audk/BaseTools/Source/C/VfrCompile/Pccts/antlr/build.c

814 lines
21 KiB
C

/*
* build.c -- functions associated with building syntax diagrams.
*
* SOFTWARE RIGHTS
*
* We reserve no LEGAL rights to the Purdue Compiler Construction Tool
* Set (PCCTS) -- PCCTS is in the public domain. An individual or
* company may do whatever they wish with source code distributed with
* PCCTS or the code generated by PCCTS, including the incorporation of
* PCCTS, or its output, into commerical software.
*
* We encourage users to develop software with PCCTS. However, we do ask
* that credit is given to us for developing PCCTS. By "credit",
* we mean that if you incorporate our source code into one of your
* programs (commercial product, research project, or otherwise) that you
* acknowledge this fact somewhere in the documentation, research report,
* etc... If you like PCCTS and have developed a nice tool with the
* output, please mention that you developed it using PCCTS. In
* addition, we ask that this header remain intact in our source code.
* As long as these guidelines are kept, we expect to continue enhancing
* this system and expect to make other tools available as they are
* completed.
*
* ANTLR 1.33
* Terence Parr
* Parr Research Corporation
* with Purdue University and AHPCRC, University of Minnesota
* 1989-2001
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "pcctscfg.h"
#include "set.h"
#include "syn.h"
#include "hash.h"
#include "generic.h"
#include "dlgdef.h"
#define SetBlk(g, t, approx, first_set_symbol) { \
((Junction *)g.left)->jtype = t; \
((Junction *)g.left)->approx = approx; \
((Junction *)g.left)->pFirstSetSymbol = first_set_symbol; \
((Junction *)g.left)->end = (Junction *) g.right; \
((Junction *)g.right)->jtype = EndBlk;}
/* Add the parameter string 'parm' to the parms field of a block-type junction
* g.left points to the sentinel node on a block. i.e. g.left->p1 points to
* the actual junction with its jtype == some block-type.
*/
void
#ifdef __USE_PROTOS
addParm( Node *p, char *parm )
#else
addParm( p, parm )
Node *p;
char *parm;
#endif
{
char *q = (char *) malloc( strlen(parm) + 1 );
require(p!=NULL, "addParm: NULL object\n");
require(q!=NULL, "addParm: unable to alloc parameter\n");
strcpy(q, parm);
if ( p->ntype == nRuleRef )
{
((RuleRefNode *)p)->parms = q;
}
else if ( p->ntype == nJunction )
{
((Junction *)p)->parm = q; /* only one parameter allowed on subrules */
}
else fatal_internal("addParm: invalid node for adding parm");
}
/*
* Build an action node for the syntax diagram
*
* buildAction(ACTION) ::= --o-->ACTION-->o--
*
* Where o is a junction node.
*/
Graph
#ifdef __USE_PROTOS
buildAction( char *action, int file, int line, int is_predicate )
#else
buildAction( action, file, line, is_predicate )
char *action;
int file;
int line;
int is_predicate;
#endif
{
Junction *j1, *j2;
Graph g;
ActionNode *a;
require(action!=NULL, "buildAction: invalid action");
j1 = newJunction();
j2 = newJunction();
a = newActionNode();
a->action = (char *) malloc( strlen(action)+1 );
require(a->action!=NULL, "buildAction: cannot alloc space for action\n");
strcpy(a->action, action);
j1->p1 = (Node *) a;
a->next = (Node *) j2;
a->is_predicate = is_predicate;
if (is_predicate) {
PredEntry *predEntry;
char *t;
char *key;
char *u;
int inverted=0;
t=key=(char *)calloc(1,strlen(a->action)+1);
for (u=a->action; *u != '\0' ; u++) {
if (*u != ' ') {
if (t==key && *u=='!') {
inverted=!inverted;
} else {
*t++=*u;
};
};
};
*t='\0';
predEntry=(PredEntry *)hash_get(Pname,key);
a->predEntry=predEntry;
if (predEntry != NULL) a->inverted=inverted;
} else {
/* MR12c */ char *strStart=a->action;
/* MR12c */ char *strEnd;
/* MR12c */ strEnd=strStart+strlen(strStart)-1;
/* MR12c */ for ( ; strEnd >= strStart && isspace(*strEnd); strEnd--) *strEnd=0;
/* MR12c */ while (*strStart != '\0' && isspace(*strStart)) strStart++;
/* MR12c */ if (ci_strequ(strStart,"nohoist")) {
/* MR12c */ a->noHoist=1;
/* MR12c */ }
}
g.left = (Node *) j1; g.right = (Node *) j2;
a->file = file;
a->line = line;
a->rname = CurRule; /* MR10 */
return g;
}
/*
* Build a token node for the syntax diagram
*
* buildToken(TOKEN) ::= --o-->TOKEN-->o--
*
* Where o is a junction node.
