audk/EmbeddedPkg/Drivers/DwEmmcDxe/DwEmmcDxe.c

689 lines
17 KiB
C

/** @file
This file implement the MMC Host Protocol for the DesignWare eMMC.
Copyright (c) 2014-2017, Linaro Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/DebugLib.h>
#include <Library/DevicePathLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/TimerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Protocol/MmcHost.h>
#include "DwEmmc.h"
#define DWEMMC_DESC_PAGE 1
#define DWEMMC_BLOCK_SIZE 512
#define DWEMMC_DMA_BUF_SIZE (512 * 8)
#define DWEMMC_MAX_DESC_PAGES 512
typedef struct {
UINT32 Des0;
UINT32 Des1;
UINT32 Des2;
UINT32 Des3;
} DWEMMC_IDMAC_DESCRIPTOR;
EFI_MMC_HOST_PROTOCOL *gpMmcHost;
DWEMMC_IDMAC_DESCRIPTOR *gpIdmacDesc;
EFI_GUID mDwEmmcDevicePathGuid = EFI_CALLER_ID_GUID;
STATIC UINT32 mDwEmmcCommand;
STATIC UINT32 mDwEmmcArgument;
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
);
BOOLEAN
DwEmmcIsPowerOn (
VOID
)
{
return TRUE;
}
EFI_STATUS
DwEmmcInitialize (
VOID
)
{
DEBUG ((DEBUG_BLKIO, "DwEmmcInitialize()"));
return EFI_SUCCESS;
}
BOOLEAN
DwEmmcIsCardPresent (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
BOOLEAN
DwEmmcIsReadOnly (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return FALSE;
}
BOOLEAN
DwEmmcIsDmaSupported (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_STATUS
DwEmmcBuildDevicePath (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePathNode;
NewDevicePathNode = CreateDeviceNode (HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH));
CopyGuid (& ((VENDOR_DEVICE_PATH*)NewDevicePathNode)->Guid, &mDwEmmcDevicePathGuid);
*DevicePath = NewDevicePathNode;
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcUpdateClock (
VOID
)
{
UINT32 Data;
/* CMD_UPDATE_CLK */
Data = BIT_CMD_WAIT_PRVDATA_COMPLETE | BIT_CMD_UPDATE_CLOCK_ONLY |
BIT_CMD_START;
MmioWrite32 (DWEMMC_CMD, Data);
while (1) {
Data = MmioRead32 (DWEMMC_CMD);
if (!(Data & CMD_START_BIT)) {
break;
}
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & DWEMMC_INT_HLE) {
Print (L"failed to update mmc clock frequency\n");
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSetClock (
IN UINTN ClockFreq
)
{
UINT32 Divider, Rate, Data;
EFI_STATUS Status;
BOOLEAN Found = FALSE;
for (Divider = 1; Divider < 256; Divider++) {
Rate = PcdGet32 (PcdDwEmmcDxeClockFrequencyInHz);
if ((Rate / (2 * Divider)) <= ClockFreq) {
Found = TRUE;
break;
}
}
if (Found == FALSE) {
return EFI_NOT_FOUND;
}
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
// Disable MMC clock first
MmioWrite32 (DWEMMC_CLKENA, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
MmioWrite32 (DWEMMC_CLKDIV, Divider);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
// Enable MMC clock
MmioWrite32 (DWEMMC_CLKENA, 1);
MmioWrite32 (DWEMMC_CLKSRC, 0);
Status = DwEmmcUpdateClock ();
ASSERT (!EFI_ERROR (Status));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcNotifyState (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
)
{
UINT32 Data;
EFI_STATUS Status;
switch (State) {
case MmcInvalidState:
return EFI_INVALID_PARAMETER;
case MmcHwInitializationState:
MmioWrite32 (DWEMMC_PWREN, 1);
// If device already turn on then restart it
Data = DWEMMC_CTRL_RESET_ALL;
MmioWrite32 (DWEMMC_CTRL, Data);
do {
// Wait until reset operation finished
Data = MmioRead32 (DWEMMC_CTRL);
} while (Data & DWEMMC_CTRL_RESET_ALL);
// Setup clock that could not be higher than 400KHz.
