerboseMsg ("Remove relocation section from Pe or Te image.");
break;
case FW_BIN_IMAGE:
VerboseMsg ("Convert the input EXE to the output BIN file.");
break;
case FW_ZERO_DEBUG_IMAGE:
VerboseMsg ("Zero the Debug Data Fields and Time Stamp in input PE image.");
break;
case FW_SET_STAMP_IMAGE:
VerboseMsg ("Set new time stamp %s in the input PE image.", TimeStamp);
break;
case DUMP_TE_HEADER:
VerboseMsg ("Dump the TE header information of the input TE image.");
break;
case FW_MCI_IMAGE:
VerboseMsg ("Conver input MicroCode.txt file to MicroCode.bin file.");
break;
case FW_MERGE_IMAGE:
VerboseMsg ("Combine the input multi microcode bin files to one bin file.");
break;
case FW_HII_PACKAGE_LIST_RCIMAGE:
VerboseMsg ("Combine the input multi hii bin packages to one text pacakge list RC file.");
break;
case FW_HII_PACKAGE_LIST_BINIMAGE:
VerboseMsg ("Combine the input multi hii bin packages to one binary pacakge list file.");
break;
default:
break;
}
if (ReplaceFlag) {
VerboseMsg ("Overwrite the input file with the output content.");
}
//
// Open output file and Write image into the output file.
//
if (OutImageName != NULL) {
fpOut = fopen (OutImageName, "rb");
if (fpOut != NULL) {
OutputFileLength = _filelength (fileno (fpOut));
OutputFileBuffer = malloc (OutputFileLength);
if (OutputFileBuffer == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
fclose (fpOut);
fpOut = NULL;
goto Finish;
}
fread (OutputFileBuffer, 1, OutputFileLength, fpOut);
fclose (fpOut);
}
fpOut = fopen (OutImageName, "wb");
if (!fpOut) {
Error (NULL, 0, 0001, "Error opening output file", OutImageName);
goto Finish;
}
VerboseMsg ("Output file name is %s", OutImageName);
} else if (!ReplaceFlag) {
if (OutImageType == DUMP_TE_HEADER) {
fpOut = stdout;
} else {
Error (NULL, 0, 1001, "Missing option", "output file");
goto Finish;
}
}
//
// Combine multi binary HII package files.
//
if (OutImageType == FW_HII_PACKAGE_LIST_RCIMAGE || OutImageType == FW_HII_PACKAGE_LIST_BINIMAGE) {
//
// Get hii package list lenght
//
HiiPackageListHeader.PackageLength = sizeof (EFI_HII_PACKAGE_LIST_HEADER);
for (Index = 0; Index < InputFileNum; Index ++) {
fpIn = fopen (InputFileName [Index], "rb");
if (!fpIn) {
Error (NULL, 0, 0001, "Error opening file", InputFileName [Index]);
goto Finish;
}
FileLength = _filelength (fileno (fpIn));
fread (&HiiPackageHeader, 1, sizeof (HiiPackageHeader), fpIn);
if (HiiPackageHeader.Type == EFI_HII_PACKAGE_FORM) {
if (HiiPackageHeader.Length != FileLength) {
Error (NULL, 0, 3000, "Invalid", "The wrong package size is in HII package file %s", InputFileName [Index]);
fclose (fpIn);
goto Finish;
}
if (memcmp (&HiiPackageListGuid, &mZeroGuid, sizeof (EFI_GUID)) == 0) {
fread (&IfrFormSet, 1, sizeof (IfrFormSet), fpIn);
memcpy (&HiiPackageListGuid, &IfrFormSet.Guid, sizeof (EFI_GUID));
}
NumberOfFormPacakge ++;
}
HiiPackageListHeader.PackageLength += FileLength;
fclose (fpIn);
}
HiiPackageListHeader.PackageLength += sizeof (EndPackage);
//
// Check whether hii packages are valid
//
if (NumberOfFormPacakge > 1) {
Error (NULL, 0, 3000, "Invalid", "The input hii packages contains more than one hii form package");
goto Finish;
}
if (memcmp (&HiiPackageListGuid, &mZeroGuid, sizeof (EFI_GUID)) == 0) {
Error (NULL, 0, 3000, "Invalid", "HII pacakge list guid is not specified!");
goto Finish;
}
memcpy (&HiiPackageListHeader.PackageListGuid, &HiiPackageListGuid, sizeof (EFI_GUID));
//
// read hii packages
//
HiiPackageListBuffer = malloc (HiiPackageListHeader.PackageLength);
if (HiiPackageListBuffer == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
goto Finish;
}
memcpy (HiiPackageListBuffer, &HiiPackageListHeader, sizeof (HiiPackageListHeader));
HiiPackageDataPointer = HiiPackageListBuffer + sizeof (HiiPackageListHeader);
for (Index = 0; Index < InputFileNum; Index ++) {
fpIn = fopen (InputFileName [Index], "rb");
if (!fpIn) {
Error (NULL, 0, 0001, "Error opening file", InputFileName [Index]);
free (HiiPackageListBuffer);
goto Finish;
}
FileLength = _filelength (fileno (fpIn));
fread (HiiPackageDataPointer, 1, FileLength, fpIn);
fclose (fpIn);
HiiPackageDataPointer = HiiPackageDataPointer + FileLength;
}
memcpy (HiiPackageDataPointer, &EndPackage, sizeof (EndPackage));
//
// write the hii package into the binary package list file with the resource section header
//
if (OutImageType == FW_HII_PACKAGE_LIST_BINIMAGE) {
//
// Create the resource section header
//
HiiSectionHeader = CreateHiiResouceSectionHeader (&HiiSectionHeaderSize, HiiPackageListHeader.PackageLength);
//
// Wrtie section header and HiiData into File.
//
fwrite (HiiSectionHeader, 1, HiiSectionHeaderSize, fpOut);
fwrite (HiiPackageListBuffer, 1, HiiPackageListHeader.PackageLength, fpOut);
//
// Free allocated resources.
//
free (HiiSectionHeader);
free (HiiPackageListBuffer);
//
// Done successfully
//
goto Finish;
}
//
// write the hii package into the text package list rc file.
