audk/ArmPkg/Library/ArmMmuLib/Arm/ArmMmuLibCore.c

840 lines
30 KiB
C

/** @file
* File managing the MMU for ARMv7 architecture
*
* Copyright (c) 2011-2016, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Uefi.h>
#include <Chipset/ArmV7.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#define ID_MMFR0_SHARELVL_SHIFT 12
#define ID_MMFR0_SHARELVL_MASK 0xf
#define ID_MMFR0_SHARELVL_ONE 0
#define ID_MMFR0_SHARELVL_TWO 1
#define ID_MMFR0_INNERSHR_SHIFT 28
#define ID_MMFR0_INNERSHR_MASK 0xf
#define ID_MMFR0_OUTERSHR_SHIFT 8
#define ID_MMFR0_OUTERSHR_MASK 0xf
#define ID_MMFR0_SHR_IMP_UNCACHED 0
#define ID_MMFR0_SHR_IMP_HW_COHERENT 1
#define ID_MMFR0_SHR_IGNORED 0xf
#define __EFI_MEMORY_RWX 0 // no restrictions
#define CACHE_ATTRIBUTE_MASK (EFI_MEMORY_UC | \
EFI_MEMORY_WC | \
EFI_MEMORY_WT | \
EFI_MEMORY_WB | \
EFI_MEMORY_UCE | \
EFI_MEMORY_WP)
UINTN
EFIAPI
ArmReadIdMmfr0 (
VOID
);
BOOLEAN
EFIAPI
ArmHasMpExtensions (
VOID
);
UINT32
ConvertSectionAttributesToPageAttributes (
IN UINT32 SectionAttributes,
IN BOOLEAN IsLargePage
)
{
UINT32 PageAttributes;
PageAttributes = 0;
PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY (SectionAttributes, IsLargePage);
PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_AP (SectionAttributes);
PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_XN (SectionAttributes, IsLargePage);
PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_NG (SectionAttributes);
PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_S (SectionAttributes);
return PageAttributes;
}
STATIC
BOOLEAN
PreferNonshareableMemory (
VOID
)
{
UINTN Mmfr;
UINTN Val;
if (FeaturePcdGet (PcdNormalMemoryNonshareableOverride)) {
return TRUE;
}
//
// Check whether the innermost level of shareability (the level we will use
// by default to map normal memory) is implemented with hardware coherency
// support. Otherwise, revert to mapping as non-shareable.
//
Mmfr = ArmReadIdMmfr0 ();
switch ((Mmfr >> ID_MMFR0_SHARELVL_SHIFT) & ID_MMFR0_SHARELVL_MASK) {
case ID_MMFR0_SHARELVL_ONE:
// one level of shareability
Val = (Mmfr >> ID_MMFR0_OUTERSHR_SHIFT) & ID_MMFR0_OUTERSHR_MASK;
break;
case ID_MMFR0_SHARELVL_TWO:
// two levels of shareability
Val = (Mmfr >> ID_MMFR0_INNERSHR_SHIFT) & ID_MMFR0_INNERSHR_MASK;
break;
default:
// unexpected value -> shareable is the safe option
ASSERT (FALSE);
return FALSE;
}
return Val != ID_MMFR0_SHR_IMP_HW_COHERENT;
}
STATIC
VOID
PopulateLevel2PageTable (
IN UINT32 *SectionEntry,
IN UINT32 PhysicalBase,
IN UINT32 RemainLength,
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
UINT32* PageEntry;
UINT32 Pages;
UINT32 Index;
UINT32 PageAttributes;
UINT32 SectionDescriptor;
UINT32 TranslationTable;
UINT32 BaseSectionAddress;
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_THROUGH;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
PageAttributes = TT_DESCRIPTOR_PAGE_DEVICE;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
break;
default:
PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
break;
}
if (PreferNonshareableMemory ()) {
PageAttributes &= ~TT_DESCRIPTOR_PAGE_S_SHARED;
}
// Check if the Section Entry has already been populated. Otherwise attach a
// Level 2 Translation Table to it
if (*SectionEntry != 0) {
// The entry must be a page table. Otherwise it exists an overlapping in the memory map
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(*SectionEntry)) {
TranslationTable = *SectionEntry & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK;
} else if ((*SectionEntry & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
// Case where a virtual memory map descriptor overlapped a section entry
// Allocate a Level2 Page Table for this Section
TranslationTable = (UINTN)AllocatePages(EFI_SIZE_TO_PAGES(TRANSLATION_TABLE_PAGE_SIZE + TRANSLATION_TABLE_PAGE_ALIGNMENT));
TranslationTable = ((UINTN)TranslationTable + TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK;
// Translate the Section Descriptor into Page Descriptor
SectionDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (*SectionEntry, FALSE);