*/
Graph
#ifdef __USE_PROTOS
buildToken( char *text )
#else
buildToken( text )
char *text;
#endif
{
Junction *j1, *j2;
Graph g;
TokNode *t;
require(text!=NULL, "buildToken: invalid token name");
j1 = newJunction();
j2 = newJunction();
t = newTokNode();
t->altstart = CurAltStart;
if ( *text == '"' ) {t->label=FALSE; t->token = addTexpr( text );}
else {t->label=TRUE; t->token = addTname( text );}
j1->p1 = (Node *) t;
t->next = (Node *) j2;
g.left = (Node *) j1; g.right = (Node *) j2;
return g;
}
/*
* Build a wild-card node for the syntax diagram
*
* buildToken(TOKEN) ::= --o-->'.'-->o--
*
* Where o is a junction node.
*/
Graph
#ifdef __USE_PROTOS
buildWildCard( char *text )
#else
buildWildCard( text )
char *text;
#endif
{
Junction *j1, *j2;
Graph g;
TokNode *t;
TCnode *w;
TermEntry *p;
require(text!=NULL, "buildWildCard: invalid token name");
j1 = newJunction();
j2 = newJunction();
t = newTokNode();
/* If the ref a wild card, make a token class for it */
if ( Tnum(WildCardString) == 0 )
{
w = newTCnode;
w->tok = addTname( WildCardString );
set_orel(w->tok, &imag_tokens);
set_orel(w->tok, &tokclasses);
WildCardToken = w->tok;
require((p=(TermEntry *)hash_get(Tname, WildCardString)) != NULL,
"hash table mechanism is broken");
p->classname = 1; /* entry is class name, not token */
p->tclass = w; /* save ptr to this tclass def */
list_add(&tclasses, (char *)w);
}
else {
p=(TermEntry *)hash_get(Tname, WildCardString);
require( p!= NULL, "hash table mechanism is broken");
w = p->tclass;
}
t->token = w->tok;
t->wild_card = 1;
t->tclass = w;
t->altstart = CurAltStart;
j1->p1 = (Node *) t;
t->next = (Node *) j2;
g.left = (Node *) j1; g.right = (Node *) j2;
return g;
}
void
#ifdef __USE_PROTOS
setUpperRange(TokNode *t, char *text)
#else
setUpperRange(t, text)
TokNode *t;
char *text;
#endif
{
require(t!=NULL, "setUpperRange: NULL token node");
require(text!=NULL, "setUpperRange: NULL token string");
if ( *text == '"' ) {t->upper_range = addTexpr( text );}
else {t->upper_range = addTname( text );}
}
/*
* Build a rule reference node of the syntax diagram
*
* buildRuleRef(RULE) ::= --o-->RULE-->o--
*
* Where o is a junction node.
*
* If rule 'text' has been defined already, don't alloc new space to store string.
* Set r->text to point to old copy in string table.