//
if (OutImageType == FW_HII_PACKAGE_LIST_RCIMAGE) {
for (Index = 0; gHiiPackageRCFileHeader[Index] != NULL; Index++) {
fprintf (fpOut, "%s\n", gHiiPackageRCFileHeader[Index]);
}
fprintf (fpOut, "\n%d %s\n{", HII_RESOURCE_SECTION_INDEX, HII_RESOURCE_SECTION_NAME);
HiiPackageDataPointer = HiiPackageListBuffer;
for (Index = 0; Index + 2 < HiiPackageListHeader.PackageLength; Index += 2) {
if (Index % 16 == 0) {
fprintf (fpOut, "\n ");
}
fprintf (fpOut, " 0x%04X,", *(UINT16 *) HiiPackageDataPointer);
HiiPackageDataPointer += 2;
}
if (Index % 16 == 0) {
fprintf (fpOut, "\n ");
}
if ((Index + 2) == HiiPackageListHeader.PackageLength) {
fprintf (fpOut, " 0x%04X\n}\n", *(UINT16 *) HiiPackageDataPointer);
}
if ((Index + 1) == HiiPackageListHeader.PackageLength) {
fprintf (fpOut, " 0x%04X\n}\n", *(UINT8 *) HiiPackageDataPointer);
}
free (HiiPackageListBuffer);
//
// Done successfully
//
goto Finish;
}
}
//
// Combine MciBinary files to one file
//
if (OutImageType == FW_MERGE_IMAGE) {
for (Index = 0; Index < InputFileNum; Index ++) {
fpIn = fopen (InputFileName [Index], "rb");
if (!fpIn) {
Error (NULL, 0, 0001, "Error opening file", InputFileName [Index]);
goto Finish;
}
FileLength = _filelength (fileno (fpIn));
FileBuffer = malloc (FileLength);
if (FileBuffer == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
fclose (fpIn);
goto Finish;
}
fread (FileBuffer, 1, FileLength, fpIn);
fclose (fpIn);
//
// write input file to out file
//
fwrite (FileBuffer, 1, FileLength, fpOut);
//
// write pad value to out file.
//
while (FileLength ++ % MciAlignment != 0) {
fwrite (&MciPadValue, 1, 1, fpOut);
}
//
// free allocated memory space
//
free (FileBuffer);
FileBuffer = NULL;
}
//
// Done successfully
//
goto Finish;
}
//
// Convert MicroCode.txt file to MicroCode.bin file
//
if (OutImageType == FW_MCI_IMAGE) {
fpIn = fopen (mInImageName, "r");
if (!fpIn) {
Error (NULL, 0, 0001, "Error opening file", mInImageName);
goto Finish;
}
//
// The first pass is to determine
// how much data is in the file so we can allocate a working buffer.
//
FileLength = 0;
do {
Status = MicrocodeReadData (fpIn, &Data);
if (Status == STATUS_SUCCESS) {
FileLength += sizeof (Data);
}
if (Status == STATUS_IGNORE) {
Status = STATUS_SUCCESS;
}
} while (Status == STATUS_SUCCESS);
//
// Error if no data.
//
if (FileLength == 0) {
Error (NULL, 0, 3000, "Invalid", "no parseable data found in file %s", mInImageName);
goto Finish;
}
if (FileLength < sizeof (MICROCODE_IMAGE_HEADER)) {
Error (NULL, 0, 3000, "Invalid", "amount of parseable data in %s is insufficient to contain a microcode header", mInImageName);
goto Finish;
}
//
// Allocate a buffer for the data
//
FileBuffer = malloc (FileLength);
if (FileBuffer == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
goto Finish;
}
//
// Re-read the file, storing the data into our buffer
//
fseek (fpIn, 0, SEEK_SET);
DataPointer = (UINT32 *) FileBuffer;
OldDataPointer = DataPointer;
do {
OldDataPointer = DataPointer;
Status = MicrocodeReadData (fpIn, DataPointer++);
if (Status == STATUS_IGNORE) {
DataPointer = OldDataPointer;
Status = STATUS_SUCCESS;
}
} while (Status == STATUS_SUCCESS);
//
// close input file after read data
//
fclose (fpIn);
//
// Can't do much checking on the header because, per the spec, the
// DataSize field may be 0, which means DataSize = 2000 and TotalSize = 2K,
// and the TotalSize field is invalid (actually missing). Thus we can't
// even verify the Reserved fields are 0.
//
MciHeader = (MICROCODE_IMAGE_HEADER *) FileBuffer;
if (MciHeader->DataSize == 0) {
Index = 2048;
} else {
Index = MciHeader->TotalSize;
}
if (Index != FileLength) {
Error (NULL, 0, 3000, "Invalid", "file length of %s (0x%x) does not equal expected TotalSize: 0x%04X.", mInImageName, (unsigned) FileLength, (unsigned) Index);
goto Finish;
}
//
// Checksum the contents
//
DataPointer = (UINT32 *) FileBuffer;
CheckSum = 0;
Index = 0;
while (Index < FileLength) {
CheckSum += *DataPointer;
DataPointer ++;
Index += sizeof (*DataPointer);
}
if (CheckSum != 0) {
Error (NULL, 0, 3000, "Invalid", "checksum (0x%x) failed on file %s.", (unsigned) CheckSum, mInImageName);
goto Finish;
}
//
// Open the output file and write the buffer contents
//
if (fpOut != NULL) {
if (fwrite (FileBuffer, FileLength, 1, fpOut) != 1) {
Error (NULL, 0, 0002, "Error writing file", OutImageName);
goto Finish;
}
}
if (ReplaceFlag) {
fpInOut = fopen (mInImageName, "wb");
if (fpInOut != NULL) {
Error (NULL, 0, 0001, "Error opening file", mInImageName);
goto Finish;
}
if (fwrite (FileBuffer, FileLength, 1, fpInOut) != 1) {
Error (NULL, 0, 0002, "Error writing file", mInImageName);
goto Finish;
}
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) FileLength);
//
// Convert Mci.TXT to Mci.bin file successfully
//
goto Finish;
}
//
// Open input file and read file data into file buffer.
//
fpIn = fopen (mInImageName, "rb");
if (!fpIn) {
Error (NULL, 0, 0001, "Error opening file", mInImageName);
goto Finish;
}
FileLength = _filelength (fileno (fpIn));
FileBuffer = malloc (FileLength);
if (FileBuffer == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
fclose (fpIn);
goto Finish;
}
fread (FileBuffer, 1, FileLength, fpIn);
fclose (fpIn);
DebugMsg (NULL, 0, 9, "input file info", "the input file size is %u bytes", (unsigned) FileLength);
//
// Replace file
//
if (ReplaceFlag) {
fpInOut = fopen (mInImageName, "wb");
if (!fpInOut) {
Error (NULL, 0, 0001, "Error opening file", mInImageName);
goto Finish;
}
}
//
// Dump TeImage Header into output file.