Status = DwEmmcSetClock (400000);
ASSERT (!EFI_ERROR (Status));
// Wait clock stable
MicroSecondDelay (100);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_INTMASK, 0);
MmioWrite32 (DWEMMC_TMOUT, ~0);
MmioWrite32 (DWEMMC_IDINTEN, 0);
MmioWrite32 (DWEMMC_BMOD, DWEMMC_IDMAC_SWRESET);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
do {
Data = MmioRead32 (DWEMMC_BMOD);
} while (Data & DWEMMC_IDMAC_SWRESET);
break;
case MmcIdleState:
break;
case MmcReadyState:
break;
case MmcIdentificationState:
break;
case MmcStandByState:
break;
case MmcTransferState:
break;
case MmcSendingDataState:
break;
case MmcReceiveDataState:
break;
case MmcProgrammingState:
break;
case MmcDisconnectState:
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
// Need to prepare DMA buffer first before sending commands to MMC card
BOOLEAN
IsPendingReadCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_READ;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
BOOLEAN
IsPendingWriteCommand (
IN MMC_CMD MmcCmd
)
{
UINTN Mask;
Mask = BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE;
if ((MmcCmd & Mask) == Mask) {
return TRUE;
}
return FALSE;
}
EFI_STATUS
SendCommand (
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Data, ErrMask;
// Wait until MMC is idle
do {
Data = MmioRead32 (DWEMMC_STATUS);
} while (Data & DWEMMC_STS_DATA_BUSY);
MmioWrite32 (DWEMMC_RINTSTS, ~0);
MmioWrite32 (DWEMMC_CMDARG, Argument);
MmioWrite32 (DWEMMC_CMD, MmcCmd);
ErrMask = DWEMMC_INT_EBE | DWEMMC_INT_HLE | DWEMMC_INT_RTO |
DWEMMC_INT_RCRC | DWEMMC_INT_RE;
ErrMask |= DWEMMC_INT_DCRC | DWEMMC_INT_DRT | DWEMMC_INT_SBE;
do {
MicroSecondDelay(500);
Data = MmioRead32 (DWEMMC_RINTSTS);
if (Data & ErrMask) {
return EFI_DEVICE_ERROR;
}
if (Data & DWEMMC_INT_DTO) { // Transfer Done
break;
}
} while (!(Data & DWEMMC_INT_CMD_DONE));
return EFI_SUCCESS;
}
EFI_STATUS
DwEmmcSendCommand (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Cmd = 0;
EFI_STATUS Status = EFI_SUCCESS;
switch (MMC_GET_INDX(MmcCmd)) {
case MMC_INDX(0):
Cmd = BIT_CMD_SEND_INIT;
break;
case MMC_INDX(1):
Cmd = BIT_CMD_RESPONSE_EXPECT;
break;
case MMC_INDX(2):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_LONG_RESPONSE |
BIT_CMD_CHECK_RESPONSE_CRC | BIT_CMD_SEND_INIT;
break;
case MMC_INDX(3):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_SEND_INIT;
break;
case MMC_INDX(7):
if (Argument)
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
else
Cmd = 0;
break;
case MMC_INDX(8):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(9):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_LONG_RESPONSE;
break;
case MMC_INDX(12):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_STOP_ABORT_CMD;
break;
case MMC_INDX(13):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(16):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(17):
case MMC_INDX(18):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_READ |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(24):
case MMC_INDX(25):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED | BIT_CMD_WRITE |
BIT_CMD_WAIT_PRVDATA_COMPLETE;
break;
case MMC_INDX(30):
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC |
BIT_CMD_DATA_EXPECTED;
break;
default:
Cmd = BIT_CMD_RESPONSE_EXPECT | BIT_CMD_CHECK_RESPONSE_CRC;
break;
}
Cmd |= MMC_GET_INDX(MmcCmd) | BIT_CMD_USE_HOLD_REG | BIT_CMD_START;
if (IsPendingReadCommand (Cmd) || IsPendingWriteCommand (Cmd)) {
mDwEmmcCommand = Cmd;
mDwEmmcArgument = Argument;
} else {
Status = SendCommand (Cmd, Argument);
}
return Status;
}
EFI_STATUS
DwEmmcReceiveResponse (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32* Buffer
)
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if ( (Type == MMC_RESPONSE_TYPE_R1)
|| (Type == MMC_RESPONSE_TYPE_R1b)
|| (Type == MMC_RESPONSE_TYPE_R3)
|| (Type == MMC_RESPONSE_TYPE_R6)
|| (Type == MMC_RESPONSE_TYPE_R7))
{
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
} else if (Type == MMC_RESPONSE_TYPE_R2) {
Buffer[0] = MmioRead32 (DWEMMC_RESP0);
Buffer[1] = MmioRead32 (DWEMMC_RESP1);
Buffer[2] = MmioRead32 (DWEMMC_RESP2);
Buffer[3] = MmioRead32 (DWEMMC_RESP3);
}
return EFI_SUCCESS;
}
VOID
DwEmmcAdjustFifoThreshold (
VOID
)
{
/* DMA multiple transaction size map to reg value as array index */
CONST UINT32 BurstSize[] = {1, 4, 8, 16, 32, 64, 128, 256};
UINT32 BlkDepthInFifo, FifoThreshold, FifoWidth, FifoDepth;
UINT32 BlkSize = DWEMMC_BLOCK_SIZE, Idx = 0, RxWatermark = 1, TxWatermark, TxWatermarkInvers;
/* Skip FIFO adjustment if we do not have platform FIFO depth info */
FifoDepth = PcdGet32 (PcdDwEmmcDxeFifoDepth);
if (!FifoDepth) {
return;
}
TxWatermark = FifoDepth / 2;
TxWatermarkInvers = FifoDepth - TxWatermark;
FifoWidth = DWEMMC_GET_HDATA_WIDTH (MmioRead32 (DWEMMC_HCON));
if (!FifoWidth) {
FifoWidth = 2;
} else if (FifoWidth == 2) {
FifoWidth = 8;
} else {
FifoWidth = 4;
}
BlkDepthInFifo = BlkSize / FifoWidth;
Idx = ARRAY_SIZE (BurstSize) - 1;
while (Idx && ((BlkDepthInFifo % BurstSize[Idx]) || (TxWatermarkInvers % BurstSize[Idx]))) {
Idx--;
}
RxWatermark = BurstSize[Idx] - 1;
FifoThreshold = DWEMMC_DMA_BURST_SIZE (Idx) | DWEMMC_FIFO_TWMARK (TxWatermark)
| DWEMMC_FIFO_RWMARK (RxWatermark);
MmioWrite32 (DWEMMC_FIFOTH, FifoThreshold);
}
EFI_STATUS
PrepareDmaData (
IN DWEMMC_IDMAC_DESCRIPTOR* IdmacDesc,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Cnt, Blks, Idx, LastIdx;
Cnt = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
Blks = (Length + DWEMMC_BLOCK_SIZE - 1) / DWEMMC_BLOCK_SIZE;
Length = DWEMMC_BLOCK_SIZE * Blks;
for (Idx = 0; Idx < Cnt; Idx++) {
(IdmacDesc + Idx)->Des0 = DWEMMC_IDMAC_DES0_OWN | DWEMMC_IDMAC_DES0_CH |
DWEMMC_IDMAC_DES0_DIC;
(IdmacDesc + Idx)->Des1 = DWEMMC_IDMAC_DES1_BS1(DWEMMC_DMA_BUF_SIZE);
/* Buffer Address */
(IdmacDesc + Idx)->Des2 = (UINT32)((UINTN)Buffer + DWEMMC_DMA_BUF_SIZE * Idx);
/* Next Descriptor Address */
(IdmacDesc + Idx)->Des3 = (UINT32)((UINTN)IdmacDesc +
(sizeof(DWEMMC_IDMAC_DESCRIPTOR) * (Idx + 1)));
}
/* First Descriptor */
IdmacDesc->Des0 |= DWEMMC_IDMAC_DES0_FS;
/* Last Descriptor */
LastIdx = Cnt - 1;
(IdmacDesc + LastIdx)->Des0 |= DWEMMC_IDMAC_DES0_LD;
(IdmacDesc + LastIdx)->Des0 &= ~(DWEMMC_IDMAC_DES0_DIC | DWEMMC_IDMAC_DES0_CH);
(IdmacDesc + LastIdx)->Des1 = DWEMMC_IDMAC_DES1_BS1(Length -
(LastIdx * DWEMMC_DMA_BUF_SIZE));
/* Set the Next field of Last Descriptor */
(IdmacDesc + LastIdx)->Des3 = 0;
MmioWrite32 (DWEMMC_DBADDR, (UINT32)((UINTN)IdmacDesc));
return EFI_SUCCESS;