*/
Graph
#ifdef __USE_PROTOS
buildRuleRef( char *text )
#else
buildRuleRef( text )
char *text;
#endif
{
Junction *j1, *j2;
Graph g;
RuleRefNode *r;
RuleEntry *p;
require(text!=NULL, "buildRuleRef: invalid rule name");
j1 = newJunction();
j2 = newJunction();
r = newRNode();
r->altstart = CurAltStart;
r->assign = NULL;
if ( (p=(RuleEntry *)hash_get(Rname, text)) != NULL ) r->text = p->str;
else r->text = mystrdup( text );
j1->p1 = (Node *) r;
r->next = (Node *) j2;
g.left = (Node *) j1; g.right = (Node *) j2;
return g;
}
/*
* Or two subgraphs into one graph via:
*
* Or(G1, G2) ::= --o-G1-o--
* | ^
* v |
* o-G2-o
*
* Set the altnum of junction starting G2 to 1 + altnum of junction starting G1.
* If, however, the G1 altnum is 0, make it 1 and then
* make G2 altnum = G1 altnum + 1.
*/
Graph
#ifdef __USE_PROTOS
Or( Graph g1, Graph g2 )
#else
Or( g1, g2 )
Graph g1;
Graph g2;
#endif
{
Graph g;
require(g1.left != NULL, "Or: invalid graph");
require(g2.left != NULL && g2.right != NULL, "Or: invalid graph");
((Junction *)g1.left)->p2 = g2.left;
((Junction *)g2.right)->p1 = g1.right;
/* set altnums */
if ( ((Junction *)g1.left)->altnum == 0 ) ((Junction *)g1.left)->altnum = 1;
((Junction *)g2.left)->altnum = ((Junction *)g1.left)->altnum + 1;
g.left = g2.left;
g.right = g1.right;
return g;
}
/*
* Catenate two subgraphs
*
* Cat(G1, G2) ::= --o-G1-o-->o-G2-o--
* Cat(NULL,G2)::= --o-G2-o--
* Cat(G1,NULL)::= --o-G1-o--
*/
Graph
#ifdef __USE_PROTOS
Cat( Graph g1, Graph g2 )
#else
Cat( g1, g2 )
Graph g1;
Graph g2;
#endif
{
Graph g;
if ( g1.left == NULL && g1.right == NULL ) return g2;
if ( g2.left == NULL && g2.right == NULL ) return g1;
((Junction *)g1.right)->p1 = g2.left;
g.left = g1.left;
g.right = g2.right;
return g;
}
/*
* Make a subgraph an optional block
*
* makeOpt(G) ::= --o-->o-G-o-->o--
* | ^
* v |
* o-------o
*
* Note that this constructs {A|B|...|Z} as if (A|B|...|Z|) was found.
*
* The node on the far right is added so that every block owns its own
* EndBlk node.
*/
Graph
#ifdef __USE_PROTOS
makeOpt( Graph g1, int approx, char * pFirstSetSymbol )
#else
makeOpt( g1, approx, pFirstSetSymbol )
Graph g1;
int approx;
char * pFirstSetSymbol;
#endif
{
Junction *j1,*j2,*p;
Graph g;
require(g1.left != NULL && g1.right != NULL, "makeOpt: invalid graph");
j1 = newJunction();
j2 = newJunction();
((Junction *)g1.right)->p1 = (Node *) j2; /* add node to G at end */
/* MR21
*
* There is code in genBlk which recognizes the node created
* by emptyAlt() as a special case and bypasses it. We don't
* want this to happen for the optBlk.
*/
g = emptyAlt3(); /* MR21 */
if ( ((Junction *)g1.left)->altnum == 0 ) ((Junction *)g1.left)->altnum = 1;
((Junction *)g.left)->altnum = ((Junction *)g1.left)->altnum + 1;
for(p=(Junction *)g1.left; p->p2!=NULL; p=(Junction *)p->p2)
{;} /* find last alt */
p->p2 = g.left; /* add optional alternative */
((Junction *)g.right)->p1 = (Node *)j2; /* opt alt points to EndBlk */
g1.right = (Node *)j2;
SetBlk(g1, aOptBlk, approx, pFirstSetSymbol);
j1->p1 = g1.left; /* add generic node in front */
g.left = (Node *) j1;
g.right = g1.right;
return g;
}
/*
* Make a graph into subblock
*
* makeBlk(G) ::= --o-->o-G-o-->o--
*
* The node on the far right is added so that every block owns its own
* EndBlk node.