//
if (OutImageType == DUMP_TE_HEADER) {
memcpy (&TEImageHeader, FileBuffer, sizeof (TEImageHeader));
if (TEImageHeader.Signature != EFI_TE_IMAGE_HEADER_SIGNATURE) {
Error (NULL, 0, 3000, "Invalid", "TE header signature of file %s is not correct.", mInImageName);
goto Finish;
}
if (fpInOut != NULL) {
fprintf (fpInOut, "Dump of file %s\n\n", mInImageName);
fprintf (fpInOut, "TE IMAGE HEADER VALUES\n");
fprintf (fpInOut, "%17X machine\n", TEImageHeader.Machine);
fprintf (fpInOut, "%17X number of sections\n", TEImageHeader.NumberOfSections);
fprintf (fpInOut, "%17X subsystems\n", TEImageHeader.Subsystem);
fprintf (fpInOut, "%17X stripped size\n", TEImageHeader.StrippedSize);
fprintf (fpInOut, "%17X entry point\n", (unsigned) TEImageHeader.AddressOfEntryPoint);
fprintf (fpInOut, "%17X base of code\n", (unsigned) TEImageHeader.BaseOfCode);
fprintf (fpInOut, "%17llX image base\n", (unsigned long long)TEImageHeader.ImageBase);
fprintf (fpInOut, "%17X [%8X] RVA [size] of Base Relocation Directory\n", (unsigned) TEImageHeader.DataDirectory[0].VirtualAddress, (unsigned) TEImageHeader.DataDirectory[0].Size);
fprintf (fpInOut, "%17X [%8X] RVA [size] of Debug Directory\n", (unsigned) TEImageHeader.DataDirectory[1].VirtualAddress, (unsigned) TEImageHeader.DataDirectory[1].Size);
}
if (fpOut != NULL) {
fprintf (fpOut, "Dump of file %s\n\n", mInImageName);
fprintf (fpOut, "TE IMAGE HEADER VALUES\n");
fprintf (fpOut, "%17X machine\n", TEImageHeader.Machine);
fprintf (fpOut, "%17X number of sections\n", TEImageHeader.NumberOfSections);
fprintf (fpOut, "%17X subsystems\n", TEImageHeader.Subsystem);
fprintf (fpOut, "%17X stripped size\n", TEImageHeader.StrippedSize);
fprintf (fpOut, "%17X entry point\n", (unsigned) TEImageHeader.AddressOfEntryPoint);
fprintf (fpOut, "%17X base of code\n", (unsigned) TEImageHeader.BaseOfCode);
fprintf (fpOut, "%17llX image base\n", (unsigned long long)TEImageHeader.ImageBase);
fprintf (fpOut, "%17X [%8X] RVA [size] of Base Relocation Directory\n", (unsigned) TEImageHeader.DataDirectory[0].VirtualAddress, (unsigned) TEImageHeader.DataDirectory[0].Size);
fprintf (fpOut, "%17X [%8X] RVA [size] of Debug Directory\n", (unsigned) TEImageHeader.DataDirectory[1].VirtualAddress, (unsigned) TEImageHeader.DataDirectory[1].Size);
}
goto Finish;
}
//
// Following code to convert dll to efi image or te image.
// Get new image type
//
if ((OutImageType == FW_EFI_IMAGE) || (OutImageType == FW_TE_IMAGE)) {
if (ModuleType == NULL) {
if (OutImageType == FW_EFI_IMAGE) {
Error (NULL, 0, 1001, "Missing option", "EFI_FILETYPE");
goto Finish;
} else if (OutImageType == FW_TE_IMAGE) {
//
// Default TE Image Type is Boot service driver
//
Type = EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER;
VerboseMsg ("Efi Image subsystem type is efi boot service driver.");
}
} else {
if (stricmp (ModuleType, "BASE") == 0 ||
stricmp (ModuleType, "SEC") == 0 ||
stricmp (ModuleType, "SECURITY_CORE") == 0 ||
stricmp (ModuleType, "PEI_CORE") == 0 ||
stricmp (ModuleType, "PEIM") == 0 ||
stricmp (ModuleType, "COMBINED_PEIM_DRIVER") == 0 ||
stricmp (ModuleType, "PIC_PEIM") == 0 ||
stricmp (ModuleType, "RELOCATABLE_PEIM") == 0 ||
stricmp (ModuleType, "DXE_CORE") == 0 ||
stricmp (ModuleType, "BS_DRIVER") == 0 ||
stricmp (ModuleType, "DXE_DRIVER") == 0 ||
stricmp (ModuleType, "DXE_SMM_DRIVER") == 0 ||
stricmp (ModuleType, "UEFI_DRIVER") == 0 ||
stricmp (ModuleType, "SMM_CORE") == 0) {
Type = EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER;
VerboseMsg ("Efi Image subsystem type is efi boot service driver.");
} else if (stricmp (ModuleType, "UEFI_APPLICATION") == 0 ||
stricmp (ModuleType, "APPLICATION") == 0) {
Type = EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION;
VerboseMsg ("Efi Image subsystem type is efi application.");
} else if (stricmp (ModuleType, "DXE_RUNTIME_DRIVER") == 0 ||
stricmp (ModuleType, "RT_DRIVER") == 0) {
Type = EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER;
VerboseMsg ("Efi Image subsystem type is efi runtime driver.");
} else if (stricmp (ModuleType, "DXE_SAL_DRIVER") == 0 ||
stricmp (ModuleType, "SAL_RT_DRIVER") == 0) {
Type = EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER;
VerboseMsg ("Efi Image subsystem type is efi sal runtime driver.");
} else {
Error (NULL, 0, 1003, "Invalid option value", "EFI_FILETYPE = %s", ModuleType);
goto Finish;
}
}
}
//
// Convert EFL image to PeImage
//
if (IsElfHeader(FileBuffer)) {
VerboseMsg ("Convert the input ELF Image to Pe Image");
ConvertElf(&FileBuffer, &FileLength);
}
//
// Make sure File Offsets and Virtual Offsets are the same in the image so it is XIP
// XIP == eXecute In Place
//
PeCoffConvertImageToXip (&FileBuffer, &FileLength);
//
// Remove reloc section from PE or TE image
//
if (OutImageType == FW_RELOC_STRIPEED_IMAGE) {
//
// Check TeImage
//
TeHdr = (EFI_TE_IMAGE_HEADER *) FileBuffer;
if (TeHdr->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) (TeHdr + 1);
for (Index = 0; Index < TeHdr->NumberOfSections; Index ++, SectionHeader ++) {
if (strcmp ((char *)SectionHeader->Name, ".reloc") == 0) {
//
// Check the reloc section is in the end of image.
//
if ((SectionHeader->PointerToRawData + SectionHeader->SizeOfRawData) ==
(FileLength + TeHdr->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER))) {
//
// Remove .reloc section and update TeImage Header
//
FileLength = FileLength - SectionHeader->SizeOfRawData;
SectionHeader->SizeOfRawData = 0;
SectionHeader->Misc.VirtualSize = 0;
TeHdr->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = 0;
TeHdr->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = 0;
break;
}
}
}
} else {
//
// Check PE Image
//
DosHdr = (EFI_IMAGE_DOS_HEADER *) FileBuffer;
if (DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(FileBuffer);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
Error (NULL, 0, 3000, "Invalid", "TE and DOS header signatures were not found in %s image.", mInImageName);
goto Finish;
}
DosHdr = NULL;
} else {
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(FileBuffer + DosHdr->e_lfanew);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
Error (NULL, 0, 3000, "Invalid", "PE header signature was not found in %s image.", mInImageName);
goto Finish;
}
}
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index ++, SectionHeader ++) {
if (strcmp ((char *)SectionHeader->Name, ".reloc") == 0) {
//
// Check the reloc section is in the end of image.