BaseSectionAddress = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(*SectionEntry);
// Populate the new Level2 Page Table for the section
PageEntry = (UINT32*)TranslationTable;
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
PageEntry[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseSectionAddress + (Index << 12)) | SectionDescriptor;
}
// Overwrite the section entry to point to the new Level2 Translation Table
*SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
(IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE(Attributes) ? (1 << 3) : 0) |
TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
} else {
// We do not support the other section type (16MB Section)
ASSERT(0);
return;
}
} else {
TranslationTable = (UINTN)AllocatePages(EFI_SIZE_TO_PAGES(TRANSLATION_TABLE_PAGE_SIZE + TRANSLATION_TABLE_PAGE_ALIGNMENT));
TranslationTable = ((UINTN)TranslationTable + TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK;
ZeroMem ((VOID *)TranslationTable, TRANSLATION_TABLE_PAGE_SIZE);
*SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
(IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE(Attributes) ? (1 << 3) : 0) |
TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
}
PageEntry = ((UINT32 *)(TranslationTable) + ((PhysicalBase & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT));
Pages = RemainLength / TT_DESCRIPTOR_PAGE_SIZE;
for (Index = 0; Index < Pages; Index++) {
*PageEntry++ = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(PhysicalBase) | PageAttributes;
PhysicalBase += TT_DESCRIPTOR_PAGE_SIZE;
}
}
STATIC
VOID
FillTranslationTable (
IN UINT32 *TranslationTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
UINT32 *SectionEntry;
UINT32 Attributes;
UINT32 PhysicalBase;
UINT64 RemainLength;
ASSERT(MemoryRegion->Length > 0);
if (MemoryRegion->PhysicalBase >= SIZE_4GB) {
return;
}
PhysicalBase = MemoryRegion->PhysicalBase;
RemainLength = MIN(MemoryRegion->Length, SIZE_4GB - PhysicalBase);
switch (MemoryRegion->Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
Attributes = TT_DESCRIPTOR_SECTION_DEVICE(0);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(0);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK(1);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH(1);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
Attributes = TT_DESCRIPTOR_SECTION_DEVICE(1);
break;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(1);
break;
default:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(0);
break;
}
if (PreferNonshareableMemory ()) {
Attributes &= ~TT_DESCRIPTOR_SECTION_S_SHARED;
}
// Get the first section entry for this mapping
SectionEntry = TRANSLATION_TABLE_ENTRY_FOR_VIRTUAL_ADDRESS(TranslationTable, MemoryRegion->VirtualBase);
while (RemainLength != 0) {
if (PhysicalBase % TT_DESCRIPTOR_SECTION_SIZE == 0) {
if (RemainLength >= TT_DESCRIPTOR_SECTION_SIZE) {
// Case: Physical address aligned on the Section Size (1MB) && the length is greater than the Section Size
*SectionEntry++ = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(PhysicalBase) | Attributes;
PhysicalBase += TT_DESCRIPTOR_SECTION_SIZE;
} else {
// Case: Physical address aligned on the Section Size (1MB) && the length does not fill a section
PopulateLevel2PageTable (SectionEntry++, PhysicalBase, RemainLength, MemoryRegion->Attributes);
// It must be the last entry
break;
}
} else {
// Case: Physical address NOT aligned on the Section Size (1MB)
PopulateLevel2PageTable (SectionEntry++, PhysicalBase, RemainLength, MemoryRegion->Attributes);
// Aligned the address
PhysicalBase = (PhysicalBase + TT_DESCRIPTOR_SECTION_SIZE) & ~(TT_DESCRIPTOR_SECTION_SIZE-1);
// If it is the last entry
if (RemainLength < TT_DESCRIPTOR_SECTION_SIZE) {
break;
}
}
RemainLength -= TT_DESCRIPTOR_SECTION_SIZE;
}
}
RETURN_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID* TranslationTable;
ARM_MEMORY_REGION_ATTRIBUTES TranslationTableAttribute;
UINT32 TTBRAttributes;
// Allocate pages for translation table.
