audk/IntelFrameworkModulePkg/Csm/BiosThunk/Snp16Dxe/Misc.c

956 lines
31 KiB
C

/** @file
Helper Routines that use a PXE-enabled NIC option ROM.
Copyright (c) 1999 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "BiosSnp16.h"
#define TO_SEGMENT(x) ((UINT16) (RShiftU64 ((UINT32)(UINTN) (x), 4) & 0xF000))
#define TO_OFFSET(x) ((UINT16) ((UINT32)(UINTN) (x) & 0xFFFF))
#define PARAGRAPH_SIZE 0x10
#define IVT_BASE 0x00000000
#pragma pack(1)
typedef struct {
UINT16 Signature; ///< 0xaa55
UINT8 ROMlength; ///< size of this ROM in 512 byte blocks
UINT8 InitEntryPoint[4]; ///< a jump to the initialization routine
UINT8 Reserved[0xf]; ///< various
UINT16 PxeRomIdOffset; ///< offset of UNDI, $BC$, or BUSD ROM ID structure
UINT16 PcirHeaderOffset; ///< offset of PCI Expansion Header
UINT16 PnpHeaderOffset; ///< offset of Plug and Play Expansion Header
} OPTION_ROM_HEADER;
#pragma pack()
UINT32 CachedVectorAddress[0x100];
/**
Cache Interrupt verctor address converted from IVT number.
@param VectorNumber IVT number
@retval EFI_SUCCESS Success to operation.
**/
EFI_STATUS
CacheVectorAddress (
UINT8 VectorNumber
)
{
UINT32 *Address;
Address = (UINT32 *) ((UINTN) IVT_BASE + VectorNumber * 4);
CachedVectorAddress[VectorNumber] = *Address;
return EFI_SUCCESS;
}
/**
Get interrupt vector address according to IVT number.
@param VectorNumber Given IVT number
@return cached interrupt vector address.
**/
EFI_STATUS
RestoreCachedVectorAddress (
UINT8 VectorNumber
)
{
UINT32 *Address;
Address = (UINT32 *) ((UINTN) IVT_BASE + VectorNumber * 4);
*Address = CachedVectorAddress[VectorNumber];
return EFI_SUCCESS;
}
/**
Print Undi loader table.
@param UndiLoaderStructure Point to Undi Loader table structure.
**/
VOID
Print_Undi_Loader_Table (
VOID *UndiLoaderStructure
)
{
UNDI_LOADER_T *DisplayPointer;
DisplayPointer = (UNDI_LOADER_T *) UndiLoaderStructure;
DEBUG ((DEBUG_NET, "Before Parsing the table contents, the table itself lives\n"));
DEBUG ((DEBUG_NET, "\tat the address 0x%X\n\r", (UINT32)(UINTN) UndiLoaderStructure));
DEBUG ((DEBUG_NET, "\n\rStatus = 0x%X\n\r", DisplayPointer->Status));
DEBUG ((DEBUG_NET, "\t_AX_= 0x%X\n\r", DisplayPointer->Ax));
DEBUG ((DEBUG_NET, "\t_BX_= 0x%X\n\r", DisplayPointer->Bx));
DEBUG ((DEBUG_NET, "\t_DX_= 0x%X\n\r", DisplayPointer->Dx));
DEBUG ((DEBUG_NET, "\t_DI_= 0x%X\n\r", DisplayPointer->Di));
DEBUG ((DEBUG_NET, "\t_ES_= 0x%X\n\r", DisplayPointer->Es));
DEBUG ((DEBUG_NET, "\tUNDI_DS= 0x%X\n\r", DisplayPointer->Undi_Ds));
DEBUG ((DEBUG_NET, "\tUNDI_CS= 0x%X\n\r", DisplayPointer->Undi_Cs));
DEBUG ((DEBUG_NET, "\tPXEptr:SEG= 0x%X\n\r", (UINT16) DisplayPointer->PXEptr.Segment));
DEBUG ((DEBUG_NET, "\tPXEptr:OFF= 0x%X\n\r", (UINT16) DisplayPointer->PXEptr.Offset));
DEBUG ((DEBUG_NET, "\tPXENVptr:SEG= 0x%X\n\r", (UINT16) DisplayPointer->PXENVptr.Segment));
DEBUG ((DEBUG_NET, "\tPXENVptr:OFF= 0x%X\n\r", (UINT16) DisplayPointer->PXENVptr.Offset));
}
/**
Simple table dumper. The ROMID table is necessary in order to effect
the "Early UNDI" trick. Herein, the UNDI layer can be loaded in the
pre-boot phase without having to download a Network Boot Program
across the wire. It is required in the implementation in that we
are not using PXE.