//
if ((SectionHeader->PointerToRawData + SectionHeader->SizeOfRawData) == FileLength) {
//
// Remove .reloc section and update PeImage Header
//
FileLength = FileLength - SectionHeader->SizeOfRawData;
PeHdr->Pe32.FileHeader.Characteristics |= EFI_IMAGE_FILE_RELOCS_STRIPPED;
if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
Optional32 = (EFI_IMAGE_OPTIONAL_HEADER32 *)&PeHdr->Pe32.OptionalHeader;
Optional32->SizeOfImage -= SectionHeader->SizeOfRawData;
Optional32->SizeOfInitializedData -= SectionHeader->SizeOfRawData;
if (Optional32->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = 0;
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = 0;
}
}
if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
Optional64 = (EFI_IMAGE_OPTIONAL_HEADER64 *)&PeHdr->Pe32.OptionalHeader;
Optional64->SizeOfImage -= SectionHeader->SizeOfRawData;
Optional64->SizeOfInitializedData -= SectionHeader->SizeOfRawData;
if (Optional64->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = 0;
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = 0;
}
}
SectionHeader->Misc.VirtualSize = 0;
SectionHeader->SizeOfRawData = 0;
break;
}
}
}
}
//
// Write file
//
goto WriteFile;
}
//
// Read the dos & pe hdrs of the image
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)FileBuffer;
if (DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
// NO DOS header, check for PE/COFF header
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(FileBuffer);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
Error (NULL, 0, 3000, "Invalid", "DOS header signature was not found in %s image.", mInImageName);
goto Finish;
}
DosHdr = NULL;
} else {
PeHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(FileBuffer + DosHdr->e_lfanew);
if (PeHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
Error (NULL, 0, 3000, "Invalid", "PE header signature was not found in %s image.", mInImageName);
goto Finish;
}
}
if (PeHdr->Pe32.FileHeader.Machine == IMAGE_FILE_MACHINE_ARM) {
// Some tools kick out IMAGE_FILE_MACHINE_ARM (0x1c0) vs IMAGE_FILE_MACHINE_ARMT (0x1c2)
// so patch back to the offical UEFI value.
PeHdr->Pe32.FileHeader.Machine = IMAGE_FILE_MACHINE_ARMT;
}
//
// Extract bin data from Pe image.
//
if (OutImageType == FW_BIN_IMAGE) {
if (FileLength < PeHdr->Pe32.OptionalHeader.SizeOfHeaders) {
Error (NULL, 0, 3000, "Invalid", "FileSize of %s is not a legal size.", mInImageName);
goto Finish;
}
//
// Output bin data from exe file
//
if (fpOut != NULL) {
fwrite (FileBuffer + PeHdr->Pe32.OptionalHeader.SizeOfHeaders, 1, FileLength - PeHdr->Pe32.OptionalHeader.SizeOfHeaders, fpOut);
}
if (fpInOut != NULL) {
fwrite (FileBuffer + PeHdr->Pe32.OptionalHeader.SizeOfHeaders, 1, FileLength - PeHdr->Pe32.OptionalHeader.SizeOfHeaders, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) (FileLength - PeHdr->Pe32.OptionalHeader.SizeOfHeaders));
goto Finish;
}
//
// Zero Debug Information of Pe Image
//
if (OutImageType == FW_ZERO_DEBUG_IMAGE) {
Status = ZeroDebugData (FileBuffer, TRUE);
if (EFI_ERROR (Status)) {
Error (NULL, 0, 3000, "Invalid", "Zero DebugData Error status is 0x%x", (int) Status);
goto Finish;
}
if (fpOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpOut);
}
if (fpInOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) FileLength);
goto Finish;
}
//
// Set Time Stamp of Pe Image
//
if (OutImageType == FW_SET_STAMP_IMAGE) {
Status = SetStamp (FileBuffer, TimeStamp);
if (EFI_ERROR (Status)) {
goto Finish;
}
if (fpOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpOut);
}
if (fpInOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) FileLength);
goto Finish;
}
//
// Extract acpi data from pe image.
//
if (OutImageType == FW_ACPI_IMAGE) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index ++, SectionHeader ++) {
if (strcmp ((char *)SectionHeader->Name, ".data") == 0 || strcmp ((char *)SectionHeader->Name, ".sdata") == 0) {
//
// Check Acpi Table
//
if (SectionHeader->Misc.VirtualSize < SectionHeader->SizeOfRawData) {
FileLength = SectionHeader->Misc.VirtualSize;
} else {
FileLength = SectionHeader->SizeOfRawData;
}
if (CheckAcpiTable (FileBuffer + SectionHeader->PointerToRawData, FileLength) != STATUS_SUCCESS) {
Error (NULL, 0, 3000, "Invalid", "ACPI table check failed in %s.", mInImageName);
goto Finish;
}
//
// Output Apci data to file
//
if (fpOut != NULL) {
fwrite (FileBuffer + SectionHeader->PointerToRawData, 1, FileLength, fpOut);
}
if (fpInOut != NULL) {
fwrite (FileBuffer + SectionHeader->PointerToRawData, 1, FileLength, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) FileLength);
goto Finish;
}
}
Error (NULL, 0, 3000, "Invalid", "failed to get ACPI table from %s.", mInImageName);
goto Finish;
}
//
// Zero all unused fields of the DOS header
//
if (DosHdr != NULL) {
memcpy (&BackupDosHdr, DosHdr, sizeof (EFI_IMAGE_DOS_HEADER));
memset (DosHdr, 0, sizeof (EFI_IMAGE_DOS_HEADER));
DosHdr->e_magic = BackupDosHdr.e_magic;
DosHdr->e_lfanew = BackupDosHdr.e_lfanew;
for (Index = sizeof (EFI_IMAGE_DOS_HEADER); Index < (UINT32 ) DosHdr->e_lfanew; Index++) {
FileBuffer[Index] = (UINT8) DosHdr->e_cp;
}
}
//
// Initialize TeImage Header
//
memset (&TEImageHeader, 0, sizeof (EFI_TE_IMAGE_HEADER));
TEImageHeader.Signature = EFI_TE_IMAGE_HEADER_SIGNATURE;
TEImageHeader.Machine = PeHdr->Pe32.FileHeader.Machine;
TEImageHeader.NumberOfSections = (UINT8) PeHdr->Pe32.FileHeader.NumberOfSections;
TEImageHeader.StrippedSize = (UINT16) ((UINTN) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader) - (UINTN) FileBuffer);
TEImageHeader.Subsystem = (UINT8) Type;
//
// Patch the PE header
//
PeHdr->Pe32.OptionalHeader.Subsystem = (UINT16) Type;
if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
Optional32 = (EFI_IMAGE_OPTIONAL_HEADER32 *)&PeHdr->Pe32.OptionalHeader;
Optional32->MajorLinkerVersion = 0;
Optional32->MinorLinkerVersion = 0;
Optional32->MajorOperatingSystemVersion = 0;
Optional32->MinorOperatingSystemVersion = 0;
Optional32->MajorImageVersion = 0;
Optional32->MinorImageVersion = 0;
Optional32->MajorSubsystemVersion = 0;
Optional32->MinorSubsystemVersion = 0;
Optional32->Win32VersionValue = 0;
Optional32->CheckSum = 0;
Optional32->SizeOfStackReserve = 0;
Optional32->SizeOfStackCommit = 0;
Optional32->SizeOfHeapReserve = 0;
Optional32->SizeOfHeapCommit = 0;
TEImageHeader.AddressOfEntryPoint = Optional32->AddressOfEntryPoint;
TEImageHeader.BaseOfCode = Optional32->BaseOfCode;
TEImageHeader.ImageBase = (UINT64) (Optional32->ImageBase);
if (Optional32->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
}
if (Optional32->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size;
}
//
// Zero .pdata section data.