TranslationTable = AllocatePages (EFI_SIZE_TO_PAGES (TRANSLATION_TABLE_SECTION_SIZE + TRANSLATION_TABLE_SECTION_ALIGNMENT));
if (TranslationTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
TranslationTable = (VOID*)(((UINTN)TranslationTable + TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = TRANSLATION_TABLE_SECTION_SIZE;
}
ZeroMem (TranslationTable, TRANSLATION_TABLE_SECTION_SIZE);
// By default, mark the translation table as belonging to a uncached region
TranslationTableAttribute = ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
while (MemoryTable->Length != 0) {
// Find the memory attribute for the Translation Table
if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) && ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
TranslationTableAttribute = MemoryTable->Attributes;
}
FillTranslationTable (TranslationTable, MemoryTable);
MemoryTable++;
}
// Translate the Memory Attributes into Translation Table Register Attributes
if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {
TTBRAttributes = ArmHasMpExtensions () ? TTBR_MP_NON_CACHEABLE : TTBR_NON_CACHEABLE;
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
TTBRAttributes = ArmHasMpExtensions () ? TTBR_MP_WRITE_BACK_ALLOC : TTBR_WRITE_BACK_ALLOC;
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {
TTBRAttributes = ArmHasMpExtensions () ? TTBR_MP_WRITE_THROUGH : TTBR_WRITE_THROUGH;
} else {
ASSERT (0); // No support has been found for the attributes of the memory region that the translation table belongs to.
return RETURN_UNSUPPORTED;
}
if (TTBRAttributes & TTBR_SHAREABLE) {
if (PreferNonshareableMemory ()) {
TTBRAttributes ^= TTBR_SHAREABLE;
} else {
//
// Unlike the S bit in the short descriptors, which implies inner shareable
// on an implementation that supports two levels, the meaning of the S bit
// in the TTBR depends on the NOS bit, which defaults to Outer Shareable.
// However, we should only set this bit after we have confirmed that the
// implementation supports multiple levels, or else the NOS bit is UNK/SBZP
//
if (((ArmReadIdMmfr0 () >> 12) & 0xf) != 0) {
TTBRAttributes |= TTBR_NOT_OUTER_SHAREABLE;
}
}
}
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
ArmDisableDataCache ();
ArmDisableInstructionCache();
// TLBs are also invalidated when calling ArmDisableMmu()
ArmDisableMmu ();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
ArmSetTTBR0 ((VOID *)(UINTN)(((UINTN)TranslationTable & ~TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK) | (TTBRAttributes & 0x7F)));
//
// The TTBCR register value is undefined at reset in the Non-Secure world.
// Writing 0 has the effect of:
// Clearing EAE: Use short descriptors, as mandated by specification.
// Clearing PD0 and PD1: Translation Table Walk Disable is off.
// Clearing N: Perform all translation table walks through TTBR0.
// (0 is the default reset value in systems not implementing
// the Security Extensions.)