@param RomIDStructure Point to RomID structure.
**/
VOID
Print_ROMID_Table (
IN VOID *RomIDStructure
)
{
UNDI_ROMID_T *DisplayPointer;
DisplayPointer = (UNDI_ROMID_T *) RomIDStructure;
DEBUG ((DEBUG_NET, "Before Parsing the table contents, the table itself lives\n"));
DEBUG ((DEBUG_NET, "\tat the address 0x%X\n\r", (UINT32)(UINTN) RomIDStructure));
DEBUG (
(DEBUG_NET,
"\n\rROMID %c%c%c%c\n\r",
DisplayPointer->Signature[0],
DisplayPointer->Signature[1],
DisplayPointer->Signature[2],
DisplayPointer->Signature[3])
);
DEBUG (
(DEBUG_NET,
"Length of this structure in bytes = 0x%X\n\r",
DisplayPointer->StructLength)
);
DEBUG (
(DEBUG_NET,
"Use to make byte checksum of this structure == zero is = 0x%X\n\r",
DisplayPointer->StructCksum)
);
DEBUG (
(DEBUG_NET,
"Structure format revision number= 0x%X\n\r",
DisplayPointer->StructRev)
);
DEBUG (
(DEBUG_NET,
"API Revision number = 0x%X 0x%X 0x%X\n\r",
DisplayPointer->UNDI_Rev[0],
DisplayPointer->UNDI_Rev[1],
DisplayPointer->UNDI_Rev[2])
);
DEBUG (
(DEBUG_NET,
"Offset of UNDI loader routine in the option ROM image= 0x%X\n\r",
DisplayPointer->UNDI_Loader)
);
DEBUG ((DEBUG_NET, "From the data above, the absolute entry point of the UNDI loader is\n\r"));
DEBUG (
(DEBUG_NET,
"\tat address 0x%X\n\r",
(UINT32) (DisplayPointer->UNDI_Loader + ((UINT32) (UINTN)(DisplayPointer - 0x20) & 0xFFFF0)))
);
DEBUG ((DEBUG_NET, "Minimum stack segment size, in bytes,\n\r"));
DEBUG (
(DEBUG_NET,
"needed to load and run the UNDI= 0x%X \n\r",
DisplayPointer->StackSize)
);
DEBUG (
(DEBUG_NET,
"UNDI runtime code and data = 0x%X\n\r",
DisplayPointer->DataSize)
);
DEBUG (
(DEBUG_NET,
"Segment size = 0x%X\n\r",
DisplayPointer->CodeSize)
);
DEBUG (
(DEBUG_NET,
"\n\rBus Type = %c%c%c%c\n\r",
DisplayPointer->BusType[0],
DisplayPointer->BusType[1],
DisplayPointer->BusType[2],
DisplayPointer->BusType[3])
);
}
/**
Print PXE table.
@param PxeTable Point to PXE table structure
**/
VOID
Print_PXE_Table (
IN VOID* PxeTable
)
{
PXE_T *DisplayPointer;
UINTN Index;
UINT8 *Dptr;
DisplayPointer = (PXE_T *) PxeTable;
Dptr = (UINT8 *) PxeTable;
DEBUG ((DEBUG_NET, "This is the PXE table at address 0x%X\n\r", PxeTable));
DEBUG ((DEBUG_NET, "A dump of the 0x%X bytes is:\n\r", sizeof (PXE_T)));
for (Index = 0; Index < sizeof (PXE_T); Index++) {
if ((Index % 0x10) == 0) {
DEBUG ((DEBUG_NET, "\t\n\r"));
}
DEBUG ((DEBUG_NET, " 0x%X ", *Dptr++));
}
DEBUG ((DEBUG_NET, "\n\r"));
DEBUG (
(DEBUG_NET,
"\n\rPXE %c%c%c%c%c%c\n\r",
DisplayPointer->Signature[0],
DisplayPointer->Signature[1],
DisplayPointer->Signature[2],
DisplayPointer->Signature[3])
);
DEBUG (
(DEBUG_NET,
"Length of this structure in bytes = 0x%X\n\r",
DisplayPointer->StructLength)
);
DEBUG (
(DEBUG_NET,
"Use to make byte checksum of this structure == zero is = 0x%X\n\r",
DisplayPointer->StructCksum)
);
DEBUG (
(DEBUG_NET,
"Structure format revision number = 0x%X\n\r",
DisplayPointer->StructRev)