//
if (!KeepExceptionTableFlag && Optional32->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION &&
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress != 0 &&
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size != 0) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++, SectionHeader++) {
if (SectionHeader->VirtualAddress == Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress) {
//
// Zero .pdata Section data
//
memset (FileBuffer + SectionHeader->PointerToRawData, 0, SectionHeader->SizeOfRawData);
//
// Zero .pdata Section header name
//
memset (SectionHeader->Name, 0, sizeof (SectionHeader->Name));
//
// Zero Execption Table
//
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress = 0;
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size = 0;
DebugMsg (NULL, 0, 9, "Zero the .pdata section for PE image", NULL);
break;
}
}
}
//
// Strip zero padding at the end of the .reloc section
//
if (!KeepZeroPendingFlag && Optional32->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
if (Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size != 0) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++, SectionHeader++) {
//
// Look for the Section Header that starts as the same virtual address as the Base Relocation Data Directory
//
if (SectionHeader->VirtualAddress == Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress) {
SectionHeader->Misc.VirtualSize = Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
AllignedRelocSize = (Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size + Optional32->FileAlignment - 1) & (~(Optional32->FileAlignment - 1));
//
// Check to see if there is zero padding at the end of the base relocations
//
if (AllignedRelocSize < SectionHeader->SizeOfRawData) {
//
// Check to see if the base relocations are at the end of the file
//
if (SectionHeader->PointerToRawData + SectionHeader->SizeOfRawData == Optional32->SizeOfImage) {
//
// All the required conditions are met to strip the zero padding of the end of the base relocations section
//
Optional32->SizeOfImage -= (SectionHeader->SizeOfRawData - AllignedRelocSize);
Optional32->SizeOfInitializedData -= (SectionHeader->SizeOfRawData - AllignedRelocSize);
SectionHeader->SizeOfRawData = AllignedRelocSize;
FileLength = Optional32->SizeOfImage;
DebugMsg (NULL, 0, 9, "Remove the zero padding bytes at the end of the base relocations", "The size of padding bytes is %u", (unsigned) (SectionHeader->SizeOfRawData - AllignedRelocSize));
}
}
}
}
}
}
} else if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
Optional64 = (EFI_IMAGE_OPTIONAL_HEADER64 *)&PeHdr->Pe32.OptionalHeader;
Optional64->MajorLinkerVersion = 0;
Optional64->MinorLinkerVersion = 0;
Optional64->MajorOperatingSystemVersion = 0;
Optional64->MinorOperatingSystemVersion = 0;
Optional64->MajorImageVersion = 0;
Optional64->MinorImageVersion = 0;
Optional64->MajorSubsystemVersion = 0;
Optional64->MinorSubsystemVersion = 0;
Optional64->Win32VersionValue = 0;
Optional64->CheckSum = 0;
Optional64->SizeOfStackReserve = 0;
Optional64->SizeOfStackCommit = 0;
Optional64->SizeOfHeapReserve = 0;
Optional64->SizeOfHeapCommit = 0;
TEImageHeader.AddressOfEntryPoint = Optional64->AddressOfEntryPoint;
TEImageHeader.BaseOfCode = Optional64->BaseOfCode;
TEImageHeader.ImageBase = (UINT64) (Optional64->ImageBase);
if (Optional64->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
}
if (Optional64->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size;
}
//
// Zero the .pdata section for X64 machine and don't check the Debug Directory is empty
// For Itaninum and X64 Image, remove .pdata section.
//
if ((!KeepExceptionTableFlag && PeHdr->Pe32.FileHeader.Machine == IMAGE_FILE_MACHINE_X64) || PeHdr->Pe32.FileHeader.Machine == IMAGE_FILE_MACHINE_IA64) {
if (Optional64->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION &&
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress != 0 &&
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size != 0) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++, SectionHeader++) {
if (SectionHeader->VirtualAddress == Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress) {
//
// Zero .pdata Section header name
//
memset (SectionHeader->Name, 0, sizeof (SectionHeader->Name));
RuntimeFunction = (RUNTIME_FUNCTION *)(FileBuffer + SectionHeader->PointerToRawData);
for (Index1 = 0; Index1 < Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size / sizeof (RUNTIME_FUNCTION); Index1++, RuntimeFunction++) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index2 = 0; Index2 < PeHdr->Pe32.FileHeader.NumberOfSections; Index2++, SectionHeader++) {
if (RuntimeFunction->UnwindInfoAddress >= SectionHeader->VirtualAddress && RuntimeFunction->UnwindInfoAddress < (SectionHeader->VirtualAddress + SectionHeader->SizeOfRawData)) {
UnwindInfo = (UNWIND_INFO *)(FileBuffer + SectionHeader->PointerToRawData + (RuntimeFunction->UnwindInfoAddress - SectionHeader->VirtualAddress));
if (UnwindInfo->Version == 1) {
memset (UnwindInfo + 1, 0, UnwindInfo->CountOfUnwindCodes * sizeof (UINT16));
memset (UnwindInfo, 0, sizeof (UNWIND_INFO));
}
break;
}
}
memset (RuntimeFunction, 0, sizeof (RUNTIME_FUNCTION));
}
//
// Zero Execption Table
//
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size = 0;
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress = 0;
DebugMsg (NULL, 0, 9, "Zero the .pdata section if the machine type is X64 for PE32+ image", NULL);
break;
}
}
}
}
//
// Strip zero padding at the end of the .reloc section
//
if (!KeepZeroPendingFlag && Optional64->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG) {
if (Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size != 0) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++, SectionHeader++) {
//
// Look for the Section Header that starts as the same virtual address as the Base Relocation Data Directory
//
if (SectionHeader->VirtualAddress == Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress) {
SectionHeader->Misc.VirtualSize = Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
AllignedRelocSize = (Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size + Optional64->FileAlignment - 1) & (~(Optional64->FileAlignment - 1));
//
// Check to see if there is zero padding at the end of the base relocations
//
if (AllignedRelocSize < SectionHeader->SizeOfRawData) {
//
// Check to see if the base relocations are at the end of the file
//
if (SectionHeader->PointerToRawData + SectionHeader->SizeOfRawData == Optional64->SizeOfImage) {
//
// All the required conditions are met to strip the zero padding of the end of the base relocations section
//
Optional64->SizeOfImage -= (SectionHeader->SizeOfRawData - AllignedRelocSize);
Optional64->SizeOfInitializedData -= (SectionHeader->SizeOfRawData - AllignedRelocSize);
SectionHeader->SizeOfRawData = AllignedRelocSize;
FileLength = Optional64->SizeOfImage;
DebugMsg (NULL, 0, 9, "Remove the zero padding bytes at the end of the base relocations", "The size of padding bytes is %u", (unsigned) (SectionHeader->SizeOfRawData - AllignedRelocSize));
}
}
}
}
}
}
} else {
Error (NULL, 0, 3000, "Invalid", "Magic 0x%x of PeImage %s is unknown.", PeHdr->Pe32.OptionalHeader.Magic, mInImageName);
goto Finish;
}
if (((PeHdr->Pe32.FileHeader.Characteristics & EFI_IMAGE_FILE_RELOCS_STRIPPED) == 0) && \
(TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress == 0) && \
(TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size == 0)) {
//
// PeImage can be loaded into memory, but it has no relocation section.
