mirror of https://github.com/acidanthera/audk.git
2931 lines
104 KiB
C
2931 lines
104 KiB
C
/** @file
|
|
The common variable operation routines shared by DXE_RUNTIME variable
|
|
module and DXE_SMM variable module.
|
|
|
|
Caution: This module requires additional review when modified.
|
|
This driver will have external input - variable data. They may be input in SMM mode.
|
|
This external input must be validated carefully to avoid security issue like
|
|
buffer overflow, integer overflow.
|
|
|
|
VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
|
|
They need check input parameter.
|
|
|
|
VariableServiceGetVariable() and VariableServiceSetVariable() are external API
|
|
to receive datasize and data buffer. The size should be checked carefully.
|
|
|
|
VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
|
|
integer overflow. It should also check attribute to avoid authentication bypass.
|
|
|
|
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "Variable.h"
|
|
#include "AuthService.h"
|
|
|
|
VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
|
|
|
|
///
|
|
/// Define a memory cache that improves the search performance for a variable.
|
|
///
|
|
VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
|
|
|
|
///
|
|
/// The memory entry used for variable statistics data.
|
|
///
|
|
VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
|
|
|
|
|
|
/**
|
|
Routine used to track statistical information about variable usage.
|
|
The data is stored in the EFI system table so it can be accessed later.
|
|
VariableInfo.efi can dump out the table. Only Boot Services variable
|
|
accesses are tracked by this code. The PcdVariableCollectStatistics
|
|
build flag controls if this feature is enabled.
|
|
|
|
A read that hits in the cache will have Read and Cache true for
|
|
the transaction. Data is allocated by this routine, but never
|
|
freed.
|
|
|
|
@param[in] VariableName Name of the Variable to track.
|
|
@param[in] VendorGuid Guid of the Variable to track.
|
|
@param[in] Volatile TRUE if volatile FALSE if non-volatile.
|
|
@param[in] Read TRUE if GetVariable() was called.
|
|
@param[in] Write TRUE if SetVariable() was called.
|
|
@param[in] Delete TRUE if deleted via SetVariable().
|
|
@param[in] Cache TRUE for a cache hit.
|
|
|
|
**/
|
|
VOID
|
|
UpdateVariableInfo (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
IN BOOLEAN Volatile,
|
|
IN BOOLEAN Read,
|
|
IN BOOLEAN Write,
|
|
IN BOOLEAN Delete,
|
|
IN BOOLEAN Cache
|
|
)
|
|
{
|
|
VARIABLE_INFO_ENTRY *Entry;
|
|
|
|
if (FeaturePcdGet (PcdVariableCollectStatistics)) {
|
|
|
|
if (AtRuntime ()) {
|
|
// Don't collect statistics at runtime.
|
|
return;
|
|
}
|
|
|
|
if (gVariableInfo == NULL) {
|
|
//
|
|
// On the first call allocate a entry and place a pointer to it in
|
|
// the EFI System Table.
|
|
//
|
|
gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
|
|
ASSERT (gVariableInfo != NULL);
|
|
|
|
CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
|
|
gVariableInfo->Name = AllocatePool (StrSize (VariableName));
|
|
ASSERT (gVariableInfo->Name != NULL);
|
|
StrCpy (gVariableInfo->Name, VariableName);
|
|
gVariableInfo->Volatile = Volatile;
|
|
}
|
|
|
|
|
|
for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
|
|
if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
|
|
if (StrCmp (VariableName, Entry->Name) == 0) {
|
|
if (Read) {
|
|
Entry->ReadCount++;
|
|
}
|
|
if (Write) {
|
|
Entry->WriteCount++;
|
|
}
|
|
if (Delete) {
|
|
Entry->DeleteCount++;
|
|
}
|
|
if (Cache) {
|
|
Entry->CacheCount++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (Entry->Next == NULL) {
|
|
//
|
|
// If the entry is not in the table add it.