);
DEBUG (
(DEBUG_NET,
"Must be zero, is equal to 0x%X\n\r",
DisplayPointer->Reserved1)
);
DEBUG (
(DEBUG_NET,
"Far pointer to UNDI ROMID = 0x%X\n\r",
(UINT32) (DisplayPointer->Undi.Segment << 0x4 | DisplayPointer->Undi.Offset))
);
DEBUG (
(DEBUG_NET,
"Far pointer to base-code ROMID = 0x%X\n\r",
(UINT32) ((DisplayPointer->Base.Segment << 0x04) | DisplayPointer->Base.Offset))
);
DEBUG ((DEBUG_NET, "16bit stack segment API entry point. This will be seg:off in \n\r"));
DEBUG (
(DEBUG_NET,
"real mode and sel:off in 16:16 protected mode = 0x%X:0x%X\n\r",
DisplayPointer->EntryPointSP.Segment,
DisplayPointer->EntryPointSP.Offset)
);
DEBUG ((DEBUG_NET, "\n\tNOTE to the implementer\n\tThis is the entry to use for call-ins\n\r"));
DEBUG ((DEBUG_NET, "32bit stack Segment API entry point. This will be sel:off. \n\r"));
DEBUG (
(DEBUG_NET,
"In real mode, sel == 0 = 0x%X:0x%X\n\r",
DisplayPointer->EntryPointESP.Segment,
DisplayPointer->EntryPointESP.Offset)
);
DEBUG (
(DEBUG_NET,
"Reserved2 value, must be zero, is equal to 0x%X\n\r",
DisplayPointer->Reserved2)
);
DEBUG (
(DEBUG_NET,
"Number of segment descriptors in this structur = 0x%X\n\r",
(UINT8) DisplayPointer->SegDescCnt)
);
DEBUG (
(DEBUG_NET,
"First segment descriptor in GDT assigned to PXE = 0x%X\n\r",
(UINT16) DisplayPointer->FirstSelector)
);
DEBUG (
(DEBUG_NET,
"The Stack is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->Stack.Seg_Addr,
(UINT32) DisplayPointer->Stack.Phy_Addr,
(UINT16) DisplayPointer->Stack.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The UNDIData is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->UNDIData.Seg_Addr,
(UINT32) DisplayPointer->UNDIData.Phy_Addr,
(UINT16) DisplayPointer->UNDIData.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The UNDICodeWrite is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->UNDICode.Seg_Addr,
(UINT32) DisplayPointer->UNDICode.Phy_Addr,
(UINT16) DisplayPointer->UNDICode.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The Stack is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->UNDICodeWrite.Seg_Addr,
(UINT32) DisplayPointer->UNDICodeWrite.Phy_Addr,
(UINT16) DisplayPointer->UNDICodeWrite.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The BC_Data is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->BC_Data.Seg_Addr,
(UINT32) DisplayPointer->BC_Data.Phy_Addr,
(UINT16) DisplayPointer->BC_Data.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The BC_Code is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->BC_Code.Seg_Addr,
(UINT32) DisplayPointer->BC_Code.Phy_Addr,
(UINT16) DisplayPointer->BC_Code.Seg_Size)
);
DEBUG (
(DEBUG_NET,
"The BC_CodeWrite is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
(UINT16) DisplayPointer->BC_CodeWrite.Seg_Addr,
(UINT32) DisplayPointer->BC_CodeWrite.Phy_Addr,
(UINT16) DisplayPointer->BC_CodeWrite.Seg_Size)
);
}
/**
Print PXENV table.