//
ArmSetTTBCR (0);
ArmSetDomainAccessControl (DOMAIN_ACCESS_CONTROL_NONE(15) |
DOMAIN_ACCESS_CONTROL_NONE(14) |
DOMAIN_ACCESS_CONTROL_NONE(13) |
DOMAIN_ACCESS_CONTROL_NONE(12) |
DOMAIN_ACCESS_CONTROL_NONE(11) |
DOMAIN_ACCESS_CONTROL_NONE(10) |
DOMAIN_ACCESS_CONTROL_NONE( 9) |
DOMAIN_ACCESS_CONTROL_NONE( 8) |
DOMAIN_ACCESS_CONTROL_NONE( 7) |
DOMAIN_ACCESS_CONTROL_NONE( 6) |
DOMAIN_ACCESS_CONTROL_NONE( 5) |
DOMAIN_ACCESS_CONTROL_NONE( 4) |
DOMAIN_ACCESS_CONTROL_NONE( 3) |
DOMAIN_ACCESS_CONTROL_NONE( 2) |
DOMAIN_ACCESS_CONTROL_NONE( 1) |
DOMAIN_ACCESS_CONTROL_CLIENT(0));
ArmEnableInstructionCache();
ArmEnableDataCache();
ArmEnableMmu();
return RETURN_SUCCESS;
}
STATIC
EFI_STATUS
ConvertSectionToPages (
IN EFI_PHYSICAL_ADDRESS BaseAddress
)
{
UINT32 FirstLevelIdx;
UINT32 SectionDescriptor;
UINT32 PageTableDescriptor;
UINT32 PageDescriptor;
UINT32 Index;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
DEBUG ((EFI_D_PAGE, "Converting section at 0x%x to pages\n", (UINTN)BaseAddress));
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate index into first level translation table for start of modification
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// Get section attributes and convert to page attributes
SectionDescriptor = FirstLevelTable[FirstLevelIdx];
PageDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (SectionDescriptor, FALSE);
// Allocate a page table for the 4KB entries (we use up a full page even though we only need 1KB)
PageTable = (volatile ARM_PAGE_TABLE_ENTRY *)AllocatePages (1);
if (PageTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
// Write the page table entries out
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
PageTable[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseAddress + (Index << 12)) | PageDescriptor;
}
// Flush d-cache so descriptors make it back to uncached memory for subsequent table walks
WriteBackInvalidateDataCacheRange ((VOID *)PageTable, TT_DESCRIPTOR_PAGE_SIZE);
// Formulate page table entry, Domain=0, NS=0
PageTableDescriptor = (((UINTN)PageTable) & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) | TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
// Write the page table entry out, replacing section entry
FirstLevelTable[FirstLevelIdx] = PageTableDescriptor;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
UpdatePageEntries (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
OUT BOOLEAN *FlushTlbs OPTIONAL
)
{
EFI_STATUS Status;
UINT32 EntryValue;
UINT32 EntryMask;
UINT32 FirstLevelIdx;
UINT32 Offset;
UINT32 NumPageEntries;
UINT32 Descriptor;
UINT32 p;
UINT32 PageTableIndex;
UINT32 PageTableEntry;
UINT32 CurrentPageTableEntry;
VOID *Mva;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
Status = EFI_SUCCESS;
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
// EntryValue: values at bit positions specified by EntryMask
EntryMask = TT_DESCRIPTOR_PAGE_TYPE_MASK | TT_DESCRIPTOR_PAGE_AP_MASK;
if (Attributes & EFI_MEMORY_XP) {
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE_XN;
} else {
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
}
// Although the PI spec is unclear on this, the GCD guarantees that only
// one Attribute bit is set at a time, so the order of the conditionals below
// is irrelevant. If no memory attribute is specified, we preserve whatever
// memory type is set in the page tables, and update the permission attributes
// only.