// Fix TeImage Header to set VA of relocation data directory to not zero, the size is still zero.
//
if (Optional32 != NULL) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = Optional32->SizeOfImage - sizeof (EFI_IMAGE_BASE_RELOCATION);
} else if (Optional64 != NULL) {
TEImageHeader.DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = Optional64->SizeOfImage - sizeof (EFI_IMAGE_BASE_RELOCATION);
}
}
//
// Fill HII section data
//
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++) {
if (stricmp ((char *)SectionHeader[Index].Name, ".hii") == 0) {
//
// Update resource section header offset
//
SetHiiResourceHeader ((UINT8*) FileBuffer + SectionHeader[Index].PointerToRawData, SectionHeader[Index].VirtualAddress);
//
// Update resource section name
//
strcpy((char *) SectionHeader[Index].Name, ".rsrc");
//
// Update resource data directory.
//
if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
Optional32 = (EFI_IMAGE_OPTIONAL_HEADER32 *)&PeHdr->Pe32.OptionalHeader;
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = SectionHeader[Index].VirtualAddress;
Optional32->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = SectionHeader[Index].Misc.VirtualSize;
} else if (PeHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
Optional64 = (EFI_IMAGE_OPTIONAL_HEADER64 *)&PeHdr->Pe32.OptionalHeader;
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = SectionHeader[Index].VirtualAddress;
Optional64->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = SectionHeader[Index].Misc.VirtualSize;
}
break;
}
}
//
// Zero ExceptionTable Xdata
//
if (!KeepExceptionTableFlag) {
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) &(PeHdr->Pe32.OptionalHeader) + PeHdr->Pe32.FileHeader.SizeOfOptionalHeader);
for (Index = 0; Index < PeHdr->Pe32.FileHeader.NumberOfSections; Index++) {
if (stricmp ((char *)SectionHeader[Index].Name, ".xdata") == 0) {
//
// zero .xdata section
//
memset (FileBuffer + SectionHeader[Index].PointerToRawData, 0, SectionHeader[Index].SizeOfRawData);
DebugMsg (NULL, 0, 9, NULL, "Zero the .xdata section for PE image at Offset 0x%x and Length 0x%x", (unsigned) SectionHeader[Index].PointerToRawData, (unsigned) SectionHeader[Index].SizeOfRawData);
break;
}
}
}
//
// Zero Time/Data field
//
ZeroDebugData (FileBuffer, FALSE);
if (OutImageType == FW_TE_IMAGE) {
if ((PeHdr->Pe32.FileHeader.NumberOfSections &~0xFF) || (Type &~0xFF)) {
//
// Pack the subsystem and NumberOfSections into 1 byte. Make sure they fit both.
//
Error (NULL, 0, 3000, "Invalid", "Image's subsystem or NumberOfSections of PeImage %s cannot be packed into 1 byte.", mInImageName);
goto Finish;
}
if ((PeHdr->Pe32.OptionalHeader.SectionAlignment != PeHdr->Pe32.OptionalHeader.FileAlignment)) {
//
// TeImage has the same section alignment and file alignment.
//
Error (NULL, 0, 3000, "Invalid", "Section-Alignment and File-Alignment of PeImage %s do not match, they must be equal for a TeImage.", mInImageName);
goto Finish;
}
DebugMsg (NULL, 0, 9, "TeImage Header Info", "Machine type is %X, Number of sections is %X, Stripped size is %X, EntryPoint is %X, BaseOfCode is %X, ImageBase is %llX",
TEImageHeader.Machine, TEImageHeader.NumberOfSections, TEImageHeader.StrippedSize, (unsigned) TEImageHeader.AddressOfEntryPoint, (unsigned) TEImageHeader.BaseOfCode, (unsigned long long) TEImageHeader.ImageBase);
//
// Update Image to TeImage
//
if (fpOut != NULL) {
fwrite (&TEImageHeader, 1, sizeof (EFI_TE_IMAGE_HEADER), fpOut);
fwrite (FileBuffer + TEImageHeader.StrippedSize, 1, FileLength - TEImageHeader.StrippedSize, fpOut);
}
if (fpInOut != NULL) {
fwrite (&TEImageHeader, 1, sizeof (EFI_TE_IMAGE_HEADER), fpInOut);
fwrite (FileBuffer + TEImageHeader.StrippedSize, 1, FileLength - TEImageHeader.StrippedSize, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) (FileLength - TEImageHeader.StrippedSize));
goto Finish;
}
WriteFile:
//
// Update Image to EfiImage
//
if (fpOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpOut);
}
if (fpInOut != NULL) {
fwrite (FileBuffer, 1, FileLength, fpInOut);
}
VerboseMsg ("the size of output file is %u bytes", (unsigned) FileLength);
Finish:
if (fpInOut != NULL) {
if (GetUtilityStatus () != STATUS_SUCCESS) {
//
// when file updates failed, original file is still recoveried.
//
fwrite (FileBuffer, 1, FileLength, fpInOut);
}
//
// Write converted data into fpInOut file and close input file.
//
fclose (fpInOut);
}
if (FileBuffer != NULL) {
free (FileBuffer);
}
if (InputFileName != NULL) {
free (InputFileName);
}
if (fpOut != NULL) {
//
// Write converted data into fpOut file and close output file.
//
fclose (fpOut);
if (GetUtilityStatus () != STATUS_SUCCESS) {
if (OutputFileBuffer == NULL) {
remove (OutImageName);
} else {
fpOut = fopen (OutImageName, "wb");
fwrite (OutputFileBuffer, 1, OutputFileLength, fpOut);
fclose (fpOut);
free (OutputFileBuffer);
}
}
}
VerboseMsg ("%s tool done with return code is 0x%x.", UTILITY_NAME, GetUtilityStatus ());
return GetUtilityStatus ();
}
STATIC
EFI_STATUS
ZeroDebugData (
IN OUT UINT8 *FileBuffer,
BOOLEAN ZeroDebugFlag
)
/*++
Routine Description:
Zero debug information in PeImage.
Arguments:
FileBuffer - Pointer to PeImage.
ZeroDebugFlag - TRUE to zero Debug information, FALSE to only zero time/stamp
Returns:
EFI_ABORTED - PeImage is invalid.
EFI_SUCCESS - Zero debug data successfully.
--*/
{
UINT32 Index;
UINT32 DebugDirectoryEntryRva;
UINT32 DebugDirectoryEntryFileOffset;
UINT32 ExportDirectoryEntryRva;
UINT32 ExportDirectoryEntryFileOffset;
UINT32 ResourceDirectoryEntryRva;
UINT32 ResourceDirectoryEntryFileOffset;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_FILE_HEADER *FileHdr;
EFI_IMAGE_OPTIONAL_HEADER32 *Optional32Hdr;
EFI_IMAGE_OPTIONAL_HEADER64 *Optional64Hdr;
EFI_IMAGE_SECTION_HEADER *SectionHeader;
EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *DebugEntry;
UINT32 *NewTimeStamp;
//
// Init variable.