*/
Graph
#ifdef __USE_PROTOS
makeBlk( Graph g1, int approx, char * pFirstSetSymbol )
#else
makeBlk( g1, approx, pFirstSetSymbol )
Graph g1;
int approx;
char * pFirstSetSymbol;
#endif
{
Junction *j,*j2;
Graph g;
require(g1.left != NULL && g1.right != NULL, "makeBlk: invalid graph");
j = newJunction();
j2 = newJunction();
((Junction *)g1.right)->p1 = (Node *) j2; /* add node to G at end */
g1.right = (Node *)j2;
SetBlk(g1, aSubBlk, approx, pFirstSetSymbol);
j->p1 = g1.left; /* add node in front */
g.left = (Node *) j;
g.right = g1.right;
return g;
}
/*
* Make a subgraph into a loop (closure) block -- (...)*
*
* makeLoop(G) ::= |---|
* v |
* --o-->o-->o-G-o-->o--
* | ^
* v |
* o-----------o
*
* After making loop, always place generic node out front. It becomes
* the start of enclosing block. The aLoopBlk is the target of the loop.
*
* Loop blks have TWO EndBlk nodes--the far right and the node that loops back
* to the aLoopBlk node. Node with which we can branch past loop == aLoopBegin and
* one which is loop target == aLoopBlk.
* The branch-past (initial) aLoopBegin node has end
* pointing to the last EndBlk node. The loop-target node has end==NULL.
*
* Loop blocks have a set of locks (from 1..CLL_k) on the aLoopBlk node.
*/
Graph
#ifdef __USE_PROTOS
makeLoop( Graph g1, int approx, char * pFirstSetSymbol )
#else
makeLoop( g1, approx, pFirstSetSymbol)
Graph g1;
int approx;
char * pFirstSetSymbol;
#endif
{
Junction *back, *front, *begin;
Graph g;
require(g1.left != NULL && g1.right != NULL, "makeLoop: invalid graph");
back = newJunction();
front = newJunction();
begin = newJunction();
g = emptyAlt3();
((Junction *)g1.right)->p2 = g1.left; /* add loop branch to G */
((Junction *)g1.right)->p1 = (Node *) back; /* add node to G at end */
((Junction *)g1.right)->jtype = EndBlk; /* mark 1st EndBlk node */
((Junction *)g1.left)->jtype = aLoopBlk; /* mark 2nd aLoopBlk node */
((Junction *)g1.left)->end = (Junction *) g1.right;
((Junction *)g1.left)->lock = makelocks();
((Junction *)g1.left)->pred_lock = makelocks();
g1.right = (Node *) back;
begin->p1 = (Node *) g1.left;
g1.left = (Node *) begin;
begin->p2 = (Node *) g.left; /* make bypass arc */
((Junction *)g.right)->p1 = (Node *) back;
SetBlk(g1, aLoopBegin, approx, pFirstSetSymbol);
front->p1 = g1.left; /* add node to front */
g1.left = (Node *) front;
return g1;
}
/*
* Make a subgraph into a plus block -- (...)+ -- 1 or more times
*
* makePlus(G) ::= |---|
* v |
* --o-->o-G-o-->o--
*
* After making loop, always place generic node out front. It becomes
* the start of enclosing block. The aPlusBlk is the target of the loop.
*
* Plus blks have TWO EndBlk nodes--the far right and the node that loops back
* to the aPlusBlk node.
*
* Plus blocks have a set of locks (from 1..CLL_k) on the aPlusBlk node.