@param PxenvTable Point to PXENV
**/
VOID
Print_PXENV_Table (
IN VOID *PxenvTable
)
{
PXENV_T *DisplayPointer;
DisplayPointer = (PXENV_T *) PxenvTable;
DEBUG (
(DEBUG_NET,
"\n\rPXENV+ %c%c%c%c%c%c\n\r",
DisplayPointer->Signature[0],
DisplayPointer->Signature[1],
DisplayPointer->Signature[2],
DisplayPointer->Signature[3],
DisplayPointer->Signature[4],
DisplayPointer->Signature[5])
);
DEBUG (
(DEBUG_NET,
"PXE version number. \n\r\tLSB is minor version. \n\r\tMSB is major version = 0x%X\n\r",
DisplayPointer->Version)
);
DEBUG (
(DEBUG_NET,
"Length of PXE-2.0 Entry Point structure in bytes = 0x%X\n\r",
DisplayPointer->StructLength)
);
DEBUG ((DEBUG_NET, "Used to make structure checksum equal zero is now = 0x%X\n\r", DisplayPointer->StructCksum));
DEBUG ((DEBUG_NET, "Real mode API entry point segment:Offset. = 0x%X\n\r", DisplayPointer->RMEntry));
DEBUG ((DEBUG_NET, "Protected mode API entry point = 0x%X\n\r", DisplayPointer->PMEntryOff));
DEBUG ((DEBUG_NET, " segment:Offset. This will always be zero. \n\r"));
DEBUG ((DEBUG_NET, "Protected mode API calls = 0x%X\n\r", DisplayPointer->PMEntrySeg));
DEBUG ((DEBUG_NET, "Real mode stack segment = 0x%X\n\r", DisplayPointer->StackSeg));
DEBUG ((DEBUG_NET, "Stack segment size in bytes = 0x%X\n\r", DisplayPointer->StackSize));
DEBUG ((DEBUG_NET, "Real mode base-code code segment = 0x%X\n\r", DisplayPointer->BaseCodeSeg));
DEBUG ((DEBUG_NET, "Base-code code segment size = 0x%X\n\r", DisplayPointer->BaseCodeSize));
DEBUG ((DEBUG_NET, "Real mode base-code data segment = 0x%X\n\r", DisplayPointer->BaseDataSeg));
DEBUG ((DEBUG_NET, "Base-code data segment size = 0x%X\n\r", DisplayPointer->BaseDataSize));
DEBUG (
(DEBUG_NET,
"UNDI code segment size in bytes = 0x%X\n\r",
DisplayPointer->UNDICodeSize)
);
DEBUG (
(DEBUG_NET,
"Real mode segment:Offset pointer \n\r\tto PXE Runtime ID structure, address = 0x%X\n\r",
DisplayPointer->RuntimePtr)
);
DEBUG (
(
DEBUG_NET,
"From above, we have a linear address of 0x%X\n\r",
(UINT32)
(
((UINT32)(UINTN)(DisplayPointer->RuntimePtr) & 0xFFFF) +
(((UINT32)(UINTN)(DisplayPointer->RuntimePtr) & 0xFFFF0000) >> 12)
)
)
);
}
#define OPTION_ROM_PTR ((OPTION_ROM_HEADER *) RomAddress)
/**
If available, launch the BaseCode from a NIC option ROM.
This should install the !PXE and PXENV+ structures in memory for
subsequent use.
@param SimpleNetworkDevice Simple network device instance
@param RomAddress The ROM base address for NIC rom.
@retval EFI_NOT_FOUND The check sum does not match
@retval EFI_NOT_FOUND Rom ID offset is wrong
@retval EFI_NOT_FOUND No Rom ID structure is found
**/
EFI_STATUS
LaunchBaseCode (
EFI_SIMPLE_NETWORK_DEV *SimpleNetworkDevice,
UINTN RomAddress
)
{
EFI_STATUS Status;
EFI_IA32_REGISTER_SET InOutRegs;
UNDI_ROMID_T *RomIdTableAddress;
UNDI_LOADER_T *UndiLoaderTable;
UINT16 Segment;
UINT16 *StackPointer;
VOID *Buffer;
UINTN Size;
PXE_T *Pxe;
UINT32 RomLength;
UINTN PciSegment;
UINTN Bus;
UINTN Device;
UINTN Function;
BOOLEAN ThunkFailed;
DEBUG ((DEBUG_NET, "\n\r\n\rCheck for the UNDI ROMID Signature\n\r"));
//
// paranoia - check structures for validity
//
RomLength = OPTION_ROM_PTR->ROMlength << 9;
if (CalculateSum8 ((UINT8 *) RomAddress, RomLength) != 0) {
DEBUG ((DEBUG_ERROR, "ROM Header Checksum Error\n\r"));
return EFI_NOT_FOUND;
}
RomIdTableAddress = (UNDI_ROMID_T *) (RomAddress + OPTION_ROM_PTR->PxeRomIdOffset);
if (((UINT32)OPTION_ROM_PTR->PxeRomIdOffset + RomIdTableAddress->StructLength) > RomLength) {
DEBUG ((DEBUG_ERROR, "ROM ID Offset Error\n\r"));
return EFI_NOT_FOUND;
}
//
// see if this is a header for an UNDI ROM ID structure (vs. a $BC$ or BUSD type)
//