|
|
// Next iteration of the loop will fill in the data.
|
|
//
|
|
Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
|
|
ASSERT (Entry->Next != NULL);
|
|
|
|
CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
|
|
Entry->Next->Name = AllocatePool (StrSize (VariableName));
|
|
ASSERT (Entry->Next->Name != NULL);
|
|
StrCpy (Entry->Next->Name, VariableName);
|
|
Entry->Next->Volatile = Volatile;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
This code checks if variable header is valid or not.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@retval TRUE Variable header is valid.
|
|
@retval FALSE Variable header is not valid.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsValidVariableHeader (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
This function writes data to the FWH at the correct LBA even if the LBAs
|
|
are fragmented.
|
|
|
|
@param Global Pointer to VARAIBLE_GLOBAL structure.
|
|
@param Volatile Point out the Variable is Volatile or Non-Volatile.
|
|
@param SetByIndex TRUE if target pointer is given as index.
|
|
FALSE if target pointer is absolute.
|
|
@param Fvb Pointer to the writable FVB protocol.
|
|
@param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
|
|
structure.
|
|
@param DataSize Size of data to be written.
|
|
@param Buffer Pointer to the buffer from which data is written.
|
|
|
|
@retval EFI_INVALID_PARAMETER Parameters not valid.
|
|
@retval EFI_SUCCESS Variable store successfully updated.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
UpdateVariableStore (
|
|
IN VARIABLE_GLOBAL *Global,
|
|
IN BOOLEAN Volatile,
|
|
IN BOOLEAN SetByIndex,
|
|
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
|
|
IN UINTN DataPtrIndex,
|
|
IN UINT32 DataSize,
|
|
IN UINT8 *Buffer
|
|
)
|
|
{
|
|
EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
|
|
UINTN BlockIndex2;
|
|
UINTN LinearOffset;
|
|
UINTN CurrWriteSize;
|
|
UINTN CurrWritePtr;
|
|
UINT8 *CurrBuffer;
|
|
EFI_LBA LbaNumber;
|
|
UINTN Size;
|
|
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
|
|
VARIABLE_STORE_HEADER *VolatileBase;
|
|
EFI_PHYSICAL_ADDRESS FvVolHdr;
|
|
EFI_PHYSICAL_ADDRESS DataPtr;
|
|
EFI_STATUS Status;
|
|
|
|
FwVolHeader = NULL;
|
|
DataPtr = DataPtrIndex;
|
|
|
|
//
|
|
// Check if the Data is Volatile.
|
|
//
|
|
if (!Volatile) {
|
|
if (Fvb == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
|
|
//
|
|
// Data Pointer should point to the actual Address where data is to be
|
|
// written.
|
|
//
|
|
if (SetByIndex) {
|
|
DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
|
|
}
|
|
|
|
if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
} else {
|
|
//
|
|
// Data Pointer should point to the actual Address where data is to be
|
|
// written.
|
|
//
|
|
VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
|
|
if (SetByIndex) {
|
|
DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
|
|
}
|
|
|
|
if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// If Volatile Variable just do a simple mem copy.
|
|
//
|
|
CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// If we are here we are dealing with Non-Volatile Variables.
|
|
//
|
|
LinearOffset = (UINTN) FwVolHeader;
|
|
CurrWritePtr = (UINTN) DataPtr;
|
|
CurrWriteSize = DataSize;
|
|
CurrBuffer = Buffer;
|
|
LbaNumber = 0;
|
|
|
|
if (CurrWritePtr < LinearOffset) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
|
|
for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
|
|
//
|
|
// Check to see if the Variable Writes are spanning through multiple
|
|
// blocks.