*/
Graph
#ifdef __USE_PROTOS
makePlus( Graph g1, int approx, char * pFirstSetSymbol)
#else
makePlus( g1, approx, pFirstSetSymbol)
Graph g1;
int approx;
char * pFirstSetSymbol;
#endif
{
int has_empty_alt_already = 0;
Graph g;
Junction *j2, *j3, *first_alt;
Junction *last_alt=NULL, *p;
require(g1.left != NULL && g1.right != NULL, "makePlus: invalid graph");
first_alt = (Junction *)g1.left;
j2 = newJunction();
j3 = newJunction();
if ( ((Junction *)g1.left)->altnum == 0 ) ((Junction *)g1.left)->altnum = 1;
((Junction *)g1.right)->p2 = g1.left; /* add loop branch to G */
((Junction *)g1.right)->p1 = (Node *) j2; /* add node to G at end */
((Junction *)g1.right)->jtype = EndBlk; /* mark 1st EndBlk node */
g1.right = (Node *) j2;
SetBlk(g1, aPlusBlk, approx, pFirstSetSymbol);
((Junction *)g1.left)->lock = makelocks();
((Junction *)g1.left)->pred_lock = makelocks();
j3->p1 = g1.left; /* add node to front */
g1.left = (Node *) j3;
/* add an optional branch which is the "exit" branch of loop */
/* FIRST, check to ensure that there does not already exist
* an optional path.
*/
/* find last alt */
for(p=first_alt; p!=NULL; p=(Junction *)p->p2)
{
if ( p->p1->ntype == nJunction &&
p->p1!=NULL &&
((Junction *)p->p1)->jtype==Generic &&
((Junction *)p->p1)->p1!=NULL &&
((Junction *)((Junction *)p->p1)->p1)->jtype==EndBlk )
{
has_empty_alt_already = 1;
}
last_alt = p;
}
if ( !has_empty_alt_already )
{
require(last_alt!=NULL, "last_alt==NULL; bad (..)+");
g = emptyAlt();
last_alt->p2 = g.left;
((Junction *)g.right)->p1 = (Node *) j2;
/* make sure lookahead computation ignores this alt for
* FIRST("(..)+"); but it's still used for computing the FIRST
* of each alternative.
*/
((Junction *)g.left)->ignore = 1;
}
return g1;
}
/*
* Return an optional path: --o-->o--
*/
Graph
#ifdef __USE_PROTOS
emptyAlt( void )
#else
emptyAlt( )
#endif
{
Junction *j1, *j2;
Graph g;
j1 = newJunction();
j2 = newJunction();
j1->p1 = (Node *) j2;
g.left = (Node *) j1;
g.right = (Node *) j2;
return g;
}
/* MR21
*
* There is code in genBlk which recognizes the node created
* by emptyAlt() as a special case and bypasses it. We don't
* want this to happen for the optBlk.
*/
Graph
#ifdef __USE_PROTOS
emptyAlt3( void )
#else
emptyAlt3( )
#endif
{
Junction *j1, *j2, *j3;
Graph g;
j1 = newJunction();
j2 = newJunction();
j3 = newJunction();
j1->p1 = (Node *) j2;
j2->p1 = (Node *) j3;
g.left = (Node *) j1;
g.right = (Node *) j3;
return g;
}
/* N o d e A l l o c a t i o n */
TokNode *
#ifdef __USE_PROTOS
newTokNode( void )
#else
newTokNode( )
#endif
{
static TokNode *FreeList = NULL;
TokNode *p, *newblk;
if ( FreeList == NULL )
{
newblk = (TokNode *)calloc(TokenBlockAllocSize, sizeof(TokNode));
if ( newblk == NULL )
fatal_internal(eMsg1("out of memory while building rule '%s'",CurRule));
for (p=newblk; p<&(newblk[TokenBlockAllocSize]); p++)
{
p->next = (Node *)FreeList; /* add all new token nodes to FreeList */
FreeList = p;
}
}
p = FreeList;
FreeList = (TokNode *)FreeList->next;/* remove a TokNode node */
p->next = NULL; /* NULL the ptr we used */
memset( (char *) p, 0, sizeof(TokNode)); /* MR10 */
p->ntype = nToken;
p->rname = CurRule;
p->file = CurFile;
p->line = zzline;
p->altstart = NULL;
return p;
}
RuleRefNode *
#ifdef __USE_PROTOS
newRNode( void )
#else