if (CompareMem (RomIdTableAddress->Signature, UNDI_ROMID_SIG, sizeof RomIdTableAddress->Signature) != 0) {
DEBUG ((DEBUG_ERROR, "No ROM ID Structure found....\n\r"));
return EFI_NOT_FOUND;
//
// its not - keep looking
//
}
if (CalculateSum8 ((UINT8 *) RomIdTableAddress, RomIdTableAddress->StructLength) != 0) {
DEBUG ((DEBUG_ERROR, "ROM ID Checksum Error\n\r"));
return EFI_NOT_FOUND;
}
Print_ROMID_Table (RomIdTableAddress);
DEBUG (
(DEBUG_NET,
"The ROM ID is located at 0x%X\n\r",
RomIdTableAddress)
);
DEBUG (
(DEBUG_NET,
"With an UNDI Loader located at 0x%X\n\r",
RomAddress + RomIdTableAddress->UNDI_Loader)
);
//
// found an UNDI ROM ID structure
//
SimpleNetworkDevice->Nii.ImageAddr = RomAddress;
SimpleNetworkDevice->Nii.ImageSize = RomLength;
SimpleNetworkDevice->Nii.MajorVer = RomIdTableAddress->UNDI_Rev[2];
SimpleNetworkDevice->Nii.MinorVer = RomIdTableAddress->UNDI_Rev[1];
DEBUG ((DEBUG_NET, "Allocate area for the UNDI_LOADER_T structure\n\r"));
//
// Allocate 1 page below 1MB to put real mode thunk code in
//
// Undi Loader Table is a PXE Specification prescribed data structure
// that is used to transfer information into and out of the Undi layer.
// Note how it must be located below 1 MB.
//
SimpleNetworkDevice->UndiLoaderTablePages = EFI_SIZE_TO_PAGES (PARAGRAPH_SIZE + sizeof (UNDI_LOADER_T));
Status = BiosSnp16AllocatePagesBelowOneMb (
SimpleNetworkDevice->UndiLoaderTablePages,
&SimpleNetworkDevice->UndiLoaderTable
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
return EFI_OUT_OF_RESOURCES;
}
UndiLoaderTable = SimpleNetworkDevice->UndiLoaderTable;
DEBUG ((DEBUG_NET, "Allocate area for the real-mode stack whose sole purpose\n\r"));
DEBUG ((DEBUG_NET, "in life right now is to store a SEG:OFFSET combo pair that\n\r"));
DEBUG ((DEBUG_NET, "points to an Undi_Loader_t table structure\n\r"));
Size = 0x100;
Status = gBS->AllocatePool (EfiLoaderData, Size, &Buffer);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Now we want to put a pointer to the Under Loader Table in our MemPage
// Buffer. This will be the argument stack for the call into the Undi Loader
//
StackPointer = (UINT16 *) Buffer;
*StackPointer++ = TO_OFFSET (UndiLoaderTable);
//
// push the OFFSET
//
*StackPointer++ = TO_SEGMENT (UndiLoaderTable);
//
// push the SEGMENT
//
StackPointer = (UINT16 *) Buffer;
//
// reset the stack pointer
//
DEBUG (
(DEBUG_NET,
"After the fixups, the stack pointer is 0x%X\n\r",
(UINT64)(UINTN) StackPointer)
);
//
// Allocate memory for the Deployed UNDI.
// The UNDI is essentially telling us how much space it needs, and
// it is up to the EFI driver to allocate sufficient, boot-time
// persistent resources for the call
//
SimpleNetworkDevice->DestinationDataSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->DataSize);
Status = BiosSnp16AllocatePagesBelowOneMb (
SimpleNetworkDevice->DestinationDataSegmentPages,
&SimpleNetworkDevice->DestinationDataSegment
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
return Status;
}
UndiLoaderTable->Undi_Ds = (UINT16) ((UINTN) SimpleNetworkDevice->DestinationDataSegment >> 4);
//
// Allocate memory for the Deployed UNDI stack
// The UNDI is essentially telling us how much space it needs, and
// it is up to the EFI driver to allocate sufficient, boot-time
// persistent resources for the call
//
SimpleNetworkDevice->DestinationStackSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->StackSize);
Status = BiosSnp16AllocatePagesBelowOneMb (
SimpleNetworkDevice->DestinationStackSegmentPages,
&SimpleNetworkDevice->DestinationStackSegment
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
return Status;
}
//
// Allocate memory for the Deployed UNDI.