|
|
//
|
|
if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
|
|
if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
|
|
Status = Fvb->Write (
|
|
Fvb,
|
|
LbaNumber,
|
|
(UINTN) (CurrWritePtr - LinearOffset),
|
|
&CurrWriteSize,
|
|
CurrBuffer
|
|
);
|
|
return Status;
|
|
} else {
|
|
Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
|
|
Status = Fvb->Write (
|
|
Fvb,
|
|
LbaNumber,
|
|
(UINTN) (CurrWritePtr - LinearOffset),
|
|
&Size,
|
|
CurrBuffer
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
|
|
CurrBuffer = CurrBuffer + Size;
|
|
CurrWriteSize = CurrWriteSize - Size;
|
|
}
|
|
}
|
|
|
|
LinearOffset += PtrBlockMapEntry->Length;
|
|
LbaNumber++;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
This code gets the current status of Variable Store.
|
|
|
|
@param VarStoreHeader Pointer to the Variable Store Header.
|
|
|
|
@retval EfiRaw Variable store status is raw.
|
|
@retval EfiValid Variable store status is valid.
|
|
@retval EfiInvalid Variable store status is invalid.
|
|
|
|
**/
|
|
VARIABLE_STORE_STATUS
|
|
GetVariableStoreStatus (
|
|
IN VARIABLE_STORE_HEADER *VarStoreHeader
|
|
)
|
|
{
|
|
if (CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) &&
|
|
VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
|
|
VarStoreHeader->State == VARIABLE_STORE_HEALTHY
|
|
) {
|
|
|
|
return EfiValid;
|
|
} else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
|
|
((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
|
|
((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
|
|
((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
|
|
VarStoreHeader->Size == 0xffffffff &&
|
|
VarStoreHeader->Format == 0xff &&
|
|
VarStoreHeader->State == 0xff
|
|
) {
|
|
|
|
return EfiRaw;
|
|
} else {
|
|
return EfiInvalid;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
This code gets the size of name of variable.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@return UINTN Size of variable in bytes.
|
|
|
|
**/
|
|
UINTN
|
|
NameSizeOfVariable (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
if (Variable->State == (UINT8) (-1) ||
|
|
Variable->DataSize == (UINT32) (-1) ||
|
|
Variable->NameSize == (UINT32) (-1) ||
|
|
Variable->Attributes == (UINT32) (-1)) {
|
|
return 0;
|
|
}
|
|
return (UINTN) Variable->NameSize;
|
|
}
|
|
|
|
/**
|
|
|
|
This code gets the size of variable data.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@return Size of variable in bytes.
|
|
|
|
**/
|
|
UINTN
|
|
DataSizeOfVariable (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
if (Variable->State == (UINT8) (-1) ||
|
|
Variable->DataSize == (UINT32) (-1) ||
|
|
Variable->NameSize == (UINT32) (-1) ||
|
|
Variable->Attributes == (UINT32) (-1)) {
|
|
return 0;
|
|
}
|
|
return (UINTN) Variable->DataSize;
|
|
}
|
|
|
|
/**
|
|
|
|
This code gets the pointer to the variable name.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@return Pointer to Variable Name which is Unicode encoding.
|
|
|
|
**/
|
|
CHAR16 *
|
|
GetVariableNamePtr (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
|
|
return (CHAR16 *) (Variable + 1);
|
|
}
|
|
|
|
/**
|
|
|
|
This code gets the pointer to the variable data.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@return Pointer to Variable Data.
|
|
|
|
**/
|
|
UINT8 *
|
|
GetVariableDataPtr (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
UINTN Value;
|
|
|
|
//
|
|
// Be careful about pad size for alignment.
|
|
//
|
|
Value = (UINTN) GetVariableNamePtr (Variable);
|
|
Value += NameSizeOfVariable (Variable);
|
|
Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
|
|
|
|
return (UINT8 *) Value;
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
This code gets the pointer to the next variable header.
|
|
|
|
@param Variable Pointer to the Variable Header.
|
|
|
|
@return Pointer to next variable header.
