mirror of https://github.com/acidanthera/audk.git
494 lines
15 KiB
NASM
494 lines
15 KiB
NASM
;------------------------------------------------------------------------------
|
|
; @file
|
|
; Provide the functions to check whether SEV and SEV-ES is enabled.
|
|
;
|
|
; Copyright (c) 2017 - 2021, Advanced Micro Devices, Inc. All rights reserved.<BR>
|
|
; SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
;
|
|
;------------------------------------------------------------------------------
|
|
|
|
BITS 32
|
|
|
|
;
|
|
; SEV-ES #VC exception handler support
|
|
;
|
|
; #VC handler local variable locations
|
|
;
|
|
%define VC_CPUID_RESULT_EAX 0
|
|
%define VC_CPUID_RESULT_EBX 4
|
|
%define VC_CPUID_RESULT_ECX 8
|
|
%define VC_CPUID_RESULT_EDX 12
|
|
%define VC_GHCB_MSR_EDX 16
|
|
%define VC_GHCB_MSR_EAX 20
|
|
%define VC_CPUID_REQUEST_REGISTER 24
|
|
%define VC_CPUID_FUNCTION 28
|
|
|
|
; #VC handler total local variable size
|
|
;
|
|
%define VC_VARIABLE_SIZE 32
|
|
|
|
; #VC handler GHCB CPUID request/response protocol values
|
|
;
|
|
%define GHCB_CPUID_REQUEST 4
|
|
%define GHCB_CPUID_RESPONSE 5
|
|
%define GHCB_CPUID_REGISTER_SHIFT 30
|
|
%define CPUID_INSN_LEN 2
|
|
|
|
|
|
%define SEV_GHCB_MSR 0xc0010130
|
|
%define SEV_STATUS_MSR 0xc0010131
|
|
|
|
; The #VC was not for CPUID
|
|
%define TERM_VC_NOT_CPUID 1
|
|
|
|
; The unexpected response code
|
|
%define TERM_UNEXPECTED_RESP_CODE 2
|
|
|
|
%define PAGE_PRESENT 0x01
|
|
%define PAGE_READ_WRITE 0x02
|
|
%define PAGE_USER_SUPERVISOR 0x04
|
|
%define PAGE_WRITE_THROUGH 0x08
|
|
%define PAGE_CACHE_DISABLE 0x010
|
|
%define PAGE_ACCESSED 0x020
|
|
%define PAGE_DIRTY 0x040
|
|
%define PAGE_PAT 0x080
|
|
%define PAGE_GLOBAL 0x0100
|
|
%define PAGE_2M_MBO 0x080
|
|
%define PAGE_2M_PAT 0x01000
|
|
|
|
%define PAGE_4K_PDE_ATTR (PAGE_ACCESSED + \
|
|
PAGE_DIRTY + \
|
|
PAGE_READ_WRITE + \
|
|
PAGE_PRESENT)
|
|
|
|
%define PAGE_PDP_ATTR (PAGE_ACCESSED + \
|
|
PAGE_READ_WRITE + \
|
|
PAGE_PRESENT)
|
|
|
|
|
|
; Macro is used to issue the MSR protocol based VMGEXIT. The caller is
|
|
; responsible to populate values in the EDX:EAX registers. After the vmmcall
|
|
; returns, it verifies that the response code matches with the expected
|
|
; code. If it does not match then terminate the guest. The result of request
|
|
; is returned in the EDX:EAX.
|
|
;
|
|
; args 1:Request code, 2: Response code
|
|
%macro VmgExit 2
|
|
;
|
|
; Add request code:
|
|
; GHCB_MSR[11:0] = Request code
|
|
or eax, %1
|
|
|
|
mov ecx, SEV_GHCB_MSR
|
|
wrmsr
|
|
|
|
; Issue VMGEXIT - NASM doesn't support the vmmcall instruction in 32-bit
|
|
; mode, so work around this by temporarily switching to 64-bit mode.