//
DebugDirectoryEntryRva = 0;
ExportDirectoryEntryRva = 0;
ResourceDirectoryEntryRva = 0;
DebugDirectoryEntryFileOffset = 0;
ExportDirectoryEntryFileOffset = 0;
ResourceDirectoryEntryFileOffset = 0;
DosHdr = (EFI_IMAGE_DOS_HEADER *) FileBuffer;
FileHdr = (EFI_IMAGE_FILE_HEADER *) (FileBuffer + DosHdr->e_lfanew + sizeof (UINT32));
DosHdr = (EFI_IMAGE_DOS_HEADER *)FileBuffer;
if (DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
// NO DOS header, must start with PE/COFF header
FileHdr = (EFI_IMAGE_FILE_HEADER *)(FileBuffer + sizeof (UINT32));
} else {
FileHdr = (EFI_IMAGE_FILE_HEADER *)(FileBuffer + DosHdr->e_lfanew + sizeof (UINT32));
}
//
// Get Debug, Export and Resource EntryTable RVA address.
// Resource Directory entry need to review.
//
if (FileHdr->Machine == EFI_IMAGE_MACHINE_IA32) {
Optional32Hdr = (EFI_IMAGE_OPTIONAL_HEADER32 *) ((UINT8*) FileHdr + sizeof (EFI_IMAGE_FILE_HEADER));
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) Optional32Hdr + FileHdr->SizeOfOptionalHeader);
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXPORT && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].Size != 0) {
ExportDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
}
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size != 0) {
ResourceDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress;
}
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0) {
DebugDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
if (ZeroDebugFlag) {
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = 0;
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = 0;
}
}
} else {
Optional64Hdr = (EFI_IMAGE_OPTIONAL_HEADER64 *) ((UINT8*) FileHdr + sizeof (EFI_IMAGE_FILE_HEADER));
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) Optional64Hdr + FileHdr->SizeOfOptionalHeader);
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXPORT && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].Size != 0) {
ExportDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
}
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size != 0) {
ResourceDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress;
}
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0) {
DebugDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
if (ZeroDebugFlag) {
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = 0;
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = 0;
}
}
}
//
// Get DirectoryEntryTable file offset.
//
for (Index = 0; Index < FileHdr->NumberOfSections; Index ++, SectionHeader ++) {
if (DebugDirectoryEntryRva >= SectionHeader->VirtualAddress &&
DebugDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
DebugDirectoryEntryFileOffset =
DebugDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
if (ExportDirectoryEntryRva >= SectionHeader->VirtualAddress &&
ExportDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
ExportDirectoryEntryFileOffset =
ExportDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
if (ResourceDirectoryEntryRva >= SectionHeader->VirtualAddress &&
ResourceDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
ResourceDirectoryEntryFileOffset =
ResourceDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
}
//
//Zero Debug Data and TimeStamp
//
FileHdr->TimeDateStamp = 0;
if (ExportDirectoryEntryFileOffset != 0) {
NewTimeStamp = (UINT32 *) (FileBuffer + ExportDirectoryEntryFileOffset + sizeof (UINT32));
*NewTimeStamp = 0;
}
if (ResourceDirectoryEntryFileOffset != 0) {
NewTimeStamp = (UINT32 *) (FileBuffer + ResourceDirectoryEntryFileOffset + sizeof (UINT32));
*NewTimeStamp = 0;
}
if (DebugDirectoryEntryFileOffset != 0) {
DebugEntry = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *) (FileBuffer + DebugDirectoryEntryFileOffset);
DebugEntry->TimeDateStamp = 0;
if (ZeroDebugFlag) {
memset (FileBuffer + DebugEntry->FileOffset, 0, DebugEntry->SizeOfData);
memset (DebugEntry, 0, sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY));
}
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
SetStamp (
IN OUT UINT8 *FileBuffer,
IN CHAR8 *TimeStamp
)
/*++
Routine Description:
Set new time stamp into PeImage FileHdr and Directory table:
Debug, Export and Resource.
Arguments:
FileBuffer - Pointer to PeImage.
TimeStamp - Time stamp string.
Returns:
EFI_INVALID_PARAMETER - TimeStamp format is not recognized.
EFI_SUCCESS - Set new time stamp in this image successfully.
--*/
{
struct tm stime;
struct tm *ptime;
time_t newtime;
UINT32 Index;
UINT32 DebugDirectoryEntryRva;
UINT32 DebugDirectoryEntryFileOffset;
UINT32 ExportDirectoryEntryRva;
UINT32 ExportDirectoryEntryFileOffset;
UINT32 ResourceDirectoryEntryRva;
UINT32 ResourceDirectoryEntryFileOffset;
EFI_IMAGE_DOS_HEADER *DosHdr;
EFI_IMAGE_FILE_HEADER *FileHdr;
EFI_IMAGE_OPTIONAL_HEADER32 *Optional32Hdr;
EFI_IMAGE_OPTIONAL_HEADER64 *Optional64Hdr;
EFI_IMAGE_SECTION_HEADER *SectionHeader;
UINT32 *NewTimeStamp;
//
// Init variable.
//
DebugDirectoryEntryRva = 0;
DebugDirectoryEntryFileOffset = 0;
ExportDirectoryEntryRva = 0;
ExportDirectoryEntryFileOffset = 0;
ResourceDirectoryEntryRva = 0;
ResourceDirectoryEntryFileOffset = 0;
//
// Get time and date that will be set.
//
if (TimeStamp == NULL) {
Error (NULL, 0, 3000, "Invalid", "TimeStamp cannot be NULL.");
return EFI_INVALID_PARAMETER;
}
//
// compare the value with "NOW", if yes, current system time is set.
//
if (stricmp (TimeStamp, "NOW") == 0) {
//
// get system current time and date
//
time (&newtime);
} else {
//
// Check Time Format strictly yyyy-mm-dd 00:00:00
//
for (Index = 0; TimeStamp[Index] != '\0' && Index < 20; Index ++) {
if (Index == 4 || Index == 7) {
if (TimeStamp[Index] == '-') {
continue;
}
} else if (Index == 13 || Index == 16) {
if (TimeStamp[Index] == ':') {
continue;
}
} else if (Index == 10 && TimeStamp[Index] == ' ') {
continue;
} else if ((TimeStamp[Index] < '0') || (TimeStamp[Index] > '9')) {
break;
}
}
if (Index < 19 || TimeStamp[19] != '\0') {
Error (NULL, 0, 1003, "Invalid option value", "Incorrect Time \"%s\"\n Correct Format \"yyyy-mm-dd 00:00:00\"", TimeStamp);
return EFI_INVALID_PARAMETER;
}
//
// get the date and time from TimeStamp
//
if (sscanf (TimeStamp, "%d-%d-%d %d:%d:%d",
&stime.tm_year,
&stime.tm_mon,
&stime.tm_mday,
&stime.tm_hour,
&stime.tm_min,
&stime.tm_sec
) != 6) {
Error (NULL, 0, 1003, "Invalid option value", "Incorrect Tiem \"%s\"\n Correct Format \"yyyy-mm-dd 00:00:00\"", TimeStamp);
return EFI_INVALID_PARAMETER;
}
//
// in struct, Month (0 - 11; Jan = 0). So decrease 1 from it
//
if (stime.tm_mon <= 0 || stime.tm_mday <=0) {
Error (NULL, 0, 3000, "Invalid", "%s Invalid date!", TimeStamp);
return EFI_INVALID_PARAMETER;
}
stime.tm_mon -= 1;
//
// in struct, Year (current year minus 1900)
// and only the dates can be handled from Jan 1, 1970 to Jan 18, 2038
//
//
// convert 0 -> 100 (2000), 1 -> 101 (2001), ..., 38 -> 138 (2038)
//
if (stime.tm_year >= 1970 && stime.tm_year <= 2038) {
//
// convert 1970 -> 70, 2000 -> 100, ...