|
|
|
|
**/
|
|
VARIABLE_HEADER *
|
|
GetNextVariablePtr (
|
|
IN VARIABLE_HEADER *Variable
|
|
)
|
|
{
|
|
UINTN Value;
|
|
|
|
if (!IsValidVariableHeader (Variable)) {
|
|
return NULL;
|
|
}
|
|
|
|
Value = (UINTN) GetVariableDataPtr (Variable);
|
|
Value += DataSizeOfVariable (Variable);
|
|
Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
|
|
|
|
//
|
|
// Be careful about pad size for alignment.
|
|
//
|
|
return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
|
|
}
|
|
|
|
/**
|
|
|
|
Gets the pointer to the first variable header in given variable store area.
|
|
|
|
@param VarStoreHeader Pointer to the Variable Store Header.
|
|
|
|
@return Pointer to the first variable header.
|
|
|
|
**/
|
|
VARIABLE_HEADER *
|
|
GetStartPointer (
|
|
IN VARIABLE_STORE_HEADER *VarStoreHeader
|
|
)
|
|
{
|
|
//
|
|
// The end of variable store.
|
|
//
|
|
return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
|
|
}
|
|
|
|
/**
|
|
|
|
Gets the pointer to the end of the variable storage area.
|
|
|
|
This function gets pointer to the end of the variable storage
|
|
area, according to the input variable store header.
|
|
|
|
@param VarStoreHeader Pointer to the Variable Store Header.
|
|
|
|
@return Pointer to the end of the variable storage area.
|
|
|
|
**/
|
|
VARIABLE_HEADER *
|
|
GetEndPointer (
|
|
IN VARIABLE_STORE_HEADER *VarStoreHeader
|
|
)
|
|
{
|
|
//
|
|
// The end of variable store
|
|
//
|
|
return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
|
|
}
|
|
|
|
|
|
/**
|
|
|
|
Variable store garbage collection and reclaim operation.
|
|
|
|
@param VariableBase Base address of variable store.
|
|
@param LastVariableOffset Offset of last variable.
|
|
@param IsVolatile The variable store is volatile or not;
|
|
if it is non-volatile, need FTW.
|
|
@param UpdatingVariable Pointer to updating variable.
|
|
|
|
@return EFI_OUT_OF_RESOURCES
|
|
@return EFI_SUCCESS
|
|
@return Others
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Reclaim (
|
|
IN EFI_PHYSICAL_ADDRESS VariableBase,
|
|
OUT UINTN *LastVariableOffset,
|
|
IN BOOLEAN IsVolatile,
|
|
IN VARIABLE_HEADER *UpdatingVariable
|
|
)
|
|
{
|
|
VARIABLE_HEADER *Variable;
|
|
VARIABLE_HEADER *AddedVariable;
|
|
VARIABLE_HEADER *NextVariable;
|
|
VARIABLE_HEADER *NextAddedVariable;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader;
|
|
UINT8 *ValidBuffer;
|
|
UINTN MaximumBufferSize;
|
|
UINTN VariableSize;
|
|
UINTN VariableNameSize;
|
|
UINTN UpdatingVariableNameSize;
|
|
UINTN NameSize;
|
|
UINT8 *CurrPtr;
|
|
VOID *Point0;
|
|
VOID *Point1;
|
|
BOOLEAN FoundAdded;
|
|
EFI_STATUS Status;
|
|
CHAR16 *VariableNamePtr;
|
|
CHAR16 *UpdatingVariableNamePtr;
|
|
UINTN CommonVariableTotalSize;
|
|
UINTN HwErrVariableTotalSize;
|
|
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
|
|
|
|
CommonVariableTotalSize = 0;
|
|
HwErrVariableTotalSize = 0;
|
|
|
|
//
|
|
// Start Pointers for the variable.