|
|
;
|
|
BITS 64
|
|
rep vmmcall
|
|
BITS 32
|
|
|
|
mov ecx, SEV_GHCB_MSR
|
|
rdmsr
|
|
|
|
;
|
|
; Verify the reponse code, if it does not match then request to terminate
|
|
; GHCB_MSR[11:0] = Response code
|
|
mov ecx, eax
|
|
and ecx, 0xfff
|
|
cmp ecx, %2
|
|
jne SevEsUnexpectedRespTerminate
|
|
%endmacro
|
|
|
|
; Macro to terminate the guest using the VMGEXIT.
|
|
; arg 1: reason code
|
|
%macro TerminateVmgExit 1
|
|
mov eax, %1
|
|
;
|
|
; Use VMGEXIT to request termination. At this point the reason code is
|
|
; located in EAX, so shift it left 16 bits to the proper location.
|
|
;
|
|
; EAX[11:0] => 0x100 - request termination
|
|
; EAX[15:12] => 0x1 - OVMF
|
|
; EAX[23:16] => 0xXX - REASON CODE
|
|
;
|
|
shl eax, 16
|
|
or eax, 0x1100
|
|
xor edx, edx
|
|
mov ecx, SEV_GHCB_MSR
|
|
wrmsr
|
|
;
|
|
; Issue VMGEXIT - NASM doesn't support the vmmcall instruction in 32-bit
|
|
; mode, so work around this by temporarily switching to 64-bit mode.
|
|
;
|
|
BITS 64
|
|
rep vmmcall
|
|
BITS 32
|
|
|
|
;
|
|
; We shouldn't come back from the VMGEXIT, but if we do, just loop.
|
|
;
|
|
%%TerminateHlt:
|
|
hlt
|
|
jmp %%TerminateHlt
|
|
%endmacro
|
|
|
|
; Terminate the guest due to unexpected response code.
|
|
SevEsUnexpectedRespTerminate:
|
|
TerminateVmgExit TERM_UNEXPECTED_RESP_CODE
|
|
|
|
; If SEV-ES is enabled then initialize and make the GHCB page shared
|
|
SevClearPageEncMaskForGhcbPage:
|
|
; Check if SEV is enabled
|
|
cmp byte[WORK_AREA_GUEST_TYPE], 1
|
|
jnz SevClearPageEncMaskForGhcbPageExit
|
|
|
|
; Check if SEV-ES is enabled
|
|
cmp byte[SEV_ES_WORK_AREA], 1
|
|
jnz SevClearPageEncMaskForGhcbPageExit
|
|
|
|
;
|
|
; The initial GHCB will live at GHCB_BASE and needs to be un-encrypted.
|
|
; This requires the 2MB page for this range be broken down into 512 4KB
|
|
; pages. All will be marked encrypted, except for the GHCB.
|
|
;
|
|
mov ecx, (GHCB_BASE >> 21)
|
|
mov eax, GHCB_PT_ADDR + PAGE_PDP_ATTR
|
|
mov [ecx * 8 + PT_ADDR (0x2000)], eax
|
|
|
|
;
|
|
; Page Table Entries (512 * 4KB entries => 2MB)
|
|
;
|
|
mov ecx, 512
|
|
pageTableEntries4kLoop:
|
|
mov eax, ecx
|
|
dec eax
|
|
shl eax, 12
|
|
add eax, GHCB_BASE & 0xFFE0_0000
|
|
add eax, PAGE_4K_PDE_ATTR
|
|
mov [ecx * 8 + GHCB_PT_ADDR - 8], eax
|
|
mov [(ecx * 8 + GHCB_PT_ADDR - 8) + 4], edx
|
|
loop pageTableEntries4kLoop
|
|
|
|
;
|
|
; Clear the encryption bit from the GHCB entry
|
|
;
|
|
mov ecx, (GHCB_BASE & 0x1F_FFFF) >> 12
|
|
mov [ecx * 8 + GHCB_PT_ADDR + 4], strict dword 0
|
|
|
|
mov ecx, GHCB_SIZE / 4
|
|
xor eax, eax
|
|
clearGhcbMemoryLoop:
|
|
mov dword[ecx * 4 + GHCB_BASE - 4], eax
|
|
loop clearGhcbMemoryLoop
|
|
|
|
SevClearPageEncMaskForGhcbPageExit:
|
|
OneTimeCallRet SevClearPageEncMaskForGhcbPage
|
|
|
|
; Check if SEV is enabled, and get the C-bit mask above 31.
