mirror of https://github.com/acidanthera/audk.git
479 lines
14 KiB
C
479 lines
14 KiB
C
/** @file
|
|
This module contains EBC support routines that are customized based on
|
|
the target AArch64 processor.
|
|
|
|
Copyright (c) 2016, Linaro, Ltd. All rights reserved.<BR>
|
|
Copyright (c) 2015, The Linux Foundation. All rights reserved.<BR>
|
|
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "EbcInt.h"
|
|
#include "EbcExecute.h"
|
|
|
|
//
|
|
// Amount of space that is not used in the stack
|
|
//
|
|
#define STACK_REMAIN_SIZE (1024 * 4)
|
|
|
|
#pragma pack(1)
|
|
typedef struct {
|
|
UINT32 Instr[3];
|
|
UINT32 Magic;
|
|
UINT64 EbcEntryPoint;
|
|
UINT64 EbcLlEntryPoint;
|
|
} EBC_INSTRUCTION_BUFFER;
|
|
#pragma pack()
|
|
|
|
extern CONST EBC_INSTRUCTION_BUFFER mEbcInstructionBufferTemplate;
|
|
|
|
/**
|
|
Begin executing an EBC image.
|
|
This is used for Ebc Thunk call.
|
|
|
|
@return The value returned by the EBC application we're going to run.
|
|
|
|
**/
|
|
UINT64
|
|
EFIAPI
|
|
EbcLLEbcInterpret (
|
|
VOID
|
|
);
|
|
|
|
/**
|
|
Begin executing an EBC image.
|
|
This is used for Ebc image entrypoint.
|
|
|
|
@return The value returned by the EBC application we're going to run.
|
|
|
|
**/
|
|
UINT64
|
|
EFIAPI
|
|
EbcLLExecuteEbcImageEntryPoint (
|
|
VOID
|
|
);
|
|
|
|
/**
|
|
Pushes a 64 bit unsigned value to the VM stack.
|
|
|
|
@param VmPtr The pointer to current VM context.
|
|
@param Arg The value to be pushed.
|
|
|
|
**/
|
|
VOID
|
|
PushU64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Arg
|
|
)
|
|
{
|
|
//
|
|
// Advance the VM stack down, and then copy the argument to the stack.
|
|
// Hope it's aligned.
|
|
//
|
|
VmPtr->Gpr[0] -= sizeof (UINT64);
|
|
*(UINT64 *) VmPtr->Gpr[0] = Arg;
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
Begin executing an EBC image.
|
|
|
|
This is a thunk function.
|
|
|
|
@param Arg1 The 1st argument.
|
|
@param Arg2 The 2nd argument.
|
|
@param Arg3 The 3rd argument.
|
|
@param Arg4 The 4th argument.
|
|
@param Arg5 The 5th argument.
|
|
@param Arg6 The 6th argument.
|
|
@param Arg7 The 7th argument.
|
|
@param Arg8 The 8th argument.
|
|
@param EntryPoint The entrypoint of EBC code.
|
|
@param Args9_16[] Array containing arguments #9 to #16.
|
|
|
|
@return The value returned by the EBC application we're going to run.
|
|
|
|
**/
|
|
UINT64
|
|
EFIAPI
|
|
EbcInterpret (
|
|
IN UINTN Arg1,
|
|
IN UINTN Arg2,
|
|
IN UINTN Arg3,
|
|
IN UINTN Arg4,
|
|
IN UINTN Arg5,
|
|
IN UINTN Arg6,
|
|
IN UINTN Arg7,
|
|
IN UINTN Arg8,
|
|
IN UINTN EntryPoint,
|
|
IN CONST UINTN Args9_16[]
|
|
)
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
|
|
//
|
|
// Get the EBC entry point
|
|
//
|
|
Addr = EntryPoint;
|
|
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
|
|
//
|
|
// Initialize the stack pointer for the EBC. Get the current system stack
|
|
// pointer and adjust it down by the max needed for the interpreter.
|
|
//
|
|
|
|
//
|
|
// Adjust the VM's stack pointer down.
|
|
//
|
|
|
|
Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];
|
|
VmContext.Gpr[0] -= sizeof (UINTN);
|
|
|
|
//
|
|
// Align the stack on a natural boundary.
|
|
//
|
|
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
|
|
|
|
//
|
|
// Put a magic value in the stack gap, then adjust down again.