|
|
//
|
|
Variable = GetStartPointer (VariableStoreHeader);
|
|
MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
|
|
|
|
while (IsValidVariableHeader (Variable)) {
|
|
NextVariable = GetNextVariablePtr (Variable);
|
|
if (Variable->State == VAR_ADDED ||
|
|
Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
|
|
) {
|
|
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
|
|
MaximumBufferSize += VariableSize;
|
|
}
|
|
|
|
Variable = NextVariable;
|
|
}
|
|
|
|
//
|
|
// Reserve the 1 Bytes with Oxff to identify the
|
|
// end of the variable buffer.
|
|
//
|
|
MaximumBufferSize += 1;
|
|
ValidBuffer = AllocatePool (MaximumBufferSize);
|
|
if (ValidBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
SetMem (ValidBuffer, MaximumBufferSize, 0xff);
|
|
|
|
//
|
|
// Copy variable store header.
|
|
//
|
|
CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
|
|
CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
|
|
|
|
//
|
|
// Reinstall all ADDED variables as long as they are not identical to Updating Variable.
|
|
//
|
|
Variable = GetStartPointer (VariableStoreHeader);
|
|
while (IsValidVariableHeader (Variable)) {
|
|
NextVariable = GetNextVariablePtr (Variable);
|
|
if (Variable->State == VAR_ADDED) {
|
|
if (UpdatingVariable != NULL) {
|
|
if (UpdatingVariable == Variable) {
|
|
Variable = NextVariable;
|
|
continue;
|
|
}
|
|
|
|
VariableNameSize = NameSizeOfVariable(Variable);
|
|
UpdatingVariableNameSize = NameSizeOfVariable(UpdatingVariable);
|
|
|
|
VariableNamePtr = GetVariableNamePtr (Variable);
|
|
UpdatingVariableNamePtr = GetVariableNamePtr (UpdatingVariable);
|
|
if (CompareGuid (&Variable->VendorGuid, &UpdatingVariable->VendorGuid) &&
|
|
VariableNameSize == UpdatingVariableNameSize &&
|
|
CompareMem (VariableNamePtr, UpdatingVariableNamePtr, VariableNameSize) == 0 ) {
|
|
Variable = NextVariable;
|
|
continue;
|
|
}
|
|
}
|
|
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
|
|
CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
|
|
CurrPtr += VariableSize;
|
|
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
HwErrVariableTotalSize += VariableSize;
|
|
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
CommonVariableTotalSize += VariableSize;
|
|
}
|
|
}
|
|
Variable = NextVariable;
|
|
}
|
|
|
|
//
|
|
// Reinstall the variable being updated if it is not NULL.
|
|
//
|
|
if (UpdatingVariable != NULL) {
|
|
VariableSize = (UINTN)(GetNextVariablePtr (UpdatingVariable)) - (UINTN)UpdatingVariable;
|
|
CopyMem (CurrPtr, (UINT8 *) UpdatingVariable, VariableSize);
|
|
CurrPtr += VariableSize;
|
|
if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
HwErrVariableTotalSize += VariableSize;
|
|
} else if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
CommonVariableTotalSize += VariableSize;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Reinstall all in delete transition variables.
|
|
//
|
|
Variable = GetStartPointer (VariableStoreHeader);
|
|
while (IsValidVariableHeader (Variable)) {
|
|
NextVariable = GetNextVariablePtr (Variable);
|
|
if (Variable != UpdatingVariable && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
|
|
|
|
//
|
|
// Buffer has cached all ADDED variable.
|
|
// Per IN_DELETED variable, we have to guarantee that
|
|
// no ADDED one in previous buffer.