// The UNDI is essentially telling us how much space it needs, and
// it is up to the EFI driver to allocate sufficient, boot-time
// persistent resources for the call
//
SimpleNetworkDevice->DestinationCodeSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->CodeSize);
Status = BiosSnp16AllocatePagesBelowOneMb (
SimpleNetworkDevice->DestinationCodeSegmentPages,
&SimpleNetworkDevice->DestinationCodeSegment
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
return Status;
}
UndiLoaderTable->Undi_Cs = (UINT16) ((UINTN) SimpleNetworkDevice->DestinationCodeSegment >> 4);
//
// these are in the Input and Output Parameter to be sent to the UNDI Loader code
//
UndiLoaderTable->Status = 0xAA55;
//
// -------------------- Changed by Michael_Huang@3Com.com -----------------
// UndiLoaderTable->_AX is AX value when UNDI ROM is initialized by BIOS, it is the PCI bus device
// function of the NIC. Please refer to PXE Spec for detail info.
// old code is:
// UndiLoaderTable->Ax = 0x0;
// -----------------------------------------------------------------------
//
SimpleNetworkDevice->PciIo->GetLocation (
SimpleNetworkDevice->PciIo,
&PciSegment,
&Bus,
&Device,
&Function
);
UndiLoaderTable->Ax = (UINT16) ((Bus << 0x8) | (Device << 0x3) | (Function));
UndiLoaderTable->Bx = 0x0;
UndiLoaderTable->Dx = 0x0;
UndiLoaderTable->Di = 0x0;
UndiLoaderTable->Es = 0x0;
//
// set these OUT values to zero in order to ensure that
// uninitialized memory is not mistaken for display data
//
UndiLoaderTable->PXEptr.Offset = 0;
UndiLoaderTable->PXEptr.Segment = 0;
UndiLoaderTable->PXENVptr.Segment = 0;
UndiLoaderTable->PXENVptr.Offset = 0;
DEBUG (
(DEBUG_INIT,
"The NIC is located at Bus 0x%X, Device 0x%X, Function 0x%X\n\r",
Bus,
Device,
Function)
);
//
// These are the values that set up the ACTUAL IA32 machine state, whether in
// Real16 in EFI32 or the IVE for IA64
// register values are unused except for CS:IP and SS:SP
//
InOutRegs.X.AX = 0;
InOutRegs.X.BX = 0;
InOutRegs.X.CX = 0;
InOutRegs.X.DX = 0;
InOutRegs.X.SI = 0;
InOutRegs.X.DI = 0;
InOutRegs.X.BP = 0;
InOutRegs.X.DS = 0;
InOutRegs.X.ES = 0;
//
// just to be clean
//
DEBUG ((DEBUG_NET, "The way this game works is that the SS:SP +4 should point\n\r"));
DEBUG ((DEBUG_NET, "to the contents of the UndiLoaderTable\n\r"));
DEBUG (
(DEBUG_NET,
"The Undi Loader Table is at address = 0x%X\n\r",
(UINT32)(UINTN) UndiLoaderTable)
);
DEBUG (
(DEBUG_NET,
"The segment and offsets are 0x%X and 0x%X, resp\n",
TO_SEGMENT (UndiLoaderTable),
TO_OFFSET (UndiLoaderTable))
);
DEBUG (
(DEBUG_NET,
"The Linear Address of the UNDI Loader entry is 0x%X\n",
RomAddress + RomIdTableAddress->UNDI_Loader)
);
DEBUG (
(DEBUG_NET,
"The Address offset of the UNDI Loader entry is 0x%X\n",
RomIdTableAddress->UNDI_Loader)
);
DEBUG ((DEBUG_NET, "Before the call, we have...\n\r"));
Print_Undi_Loader_Table (UndiLoaderTable);
Segment = ((UINT16) (RShiftU64 (RomAddress, 4) & 0xFFFF));
DEBUG ((DEBUG_NET, "The Segment of the call is 0x%X\n\r", Segment));
//
// make the call into the UNDI Code
//
DEBUG ((DEBUG_INIT, "Make the call into the UNDI code now\n\r"));
DEBUG ((DEBUG_NET, "\nThe 20-BIt address of the Call, and the location \n\r"));
DEBUG ((DEBUG_NET, "\twhere we should be able to set a breakpoint is \n\r"));
DEBUG (
(DEBUG_NET,
"\t\t0x%X, from SEG:OFF 0x%X:0x%X\n\r\n\r",