|
|
; Modified: EDX
|
|
;
|
|
; The value is returned in the EDX
|
|
GetSevCBitMaskAbove31:
|
|
xor edx, edx
|
|
|
|
; Check if SEV is enabled
|
|
cmp byte[WORK_AREA_GUEST_TYPE], 1
|
|
jnz GetSevCBitMaskAbove31Exit
|
|
|
|
mov edx, dword[SEV_ES_WORK_AREA_ENC_MASK + 4]
|
|
|
|
GetSevCBitMaskAbove31Exit:
|
|
OneTimeCallRet GetSevCBitMaskAbove31
|
|
|
|
; Check if Secure Encrypted Virtualization (SEV) features are enabled.
|
|
;
|
|
; Register usage is tight in this routine, so multiple calls for the
|
|
; same CPUID and MSR data are performed to keep things simple.
|
|
;
|
|
; Modified: EAX, EBX, ECX, EDX, ESP
|
|
;
|
|
; If SEV is enabled then EAX will be at least 32.
|
|
; If SEV is disabled then EAX will be zero.
|
|
;
|
|
CheckSevFeatures:
|
|
; Set the first byte of the workarea to zero to communicate to the SEC
|
|
; phase that SEV-ES is not enabled. If SEV-ES is enabled, the CPUID
|
|
; instruction will trigger a #VC exception where the first byte of the
|
|
; workarea will be set to one or, if CPUID is not being intercepted,
|
|
; the MSR check below will set the first byte of the workarea to one.
|
|
mov byte[SEV_ES_WORK_AREA], 0
|
|
|
|
;
|
|
; Set up exception handlers to check for SEV-ES
|
|
; Load temporary RAM stack based on PCDs (see SevEsIdtVmmComm for
|
|
; stack usage)
|
|
; Establish exception handlers
|
|
;
|
|
mov esp, SEV_ES_VC_TOP_OF_STACK
|
|
mov eax, ADDR_OF(Idtr)
|
|
lidt [cs:eax]
|
|
|
|
; Check if we have a valid (0x8000_001F) CPUID leaf
|
|
; CPUID raises a #VC exception if running as an SEV-ES guest
|
|
mov eax, 0x80000000
|
|
cpuid
|
|
|
|
; This check should fail on Intel or Non SEV AMD CPUs. In future if
|
|
; Intel CPUs supports this CPUID leaf then we are guranteed to have exact
|
|
; same bit definition.
|
|
cmp eax, 0x8000001f
|
|
jl NoSev
|
|
|
|
; Check for SEV memory encryption feature:
|
|
; CPUID Fn8000_001F[EAX] - Bit 1
|
|
; CPUID raises a #VC exception if running as an SEV-ES guest
|
|
mov eax, 0x8000001f
|
|
cpuid
|
|
bt eax, 1
|
|
jnc NoSev
|
|
|
|
; Check if SEV memory encryption is enabled
|
|
; MSR_0xC0010131 - Bit 0 (SEV enabled)
|
|
mov ecx, SEV_STATUS_MSR
|
|
rdmsr
|
|
bt eax, 0
|
|
jnc NoSev
|
|
|
|
; Set the work area header to indicate that the SEV is enabled
|
|
mov byte[WORK_AREA_GUEST_TYPE], 1
|
|
|
|
; Check for SEV-ES memory encryption feature:
|
|
; CPUID Fn8000_001F[EAX] - Bit 3
|
|
; CPUID raises a #VC exception if running as an SEV-ES guest
|
|
mov eax, 0x8000001f
|
|
cpuid
|
|
bt eax, 3
|
|
jnc GetSevEncBit
|
|
|
|
; Check if SEV-ES is enabled
|
|
; MSR_0xC0010131 - Bit 1 (SEV-ES enabled)
|
|
mov ecx, SEV_STATUS_MSR
|
|
rdmsr
|
|
bt eax, 1
|
|
jnc GetSevEncBit
|
|
|
|
; Set the first byte of the workarea to one to communicate to the SEC
|
|
; phase that SEV-ES is enabled.