|
|
//
|
|
|
|
FoundAdded = FALSE;
|
|
AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
|
|
while (IsValidVariableHeader (AddedVariable)) {
|
|
NextAddedVariable = GetNextVariablePtr (AddedVariable);
|
|
NameSize = NameSizeOfVariable (AddedVariable);
|
|
if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
|
|
NameSize == NameSizeOfVariable (Variable)
|
|
) {
|
|
Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
|
|
Point1 = (VOID *) GetVariableNamePtr (Variable);
|
|
if (CompareMem (Point0, Point1, NameSizeOfVariable (AddedVariable)) == 0) {
|
|
FoundAdded = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
AddedVariable = NextAddedVariable;
|
|
}
|
|
if (!FoundAdded) {
|
|
//
|
|
// Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
|
|
//
|
|
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
|
|
CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
|
|
((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
|
|
CurrPtr += VariableSize;
|
|
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
HwErrVariableTotalSize += VariableSize;
|
|
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
CommonVariableTotalSize += VariableSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
Variable = NextVariable;
|
|
}
|
|
|
|
if (IsVolatile) {
|
|
//
|
|
// If volatile variable store, just copy valid buffer.
|
|
//
|
|
SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
|
|
CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - (UINT8 *) ValidBuffer));
|
|
Status = EFI_SUCCESS;
|
|
} else {
|
|
//
|
|
// If non-volatile variable store, perform FTW here.
|
|
//
|
|
Status = FtwVariableSpace (
|
|
VariableBase,
|
|
ValidBuffer,
|
|
(UINTN) (CurrPtr - (UINT8 *) ValidBuffer)
|
|
);
|
|
CopyMem (mNvVariableCache, (CHAR8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
|
|
}
|
|
if (!EFI_ERROR (Status)) {
|
|
*LastVariableOffset = (UINTN) (CurrPtr - (UINT8 *) ValidBuffer);
|
|
if (!IsVolatile) {
|
|
mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
|
|
mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
|
|
}
|
|
} else {
|
|
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
|
|
while (IsValidVariableHeader (NextVariable)) {
|
|
VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
|
|
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
|
|
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
|
|
}
|
|
|
|
NextVariable = GetNextVariablePtr (NextVariable);
|
|
}
|
|
*LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
|
|
}
|
|
|
|
FreePool (ValidBuffer);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Find the variable in the specified variable store.
|
|
|
|
@param[in] VariableName Name of the variable to be found
|
|
@param[in] VendorGuid Vendor GUID to be found.
|
|
@param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
|
|
check at runtime when searching variable.
|
|
@param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
|
|
|
|
@retval EFI_SUCCESS Variable found successfully
|
|
@retval EFI_NOT_FOUND Variable not found
|
|
**/
|
|
EFI_STATUS
|
|
FindVariableEx (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
IN BOOLEAN IgnoreRtCheck,
|
|
IN OUT VARIABLE_POINTER_TRACK *PtrTrack
|
|
)
|
|
{
|
|
VARIABLE_HEADER *InDeletedVariable;
|
|
VOID *Point;
|
|
|
|
//
|
|
// Find the variable by walk through HOB, volatile and non-volatile variable store.
|
|
//
|
|
InDeletedVariable = NULL;
|
|
|
|
for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
|
|
; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
|
|
; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
|
|
) {
|
|
if (PtrTrack->CurrPtr->State == VAR_ADDED ||
|
|
PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
|
|
) {
|
|
if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
|
|
if (VariableName[0] == 0) {
|
|
if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
|
|
InDeletedVariable = PtrTrack->CurrPtr;
|
|
} else {
|
|
return EFI_SUCCESS;
|
|
}
|
|
} else {
|
|
if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
|
|
Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
|
|
|
|
ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
|
|
if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
|
|
if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
|
|
InDeletedVariable = PtrTrack->CurrPtr;
|
|
} else {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PtrTrack->CurrPtr = InDeletedVariable;
|
|
return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Finds variable in storage blocks of volatile and non-volatile storage areas.
|
|
|
|
This code finds variable in storage blocks of volatile and non-volatile storage areas.
|
|
If VariableName is an empty string, then we just return the first
|
|
qualified variable without comparing VariableName and VendorGuid.