newRNode( )
#endif
{
static RuleRefNode *FreeList = NULL;
RuleRefNode *p, *newblk;
if ( FreeList == NULL )
{
newblk = (RuleRefNode *)calloc(RRefBlockAllocSize, sizeof(RuleRefNode));
if ( newblk == NULL )
fatal_internal(eMsg1("out of memory while building rule '%s'",CurRule));
for (p=newblk; p<&(newblk[RRefBlockAllocSize]); p++)
{
p->next = (Node *)FreeList; /* add all new rref nodes to FreeList */
FreeList = p;
}
}
p = FreeList;
FreeList = (RuleRefNode *)FreeList->next;/* remove a Junction node */
p->next = NULL; /* NULL the ptr we used */
memset( (char *) p, 0, sizeof(RuleRefNode)); /* MR10 */
p->ntype = nRuleRef;
p->rname = CurRule;
p->file = CurFile;
p->line = zzline;
p->astnode = ASTinclude;
p->altstart = NULL;
return p;
}
static int junctionSeqNumber=0; /* MR10 */
Junction *
#ifdef __USE_PROTOS
newJunction( void )
#else
newJunction( )
#endif
{
static Junction *FreeList = NULL;
Junction *p, *newblk;
if ( FreeList == NULL )
{
newblk = (Junction *)calloc(JunctionBlockAllocSize, sizeof(Junction));
if ( newblk == NULL )
fatal_internal(eMsg1("out of memory while building rule '%s'",CurRule));
for (p=newblk; p<&(newblk[JunctionBlockAllocSize]); p++)
{
p->p1 = (Node *)FreeList; /* add all new Junction nodes to FreeList */
FreeList = p;
}
}
p = FreeList;
FreeList = (Junction *)FreeList->p1;/* remove a Junction node */
p->p1 = NULL; /* NULL the ptr we used */
memset( (char *) p, 0, sizeof(Junction)); /* MR10 */
p->ntype = nJunction;
p->visited = 0;
p->jtype = Generic;
p->rname = CurRule;
p->file = CurFile;
p->line = zzline;
p->exception_label = NULL;
p->fset = (set *) calloc(CLL_k+1, sizeof(set));
require(p->fset!=NULL, "cannot allocate fset in newJunction");
p->seq=++junctionSeqNumber; /* MR10 */
return p;
}
ActionNode *
#ifdef __USE_PROTOS
newActionNode( void )
#else
newActionNode( )
#endif
{
static ActionNode *FreeList = NULL;
ActionNode *p, *newblk;
if ( FreeList == NULL )
{
newblk = (ActionNode *)calloc(ActionBlockAllocSize, sizeof(ActionNode));
if ( newblk == NULL )
fatal_internal(eMsg1("out of memory while building rule '%s'",CurRule));
for (p=newblk; p<&(newblk[ActionBlockAllocSize]); p++)
{
p->next = (Node *)FreeList; /* add all new Action nodes to FreeList */
FreeList = p;
}
}
p = FreeList;
FreeList = (ActionNode *)FreeList->next;/* remove an Action node */
memset( (char *) p, 0, sizeof(ActionNode)); /* MR10 */
p->ntype = nAction;
p->next = NULL; /* NULL the ptr we used */
p->done = 0;
p->pred_fail = NULL;
p->guardpred = NULL;
p->ampersandPred = NULL;
return p;
}
/*
* allocate the array of locks (1..CLL_k) used to inhibit infinite recursion.
* Infinite recursion can occur in (..)* blocks, FIRST calcs and FOLLOW calcs.
* Therefore, we need locks on aLoopBlk, RuleBlk, EndRule nodes.
*
* if ( lock[k]==TRUE ) then we have been here before looking for k tokens
* of lookahead.
*/
char *
#ifdef __USE_PROTOS
makelocks( void )
#else
makelocks( )
#endif
{
char *p = (char *) calloc(CLL_k+1, sizeof(char));
require(p!=NULL, "cannot allocate lock array");
return p;
}
#if 0
** #ifdef __USE_PROTOS
** void my_memset(char *p,char value,int count)
** #else
** void my_memset(p,value,count)
** char *p;
** char value;
** int count;
** #endif
** {
** int i;
**
** for (i=0; i<count; i++) {
** p[i]=value;
** };
** }
#endif