//
stime.tm_year -= 1900;
} else {
Error (NULL, 0, 3000, "Invalid", "%s Invalid or unsupported datetime!", TimeStamp);
return EFI_INVALID_PARAMETER;
}
//
// convert the date and time to time_t format
//
newtime = mktime (&stime);
if (newtime == (time_t) - 1) {
Error (NULL, 0, 3000, "Invalid", "%s Invalid or unsupported datetime!", TimeStamp);
return EFI_INVALID_PARAMETER;
}
}
ptime = localtime (&newtime);
DebugMsg (NULL, 0, 9, "New Image Time Stamp", "%04d-%02d-%02d %02d:%02d:%02d",
ptime->tm_year + 1900, ptime->tm_mon + 1, ptime->tm_mday, ptime->tm_hour, ptime->tm_min, ptime->tm_sec);
//
// Set new time and data into PeImage.
//
DosHdr = (EFI_IMAGE_DOS_HEADER *)FileBuffer;
if (DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
// NO DOS header, must start with PE/COFF header
FileHdr = (EFI_IMAGE_FILE_HEADER *)(FileBuffer + sizeof (UINT32));
} else {
FileHdr = (EFI_IMAGE_FILE_HEADER *)(FileBuffer + DosHdr->e_lfanew + sizeof (UINT32));
}
//
// Get Debug, Export and Resource EntryTable RVA address.
// Resource Directory entry need to review.
//
if (FileHdr->Machine == EFI_IMAGE_MACHINE_IA32) {
Optional32Hdr = (EFI_IMAGE_OPTIONAL_HEADER32 *) ((UINT8*) FileHdr + sizeof (EFI_IMAGE_FILE_HEADER));
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) Optional32Hdr + FileHdr->SizeOfOptionalHeader);
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXPORT && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].Size != 0) {
ExportDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
}
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size != 0) {
ResourceDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress;
}
if (Optional32Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG && \
Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0) {
DebugDirectoryEntryRva = Optional32Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
}
} else {
Optional64Hdr = (EFI_IMAGE_OPTIONAL_HEADER64 *) ((UINT8*) FileHdr + sizeof (EFI_IMAGE_FILE_HEADER));
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) ((UINT8 *) Optional64Hdr + FileHdr->SizeOfOptionalHeader);
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_EXPORT && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].Size != 0) {
ExportDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
}
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size != 0) {
ResourceDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress;
}
if (Optional64Hdr->NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG && \
Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0) {
DebugDirectoryEntryRva = Optional64Hdr->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
}
}
//
// Get DirectoryEntryTable file offset.
//
for (Index = 0; Index < FileHdr->NumberOfSections; Index ++, SectionHeader ++) {
if (DebugDirectoryEntryRva >= SectionHeader->VirtualAddress &&
DebugDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
DebugDirectoryEntryFileOffset =
DebugDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
if (ExportDirectoryEntryRva >= SectionHeader->VirtualAddress &&
ExportDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
ExportDirectoryEntryFileOffset =
ExportDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
if (ResourceDirectoryEntryRva >= SectionHeader->VirtualAddress &&
ResourceDirectoryEntryRva < SectionHeader->VirtualAddress + SectionHeader->Misc.VirtualSize) {
ResourceDirectoryEntryFileOffset =
ResourceDirectoryEntryRva - SectionHeader->VirtualAddress + SectionHeader->PointerToRawData;
}
}
//
// Set new stamp
//
FileHdr->TimeDateStamp = (UINT32) newtime;
if (ExportDirectoryEntryRva != 0) {
NewTimeStamp = (UINT32 *) (FileBuffer + ExportDirectoryEntryFileOffset + sizeof (UINT32));
*NewTimeStamp = (UINT32) newtime;
}
if (ResourceDirectoryEntryRva != 0) {
NewTimeStamp = (UINT32 *) (FileBuffer + ResourceDirectoryEntryFileOffset + sizeof (UINT32));
*NewTimeStamp = (UINT32) newtime;
}
if (DebugDirectoryEntryRva != 0) {
NewTimeStamp = (UINT32 *) (FileBuffer + DebugDirectoryEntryFileOffset + sizeof (UINT32));
*NewTimeStamp = (UINT32) newtime;
}
return EFI_SUCCESS;
}
STATIC
STATUS
MicrocodeReadData (
FILE *InFptr,
UINT32 *Data
)
/*++
Routine Description:
Read a 32-bit microcode data value from a text file and convert to raw binary form.
Arguments:
InFptr - file pointer to input text file
Data - pointer to where to return the data parsed
Returns:
STATUS_SUCCESS - no errors or warnings, Data contains valid information
STATUS_ERROR - errors were encountered
--*/
{
CHAR8 Line[MAX_LINE_LEN];
CHAR8 *cptr;
unsigned ScannedData = 0;
Line[MAX_LINE_LEN - 1] = 0;
while (1) {
if (fgets (Line, MAX_LINE_LEN, InFptr) == NULL) {
return STATUS_ERROR;
}
//
// If it was a binary file, then it may have overwritten our null terminator
//
if (Line[MAX_LINE_LEN - 1] != 0) {
return STATUS_ERROR;
}
//
// strip space
//
for (cptr = Line; *cptr && isspace((int)*cptr); cptr++) {
}
// Skip Blank Lines and Comment Lines
if ((strlen(cptr) != 0) && (*cptr != ';')) {
break;
}
}
// Look for
// dd 000000001h ; comment
// dd XXXXXXXX
// DD XXXXXXXXX
// DD XXXXXXXXX
//
if ((tolower((int)cptr[0]) == 'd') && (tolower((int)cptr[1]) == 'd') && isspace ((int)cptr[2])) {
//
// Skip blanks and look for a hex digit
//
cptr += 3;
for (; *cptr && isspace((int)*cptr); cptr++) {
}
if (isxdigit ((int)*cptr)) {
if (sscanf (cptr, "%X", &ScannedData) != 1) {
return STATUS_ERROR;
}
}
*Data = (UINT32) ScannedData;
return STATUS_SUCCESS;
}
return STATUS_ERROR;
}