|
|
//
|
|
*(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
|
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.Gpr[0];
|
|
|
|
//
|
|
// The stack upper to LowStackTop is belong to the VM.
|
|
//
|
|
VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];
|
|
|
|
//
|
|
// For the worst case, assume there are 4 arguments passed in registers, store
|
|
// them to VM's stack.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) Args9_16[7]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[6]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[5]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[4]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[3]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[2]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[1]);
|
|
PushU64 (&VmContext, (UINT64) Args9_16[0]);
|
|
PushU64 (&VmContext, (UINT64) Arg8);
|
|
PushU64 (&VmContext, (UINT64) Arg7);
|
|
PushU64 (&VmContext, (UINT64) Arg6);
|
|
PushU64 (&VmContext, (UINT64) Arg5);
|
|
PushU64 (&VmContext, (UINT64) Arg4);
|
|
PushU64 (&VmContext, (UINT64) Arg3);
|
|
PushU64 (&VmContext, (UINT64) Arg2);
|
|
PushU64 (&VmContext, (UINT64) Arg1);
|
|
|
|
//
|
|
// Interpreter assumes 64-bit return address is pushed on the stack.
|
|
// AArch64 does not do this so pad the stack accordingly.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) 0);
|
|
PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
|
|
|
|
//
|
|
// For AArch64, this is where we say our return address is
|
|
//
|
|
VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];
|
|
|
|
//
|
|
// We need to keep track of where the EBC stack starts. This way, if the EBC
|
|
// accesses any stack variables above its initial stack setting, then we know
|
|
// it's accessing variables passed into it, which means the data is on the
|
|
// VM's stack.
|
|
// When we're called, on the stack (high to low) we have the parameters, the
|
|
// return address, then the saved ebp. Save the pointer to the return address.
|
|
// EBC code knows that's there, so should look above it for function parameters.
|
|
// The offset is the size of locals (VMContext + Addr + saved ebp).
|
|
// Note that the interpreter assumes there is a 16 bytes of return address on
|
|
// the stack too, so adjust accordingly.
|
|
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
|
|
//
|
|
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.Gpr[7];
|
|
}
|
|
|
|
|
|
/**
|
|
Begin executing an EBC image.
|
|
|
|
@param ImageHandle image handle for the EBC application we're executing
|
|
@param SystemTable standard system table passed into an driver's entry
|
|
point
|
|
@param EntryPoint The entrypoint of EBC code.
|
|
|
|
@return The value returned by the EBC application we're going to run.
|
|
|
|
**/
|
|
UINT64
|
|
EFIAPI
|
|
ExecuteEbcImageEntryPoint (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable,
|
|
IN UINTN EntryPoint
|
|
)
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
|
|
//
|
|
// Get the EBC entry point
|
|
//
|
|
Addr = EntryPoint;
|
|
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
|
|
//
|
|
// Save the image handle so we can track the thunks created for this image
|
|
//
|
|
VmContext.ImageHandle = ImageHandle;
|
|
VmContext.SystemTable = SystemTable;
|
|
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
|
|
//
|
|
// Initialize the stack pointer for the EBC. Get the current system stack
|
|
// pointer and adjust it down by the max needed for the interpreter.
|
|
//
|
|
|
|
Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];
|
|
VmContext.Gpr[0] -= sizeof (UINTN);
|
|
|
|
|
|
//
|
|
// Put a magic value in the stack gap, then adjust down again
|
|
//
|
|
*(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
|
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.Gpr[0];
|
|
|
|
//
|
|
// Align the stack on a natural boundary
|
|
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof(UINTN) - 1);
|
|
//
|
|
VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];
|
|
|
|
//
|
|
// Simply copy the image handle and system table onto the EBC stack.
|
|
// Greatly simplifies things by not having to spill the args.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) SystemTable);
|
|
PushU64 (&VmContext, (UINT64) ImageHandle);
|
|
|
|
//
|
|
// VM pushes 16-bytes for return address. Simulate that here.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) 0);
|
|
PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
|
|
|
|
//
|
|
// For AArch64, this is where we say our return address is
|
|
//
|
|
VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];
|
|
|
|
//
|
|
// Entry function needn't access high stack context, simply
|
|
// put the stack pointer here.
|
|
//
|
|
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.Gpr[7];
|
|
}
|
|
|
|
|
|
/**
|
|
Create thunks for an EBC image entry point, or an EBC protocol service.