}
VOID
StartDma (
UINTN Length
)
{
UINT32 Data;
Data = MmioRead32 (DWEMMC_CTRL);
Data |= DWEMMC_CTRL_INT_EN | DWEMMC_CTRL_DMA_EN | DWEMMC_CTRL_IDMAC_EN;
MmioWrite32 (DWEMMC_CTRL, Data);
Data = MmioRead32 (DWEMMC_BMOD);
Data |= DWEMMC_IDMAC_ENABLE | DWEMMC_IDMAC_FB;
MmioWrite32 (DWEMMC_BMOD, Data);
MmioWrite32 (DWEMMC_BLKSIZ, DWEMMC_BLOCK_SIZE);
MmioWrite32 (DWEMMC_BYTCNT, Length);
}
EFI_STATUS
DwEmmcReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
InvalidateDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to read data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcWriteBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
EFI_STATUS Status;
UINT32 DescPages, CountPerPage, Count;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
CountPerPage = EFI_PAGE_SIZE / 16;
Count = (Length + DWEMMC_DMA_BUF_SIZE - 1) / DWEMMC_DMA_BUF_SIZE;
DescPages = (Count + CountPerPage - 1) / CountPerPage;
WriteBackDataCacheRange (Buffer, Length);
Status = PrepareDmaData (gpIdmacDesc, Length, Buffer);
if (EFI_ERROR (Status)) {
goto out;
}
WriteBackDataCacheRange (gpIdmacDesc, DescPages * EFI_PAGE_SIZE);
StartDma (Length);
Status = SendCommand (mDwEmmcCommand, mDwEmmcArgument);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to write data, mDwEmmcCommand:%x, mDwEmmcArgument:%x, Status:%r\n", mDwEmmcCommand, mDwEmmcArgument, Status));
goto out;
}
out:
// Restore Tpl
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
DwEmmcSetIos (
IN EFI_MMC_HOST_PROTOCOL *This,
IN UINT32 BusClockFreq,
IN UINT32 BusWidth,
IN UINT32 TimingMode
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT32 Data;
if ((PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz) != 0) &&
(BusClockFreq > PcdGet32 (PcdDwEmmcDxeMaxClockFreqInHz))) {
return EFI_UNSUPPORTED;
}
if (TimingMode != EMMCBACKWARD) {
Data = MmioRead32 (DWEMMC_UHSREG);
switch (TimingMode) {
case EMMCHS52DDR1V2:
case EMMCHS52DDR1V8:
Data |= 1 << 16;
break;
case EMMCHS52:
case EMMCHS26:
Data &= ~(1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
MmioWrite32 (DWEMMC_UHSREG, Data);
}
switch (BusWidth) {
case 1:
MmioWrite32 (DWEMMC_CTYPE, 0);
break;
case 4:
MmioWrite32 (DWEMMC_CTYPE, 1);
break;
case 8:
MmioWrite32 (DWEMMC_CTYPE, 1 << 16);
break;
default:
return EFI_UNSUPPORTED;
}
if (BusClockFreq) {
Status = DwEmmcSetClock (BusClockFreq);
}
return Status;
}
BOOLEAN
DwEmmcIsMultiBlock (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return TRUE;
}
EFI_MMC_HOST_PROTOCOL gMciHost = {
MMC_HOST_PROTOCOL_REVISION,
DwEmmcIsCardPresent,
DwEmmcIsReadOnly,
DwEmmcBuildDevicePath,
DwEmmcNotifyState,
DwEmmcSendCommand,
DwEmmcReceiveResponse,
DwEmmcReadBlockData,
DwEmmcWriteBlockData,
DwEmmcSetIos,
DwEmmcIsMultiBlock
};
EFI_STATUS
DwEmmcDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
Handle = NULL;
DwEmmcAdjustFifoThreshold ();
gpIdmacDesc = (DWEMMC_IDMAC_DESCRIPTOR *)AllocatePages (DWEMMC_MAX_DESC_PAGES);
if (gpIdmacDesc == NULL) {
return EFI_BUFFER_TOO_SMALL;
}
DEBUG ((DEBUG_BLKIO, "DwEmmcDxeInitialize()\n"));
//Publish Component Name, BlockIO protocol interfaces
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiMmcHostProtocolGuid, &gMciHost,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}