Segment * 0x10 + RomIdTableAddress->UNDI_Loader,
Segment,
RomIdTableAddress->UNDI_Loader)
);
ThunkFailed = SimpleNetworkDevice->LegacyBios->FarCall86 (
SimpleNetworkDevice->LegacyBios,
Segment, // Input segment
(UINT16) RomIdTableAddress->UNDI_Loader, // Offset
&InOutRegs, // Ptr to Regs
Buffer, // Reference to Stack
Size // Size of the Stack
);
if (ThunkFailed) {
return EFI_ABORTED;
}
DEBUG (
(DEBUG_NET,
"The return code UndiLoaderTable->Status is = 0x%X\n\r",
UndiLoaderTable->Status)
);
DEBUG (
(DEBUG_NET,
"This error code should match eax, which is = 0x%X\n\r",
InOutRegs.X.AX)
);
if ((UndiLoaderTable->Status != 0) || (InOutRegs.X.AX != PXENV_EXIT_SUCCESS)) {
DEBUG ((DEBUG_NET, "LaunchBaseCode exits with error, RomAddress = 0x%X\n\r", RomAddress));
return EFI_ABORTED;
}
DEBUG ((DEBUG_NET, "Now returned from the UNDI code\n\r"));
DEBUG ((DEBUG_NET, "After the call, we have...\n\r"));
Print_Undi_Loader_Table (UndiLoaderTable);
DEBUG ((DEBUG_NET, "Display the PXENV+ and !PXE tables exported by NIC\n\r"));
Print_PXENV_Table ((VOID *)(((UINTN)UndiLoaderTable->PXENVptr.Segment << 4) | UndiLoaderTable->PXENVptr.Offset));
Print_PXE_Table ((VOID *)(((UINTN)UndiLoaderTable->PXEptr.Segment << 4) + UndiLoaderTable->PXEptr.Offset));
Pxe = (PXE_T *)(((UINTN)UndiLoaderTable->PXEptr.Segment << 4) + UndiLoaderTable->PXEptr.Offset);
SimpleNetworkDevice->Nii.Id = (UINT64)(UINTN) Pxe;
gBS->FreePool (Buffer);
//
// paranoia - make sure a valid !PXE structure
//
if (CompareMem (Pxe->Signature, PXE_SIG, sizeof Pxe->Signature) != 0) {
DEBUG ((DEBUG_ERROR, "!PXE Structure not found....\n\r"));
return EFI_NOT_FOUND;
//
// its not - keep looking
//
}
if (CalculateSum8 ((UINT8 *) Pxe, Pxe->StructLength) != 0) {
DEBUG ((DEBUG_ERROR, "!PXE Checksum Error\n\r"));
return EFI_NOT_FOUND;
}
if (Pxe->StructLength < (UINT8 *) &Pxe->FirstSelector - (UINT8 *) Pxe->Signature) {
DEBUG ((DEBUG_ERROR, "!PXE Length Error\n\r"));
return EFI_NOT_FOUND;
}
if ((((UINTN) Pxe->Undi.Segment) << 4) + Pxe->Undi.Offset != (UINTN) RomIdTableAddress) {
DEBUG ((DEBUG_ERROR, "!PXE RomId Address Error\n\r"));
return EFI_NOT_FOUND;
}
//
// This is the magic to bind the global PXE interface
// This dirtiness is for non-protocol shrouded access
//
SimpleNetworkDevice->PxeEntrySegment = Pxe->EntryPointSP.Segment;
if (SimpleNetworkDevice->PxeEntrySegment == 0) {
DEBUG ((DEBUG_ERROR, "!PXE EntryPointSP segment Error\n\r"));
return EFI_NOT_FOUND;
}
SimpleNetworkDevice->PxeEntryOffset = Pxe->EntryPointSP.Offset;
DEBUG (
(
DEBUG_NET, "The entry point is 0x%X:0x%X\n\r", SimpleNetworkDevice->PxeEntrySegment, SimpleNetworkDevice->
PxeEntryOffset
)
);
return EFI_SUCCESS;
}
/**
Effect the Far Call into the PXE Layer
Note: When using a 32-bit stack segment do not push 32-bit words onto the stack. The PXE API
services will not work, unless there are three 16-bit parameters pushed onto the stack.
push DS ;Far pointer to parameter structure
push offset pxe_data_call_struct ;is pushed onto stack.
push Index ;UINT16 is pushed onto stack.
call dword ptr (s_PXE ptr es:[di]).EntryPointSP
add sp, 6 ;Caller cleans up stack.
@param SimpleNetworkDevice Device instance for simple network
@param Table Point to parameter/retun value table for legacy far call
@param TableSize The size of parameter/return value table
@param CallIndex The index of legacy call.