if (Attributes & EFI_MEMORY_UC) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// map to strongly ordered
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
} else if (Attributes & EFI_MEMORY_WC) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// map to normal non-cachable
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
} else if (Attributes & EFI_MEMORY_WT) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// write through with no-allocate
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
} else if (Attributes & EFI_MEMORY_WB) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// write back (with allocate)
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
} else if (Attributes & CACHE_ATTRIBUTE_MASK) {
// catch unsupported memory type attributes
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
if (Attributes & EFI_MEMORY_RO) {
EntryValue |= TT_DESCRIPTOR_PAGE_AP_RO_RO;
} else {
EntryValue |= TT_DESCRIPTOR_PAGE_AP_RW_RW;
}
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate number of 4KB page table entries to change
NumPageEntries = Length / TT_DESCRIPTOR_PAGE_SIZE;
// Iterate for the number of 4KB pages to change
Offset = 0;
for(p = 0; p < NumPageEntries; p++) {
// Calculate index into first level translation table for page table value
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress + Offset) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// Read the descriptor from the first level page table
Descriptor = FirstLevelTable[FirstLevelIdx];
// Does this descriptor need to be converted from section entry to 4K pages?
if (!TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(Descriptor)) {
Status = ConvertSectionToPages (FirstLevelIdx << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
if (EFI_ERROR(Status)) {
// Exit for loop
break;
}
// Re-read descriptor
Descriptor = FirstLevelTable[FirstLevelIdx];
if (FlushTlbs != NULL) {
*FlushTlbs = TRUE;
}
}
// Obtain page table base address
PageTable = (ARM_PAGE_TABLE_ENTRY *)TT_DESCRIPTOR_PAGE_BASE_ADDRESS(Descriptor);
// Calculate index into the page table
PageTableIndex = ((BaseAddress + Offset) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
// Get the entry
CurrentPageTableEntry = PageTable[PageTableIndex];
// Mask off appropriate fields
PageTableEntry = CurrentPageTableEntry & ~EntryMask;
// Mask in new attributes and/or permissions
PageTableEntry |= EntryValue;
if (CurrentPageTableEntry != PageTableEntry) {
Mva = (VOID *)(UINTN)((((UINTN)FirstLevelIdx) << TT_DESCRIPTOR_SECTION_BASE_SHIFT) + (PageTableIndex << TT_DESCRIPTOR_PAGE_BASE_SHIFT));
// Clean/invalidate the cache for this page, but only
// if we are modifying the memory type attributes
if (((CurrentPageTableEntry ^ PageTableEntry) & TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK) != 0) {
WriteBackInvalidateDataCacheRange (Mva, TT_DESCRIPTOR_PAGE_SIZE);
}
// Only need to update if we are changing the entry
PageTable[PageTableIndex] = PageTableEntry;
ArmUpdateTranslationTableEntry ((VOID *)&PageTable[PageTableIndex], Mva);
}
Status = EFI_SUCCESS;
Offset += TT_DESCRIPTOR_PAGE_SIZE;
} // End first level translation table loop
return Status;
}
STATIC
EFI_STATUS
UpdateSectionEntries (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT32 EntryMask;
UINT32 EntryValue;
UINT32 FirstLevelIdx;
UINT32 NumSections;
UINT32 i;
UINT32 CurrentDescriptor;
UINT32 Descriptor;
VOID *Mva;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
// EntryValue: values at bit positions specified by EntryMask
// Make sure we handle a section range that is unmapped
EntryMask = TT_DESCRIPTOR_SECTION_TYPE_MASK | TT_DESCRIPTOR_SECTION_XN_MASK |
TT_DESCRIPTOR_SECTION_AP_MASK;
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_SECTION;
// Although the PI spec is unclear on this, the GCD guarantees that only
// one Attribute bit is set at a time, so the order of the conditionals below
// is irrelevant. If no memory attribute is specified, we preserve whatever
// memory type is set in the page tables, and update the permission attributes
// only.