|
|
mov byte[SEV_ES_WORK_AREA], 1
|
|
|
|
GetSevEncBit:
|
|
; Get pte bit position to enable memory encryption
|
|
; CPUID Fn8000_001F[EBX] - Bits 5:0
|
|
;
|
|
and ebx, 0x3f
|
|
mov eax, ebx
|
|
|
|
; The encryption bit position is always above 31
|
|
sub ebx, 32
|
|
jns SevSaveMask
|
|
|
|
; Encryption bit was reported as 31 or below, enter a HLT loop
|
|
SevEncBitLowHlt:
|
|
cli
|
|
hlt
|
|
jmp SevEncBitLowHlt
|
|
|
|
SevSaveMask:
|
|
xor edx, edx
|
|
bts edx, ebx
|
|
|
|
mov dword[SEV_ES_WORK_AREA_ENC_MASK], 0
|
|
mov dword[SEV_ES_WORK_AREA_ENC_MASK + 4], edx
|
|
jmp SevExit
|
|
|
|
NoSev:
|
|
;
|
|
; Perform an SEV-ES sanity check by seeing if a #VC exception occurred.
|
|
;
|
|
cmp byte[SEV_ES_WORK_AREA], 0
|
|
jz NoSevPass
|
|
|
|
;
|
|
; A #VC was received, yet CPUID indicates no SEV-ES support, something
|
|
; isn't right.
|
|
;
|
|
NoSevEsVcHlt:
|
|
cli
|
|
hlt
|
|
jmp NoSevEsVcHlt
|
|
|
|
NoSevPass:
|
|
xor eax, eax
|
|
|
|
SevExit:
|
|
;
|
|
; Clear exception handlers and stack
|
|
;
|
|
push eax
|
|
mov eax, ADDR_OF(IdtrClear)
|
|
lidt [cs:eax]
|
|
pop eax
|
|
mov esp, 0
|
|
|
|
OneTimeCallRet CheckSevFeatures
|
|
|
|
; Start of #VC exception handling routines
|
|
;
|
|
|
|
SevEsIdtNotCpuid:
|
|
TerminateVmgExit TERM_VC_NOT_CPUID
|
|
iret
|
|
|
|
;
|
|
; Total stack usage for the #VC handler is 44 bytes:
|
|
; - 12 bytes for the exception IRET (after popping error code)
|
|
; - 32 bytes for the local variables.
|
|
;
|
|
SevEsIdtVmmComm:
|
|
;
|
|
; If we're here, then we are an SEV-ES guest and this
|
|
; was triggered by a CPUID instruction
|
|
;
|
|
; Set the first byte of the workarea to one to communicate that
|
|
; a #VC was taken.
|
|
mov byte[SEV_ES_WORK_AREA], 1
|
|
|
|
pop ecx ; Error code
|
|
cmp ecx, 0x72 ; Be sure it was CPUID
|
|
jne SevEsIdtNotCpuid
|
|
|
|
; Set up local variable room on the stack
|
|
; CPUID function : + 28
|
|
; CPUID request register : + 24
|
|
; GHCB MSR (EAX) : + 20
|
|
; GHCB MSR (EDX) : + 16
|
|
; CPUID result (EDX) : + 12
|
|
; CPUID result (ECX) : + 8
|
|
; CPUID result (EBX) : + 4
|
|
; CPUID result (EAX) : + 0
|
|
sub esp, VC_VARIABLE_SIZE
|
|
|
|
; Save the CPUID function being requested
|
|
mov [esp + VC_CPUID_FUNCTION], eax
|
|
|
|
; The GHCB CPUID protocol uses the following mapping to request
|
|
; a specific register:
|
|
; 0 => EAX, 1 => EBX, 2 => ECX, 3 => EDX
|
|
;
|
|
; Set EAX as the first register to request. This will also be used as a
|
|
; loop variable to request all register values (EAX to EDX).