@return EFI_STATUS
**/
EFI_STATUS
MakePxeCall (
EFI_SIMPLE_NETWORK_DEV *SimpleNetworkDevice,
IN OUT VOID *Table,
IN UINTN TableSize,
IN UINT16 CallIndex
)
{
EFI_STATUS Status;
EFI_IA32_REGISTER_SET InOutRegs;
UINT16 *BPtr;
VOID *Buffer;
UINTN Size;
VOID *MemPageAddress;
UINTN Index;
BOOLEAN ThunkFailed;
DEBUG ((DEBUG_NET, "MakePxeCall(CallIndex = %02x, Table = %X, TableSize = %d)\n", CallIndex, Table, TableSize));
if (SimpleNetworkDevice->PxeEntrySegment == 0 && SimpleNetworkDevice->PxeEntryOffset == 0) {
return EFI_DEVICE_ERROR;
}
Status = EFI_SUCCESS;
//
// Allocate a transient data structure for the argument table
// This table needs to have the input XXX_t structure copied into here.
// The PXE UNDI can only grab this table when it's below one-MB, and
// this implementation will not try to push this table on the stack
// (although this is a possible optimization path since EFI always allocates
// 4K as a minimum page size...............)
//
Status = BiosSnp16AllocatePagesBelowOneMb (
TableSize / EFI_PAGE_SIZE + 1,
&MemPageAddress
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
return Status;
}
//
// Copy the > 1MB pool table to a sub-1MB buffer
//
CopyMem (MemPageAddress, Table, TableSize);
//
// Allocate space for IA-32 register context
//
ZeroMem (&InOutRegs, sizeof (InOutRegs));
InOutRegs.X.ES = SimpleNetworkDevice->PxeEntrySegment;
InOutRegs.X.DI = SimpleNetworkDevice->PxeEntryOffset;
//
// The game here is to build the stack which will subsequently
// get copied down below 1 MB by the FarCall primitive.
// This is now our working stack
//
Size = 6;
Status = gBS->AllocatePool (
EfiRuntimeServicesData,
Size,
&Buffer
);
if (EFI_ERROR (Status)) {
return Status;
}
BPtr = (UINT16 *) Buffer;
*BPtr++ = CallIndex;
//
// SP + 2
//
*BPtr++ = TO_OFFSET (MemPageAddress);
*BPtr++ = TO_SEGMENT (MemPageAddress);
DEBUG ((DEBUG_NET, "State before FarCall86\n"));
DEBUG ((DEBUG_NET, "The Buffer is at 0x%X\n\r", Buffer));
BPtr = (UINT16 *) Buffer;
DEBUG ((DEBUG_NET, " Buffer = %04X %04X %04X", *BPtr, *(BPtr + 1), *(BPtr + 2)));
DEBUG ((DEBUG_NET, " MemPage = "));
for (Index = 0; Index < TableSize; Index++) {
DEBUG ((DEBUG_NET, " %02x", *((UINT8 *) MemPageAddress + Index)));
}
DEBUG ((DEBUG_NET, "\n"));
ThunkFailed = SimpleNetworkDevice->LegacyBios->FarCall86 (
SimpleNetworkDevice->LegacyBios,
SimpleNetworkDevice->PxeEntrySegment, // Input segment
SimpleNetworkDevice->PxeEntryOffset,
&InOutRegs, // Ptr to Regs
Buffer, // Reference to Stack
6 // Size of the Stack
);
if (ThunkFailed) {
return EFI_ABORTED;
}
DEBUG ((DEBUG_NET, "State after FarCall86\n"));
DEBUG ((DEBUG_NET, "The Buffer is at 0x%X\n\r", Buffer));
BPtr = (UINT16 *) Buffer;
DEBUG ((DEBUG_NET, " Buffer = %04X %04X %04X", *BPtr, *(BPtr + 1), *(BPtr + 2)));
DEBUG ((DEBUG_NET, " MemPage = "));
for (Index = 0; Index < TableSize; Index++) {
DEBUG ((DEBUG_NET, " %02x", *((UINT8 *) MemPageAddress + Index)));
}
DEBUG ((DEBUG_NET, "\n"));
//
// Copy the sub 1MB table to > 1MB table
//
CopyMem (Table, MemPageAddress, TableSize);
//
// For PXE UNDI call, AX contains the return status.
// Convert the PXE UNDI Status to EFI_STATUS type
//
if (InOutRegs.X.AX == PXENV_EXIT_SUCCESS) {
Status = EFI_SUCCESS;
} else {
Status = EFI_DEVICE_ERROR;
}
//
// Clean up house
//
gBS->FreePool (Buffer);
gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) MemPageAddress, TableSize / EFI_PAGE_SIZE + 1);
return Status;
}