if (Attributes & EFI_MEMORY_UC) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// map to strongly ordered
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
} else if (Attributes & EFI_MEMORY_WC) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// map to normal non-cachable
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
} else if (Attributes & EFI_MEMORY_WT) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// write through with no-allocate
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
} else if (Attributes & EFI_MEMORY_WB) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// write back (with allocate)
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
} else if (Attributes & CACHE_ATTRIBUTE_MASK) {
// catch unsupported memory type attributes
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
if (Attributes & EFI_MEMORY_RO) {
EntryValue |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
} else {
EntryValue |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
}
if (Attributes & EFI_MEMORY_XP) {
EntryValue |= TT_DESCRIPTOR_SECTION_XN_MASK;
}
// obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// calculate index into first level translation table for start of modification
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// calculate number of 1MB first level entries this applies to
NumSections = Length / TT_DESCRIPTOR_SECTION_SIZE;
// iterate through each descriptor
for(i=0; i<NumSections; i++) {
CurrentDescriptor = FirstLevelTable[FirstLevelIdx + i];
// has this descriptor already been coverted to pages?
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(CurrentDescriptor)) {
// forward this 1MB range to page table function instead
Status = UpdatePageEntries (
(FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT,
TT_DESCRIPTOR_SECTION_SIZE,
Attributes,
NULL);
} else {
// still a section entry
// mask off appropriate fields
Descriptor = CurrentDescriptor & ~EntryMask;
// mask in new attributes and/or permissions
Descriptor |= EntryValue;
if (CurrentDescriptor != Descriptor) {
Mva = (VOID *)(UINTN)(((UINTN)FirstLevelTable) << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
// Clean/invalidate the cache for this section, but only
// if we are modifying the memory type attributes
if (((CurrentDescriptor ^ Descriptor) & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) != 0) {
WriteBackInvalidateDataCacheRange (Mva, SIZE_1MB);
}
// Only need to update if we are changing the descriptor
FirstLevelTable[FirstLevelIdx + i] = Descriptor;
ArmUpdateTranslationTableEntry ((VOID *)&FirstLevelTable[FirstLevelIdx + i], Mva);
}
Status = EFI_SUCCESS;
}
}
return Status;
}
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
UINT64 ChunkLength;
BOOLEAN FlushTlbs;
if (Length == 0) {
return EFI_SUCCESS;
}
FlushTlbs = FALSE;
while (Length > 0) {
if ((BaseAddress % TT_DESCRIPTOR_SECTION_SIZE == 0) &&
Length >= TT_DESCRIPTOR_SECTION_SIZE) {
ChunkLength = Length - Length % TT_DESCRIPTOR_SECTION_SIZE;
DEBUG ((DEBUG_PAGE,
"SetMemoryAttributes(): MMU section 0x%lx length 0x%lx to %lx\n",
BaseAddress, ChunkLength, Attributes));
Status = UpdateSectionEntries (BaseAddress, ChunkLength, Attributes);
FlushTlbs = TRUE;
} else {
//
// Process page by page until the next section boundary, but only if
// we have more than a section's worth of area to deal with after that.
//
ChunkLength = TT_DESCRIPTOR_SECTION_SIZE -
(BaseAddress % TT_DESCRIPTOR_SECTION_SIZE);
if (ChunkLength + TT_DESCRIPTOR_SECTION_SIZE > Length) {
ChunkLength = Length;
}
DEBUG ((DEBUG_PAGE,
"SetMemoryAttributes(): MMU page 0x%lx length 0x%lx to %lx\n",
BaseAddress, ChunkLength, Attributes));
Status = UpdatePageEntries (BaseAddress, ChunkLength, Attributes,
&FlushTlbs);
}
if (EFI_ERROR (Status)) {
break;
}
BaseAddress += ChunkLength;
Length -= ChunkLength;
}
if (FlushTlbs) {
ArmInvalidateTlb ();
}
return Status;
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return ArmSetMemoryAttributes (BaseAddress, Length, EFI_MEMORY_XP);
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return ArmSetMemoryAttributes (BaseAddress, Length, __EFI_MEMORY_RWX);
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return ArmSetMemoryAttributes (BaseAddress, Length, EFI_MEMORY_RO);
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return ArmSetMemoryAttributes (BaseAddress, Length, __EFI_MEMORY_RWX);
}
RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
VOID
)
{
return RETURN_SUCCESS;
}