|
|
xor eax, eax
|
|
mov [esp + VC_CPUID_REQUEST_REGISTER], eax
|
|
|
|
; Save current GHCB MSR value
|
|
mov ecx, SEV_GHCB_MSR
|
|
rdmsr
|
|
mov [esp + VC_GHCB_MSR_EAX], eax
|
|
mov [esp + VC_GHCB_MSR_EDX], edx
|
|
|
|
NextReg:
|
|
;
|
|
; Setup GHCB MSR
|
|
; GHCB_MSR[63:32] = CPUID function
|
|
; GHCB_MSR[31:30] = CPUID register
|
|
; GHCB_MSR[11:0] = CPUID request protocol
|
|
;
|
|
mov eax, [esp + VC_CPUID_REQUEST_REGISTER]
|
|
cmp eax, 4
|
|
jge VmmDone
|
|
|
|
shl eax, GHCB_CPUID_REGISTER_SHIFT
|
|
mov edx, [esp + VC_CPUID_FUNCTION]
|
|
|
|
VmgExit GHCB_CPUID_REQUEST, GHCB_CPUID_RESPONSE
|
|
|
|
;
|
|
; Response GHCB MSR
|
|
; GHCB_MSR[63:32] = CPUID register value
|
|
; GHCB_MSR[31:30] = CPUID register
|
|
; GHCB_MSR[11:0] = CPUID response protocol
|
|
;
|
|
|
|
; Save returned value
|
|
shr eax, GHCB_CPUID_REGISTER_SHIFT
|
|
mov [esp + eax * 4], edx
|
|
|
|
; Next register
|
|
inc word [esp + VC_CPUID_REQUEST_REGISTER]
|
|
|
|
jmp NextReg
|
|
|
|
VmmDone:
|
|
;
|
|
; At this point we have all CPUID register values. Restore the GHCB MSR,
|
|
; set the return register values and return.
|
|
;
|
|
mov eax, [esp + VC_GHCB_MSR_EAX]
|
|
mov edx, [esp + VC_GHCB_MSR_EDX]
|
|
mov ecx, SEV_GHCB_MSR
|
|
wrmsr
|
|
|
|
mov eax, [esp + VC_CPUID_RESULT_EAX]
|
|
mov ebx, [esp + VC_CPUID_RESULT_EBX]
|
|
mov ecx, [esp + VC_CPUID_RESULT_ECX]
|
|
mov edx, [esp + VC_CPUID_RESULT_EDX]
|
|
|
|
add esp, VC_VARIABLE_SIZE
|
|
|
|
; Update the EIP value to skip over the now handled CPUID instruction
|
|
; (the CPUID instruction has a length of 2)
|
|
add word [esp], CPUID_INSN_LEN
|
|
iret
|
|
|
|
ALIGN 2
|
|
|
|
Idtr:
|
|
dw IDT_END - IDT_BASE - 1 ; Limit
|
|
dd ADDR_OF(IDT_BASE) ; Base
|
|
|
|
IdtrClear:
|
|
dw 0 ; Limit
|
|
dd 0 ; Base
|
|
|
|
ALIGN 16
|
|
|
|
;
|
|
; The Interrupt Descriptor Table (IDT)
|
|
; This will be used to determine if SEV-ES is enabled. Upon execution
|
|
; of the CPUID instruction, a VMM Communication Exception will occur.
|
|
; This will tell us if SEV-ES is enabled. We can use the current value
|
|
; of the GHCB MSR to determine the SEV attributes.
|
|
;
|
|
IDT_BASE:
|
|
;
|
|
; Vectors 0 - 28 (No handlers)
|
|
;
|
|
%rep 29
|
|
dw 0 ; Offset low bits 15..0
|
|
dw 0x10 ; Selector
|
|
db 0 ; Reserved
|
|
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
|
|
dw 0 ; Offset high bits 31..16
|
|
%endrep
|
|
;
|
|
; Vector 29 (VMM Communication Exception)
|
|
;
|
|
dw (ADDR_OF(SevEsIdtVmmComm) & 0xffff) ; Offset low bits 15..0
|
|
dw 0x10 ; Selector
|
|
db 0 ; Reserved
|
|
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
|
|
dw (ADDR_OF(SevEsIdtVmmComm) >> 16) ; Offset high bits 31..16
|
|
;
|
|
; Vectors 30 - 31 (No handlers)
|
|
;
|
|
%rep 2
|
|
dw 0 ; Offset low bits 15..0
|
|
dw 0x10 ; Selector
|
|
db 0 ; Reserved
|
|
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
|
|
dw 0 ; Offset high bits 31..16
|
|
%endrep
|
|
IDT_END:
|