|
|
|
|
@param ImageHandle Image handle for the EBC image. If not null, then
|
|
we're creating a thunk for an image entry point.
|
|
@param EbcEntryPoint Address of the EBC code that the thunk is to call
|
|
@param Thunk Returned thunk we create here
|
|
@param Flags Flags indicating options for creating the thunk
|
|
|
|
@retval EFI_SUCCESS The thunk was created successfully.
|
|
@retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit
|
|
aligned.
|
|
@retval EFI_OUT_OF_RESOURCES There is not enough memory to created the EBC
|
|
Thunk.
|
|
@retval EFI_BUFFER_TOO_SMALL EBC_THUNK_SIZE is not larger enough.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EbcCreateThunks (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN VOID *EbcEntryPoint,
|
|
OUT VOID **Thunk,
|
|
IN UINT32 Flags
|
|
)
|
|
{
|
|
EBC_INSTRUCTION_BUFFER *InstructionBuffer;
|
|
|
|
//
|
|
// Check alignment of pointer to EBC code
|
|
//
|
|
if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
InstructionBuffer = AllocatePool (sizeof (EBC_INSTRUCTION_BUFFER));
|
|
if (InstructionBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Give them the address of our buffer we're going to fix up
|
|
//
|
|
*Thunk = InstructionBuffer;
|
|
|
|
//
|
|
// Copy whole thunk instruction buffer template
|
|
//
|
|
CopyMem (InstructionBuffer, &mEbcInstructionBufferTemplate,
|
|
sizeof (EBC_INSTRUCTION_BUFFER));
|
|
|
|
//
|
|
// Patch EbcEntryPoint and EbcLLEbcInterpret
|
|
//
|
|
InstructionBuffer->EbcEntryPoint = (UINT64)EbcEntryPoint;
|
|
if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {
|
|
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLExecuteEbcImageEntryPoint;
|
|
} else {
|
|
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLEbcInterpret;
|
|
}
|
|
|
|
//
|
|
// Add the thunk to the list for this image. Do this last since the add
|
|
// function flushes the cache for us.
|
|
//
|
|
EbcAddImageThunk (ImageHandle, InstructionBuffer,
|
|
sizeof (EBC_INSTRUCTION_BUFFER));
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
This function is called to execute an EBC CALLEX instruction.
|
|
The function check the callee's content to see whether it is common native
|
|
code or a thunk to another piece of EBC code.
|
|
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
|
|
otherwise, set the VM->IP to target EBC code directly to avoid another VM
|
|
be startup which cost time and stack space.
|
|
|
|
@param VmPtr Pointer to a VM context.
|
|
@param FuncAddr Callee's address
|
|
@param NewStackPointer New stack pointer after the call
|
|
@param FramePtr New frame pointer after the call
|
|
@param Size The size of call instruction
|
|
|
|
**/
|
|
VOID
|
|
EbcLLCALLEX (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN FuncAddr,
|
|
IN UINTN NewStackPointer,
|
|
IN VOID *FramePtr,
|
|
IN UINT8 Size
|
|
)
|
|
{
|
|
CONST EBC_INSTRUCTION_BUFFER *InstructionBuffer;
|
|
|
|
//
|
|
// Processor specific code to check whether the callee is a thunk to EBC.
|
|
//
|
|
InstructionBuffer = (EBC_INSTRUCTION_BUFFER *)FuncAddr;
|
|
|
|
if (CompareMem (InstructionBuffer, &mEbcInstructionBufferTemplate,
|
|
sizeof(EBC_INSTRUCTION_BUFFER) - 2 * sizeof (UINT64)) == 0) {
|
|
//
|
|
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
|
|
// put our return address and frame pointer on the VM stack.
|
|
// Then set the VM's IP to new EBC code.
|
|
//
|
|
VmPtr->Gpr[0] -= 8;
|
|
VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr);
|
|
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0];
|
|
VmPtr->Gpr[0] -= 8;
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size));
|
|
|
|
VmPtr->Ip = (VMIP) InstructionBuffer->EbcEntryPoint;
|
|
} else {
|
|
//
|
|
// The callee is not a thunk to EBC, call native code,
|
|
// and get return value.
|
|
//
|
|
VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
|
|
|
|
//
|
|
// Advance the IP.
|
|
//
|
|
VmPtr->Ip += Size;
|
|
}
|
|
}
|
|
|