|
|
If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
|
|
at runtime when searching existing variable, only VariableName and VendorGuid are compared.
|
|
Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
|
|
|
|
@param[in] VariableName Name of the variable to be found.
|
|
@param[in] VendorGuid Vendor GUID to be found.
|
|
@param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
|
|
including the range searched and the target position.
|
|
@param[in] Global Pointer to VARIABLE_GLOBAL structure, including
|
|
base of volatile variable storage area, base of
|
|
NV variable storage area, and a lock.
|
|
@param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
|
|
check at runtime when searching variable.
|
|
|
|
@retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
|
|
VendorGuid is NULL.
|
|
@retval EFI_SUCCESS Variable successfully found.
|
|
@retval EFI_NOT_FOUND Variable not found
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
OUT VARIABLE_POINTER_TRACK *PtrTrack,
|
|
IN VARIABLE_GLOBAL *Global,
|
|
IN BOOLEAN IgnoreRtCheck
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
|
|
VARIABLE_STORE_TYPE Type;
|
|
|
|
if (VariableName[0] != 0 && VendorGuid == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// 0: Volatile, 1: HOB, 2: Non-Volatile.
|
|
// The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
|
|
// make use of this mapping to implement search algorithm.
|
|
//
|
|
VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
|
|
VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
|
|
VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
|
|
|
|
//
|
|
// Find the variable by walk through HOB, volatile and non-volatile variable store.
|
|
//
|
|
for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
|
|
if (VariableStoreHeader[Type] == NULL) {
|
|
continue;
|
|
}
|
|
|
|
PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
|
|
PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
|
|
PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
|
|
|
|
Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
|
|
if (!EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
}
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
Get index from supported language codes according to language string.
|
|
|
|
This code is used to get corresponding index in supported language codes. It can handle
|
|
RFC4646 and ISO639 language tags.
|
|
In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
|
|
In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
|
|
|
|
For example:
|
|
SupportedLang = "engfraengfra"
|
|
Lang = "eng"
|
|
Iso639Language = TRUE
|
|
The return value is "0".
|
|
Another example:
|
|
SupportedLang = "en;fr;en-US;fr-FR"
|
|
Lang = "fr-FR"
|
|
Iso639Language = FALSE
|
|
The return value is "3".
|
|
|
|
@param SupportedLang Platform supported language codes.
|
|
@param Lang Configured language.
|
|
@param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
|
|
|
|
@retval The index of language in the language codes.
|
|
|
|
**/
|
|
UINTN
|
|
GetIndexFromSupportedLangCodes(
|
|
IN CHAR8 *SupportedLang,
|
|
IN CHAR8 *Lang,
|
|
IN BOOLEAN Iso639Language
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINTN CompareLength;
|
|
UINTN LanguageLength;
|
|
|
|
if (Iso639Language) {
|
|
CompareLength = ISO_639_2_ENTRY_SIZE;
|
|
for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
|
|
if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
|
|
//
|
|
// Successfully find the index of Lang string in SupportedLang string.
|
|
//
|
|
Index = Index / CompareLength;
|
|
return Index;
|
|
}
|
|
}
|
|
ASSERT (FALSE);
|
|
return 0;
|
|
} else {
|
|
//
|
|
// Compare RFC4646 language code
|
|
//
|
|
Index = 0;
|
|
for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
|
|
|
|
for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
|
|
//
|
|
// Skip ';' characters in SupportedLang
|
|
//
|
|
for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
|
|
//
|
|
// Determine the length of the next language code in SupportedLang
|
|
//
|
|
for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
|
|
|
|
if ((CompareLength == LanguageLength) &&
|
|
(AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
|
|
//
|
|
// Successfully find the index of Lang string in SupportedLang string.
|
|
//
|
|
return Index;
|
|
}
|
|
}
|
|
ASSERT (FALSE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Get language string from supported language codes according to index.
|
|
|
|
This code is used to get corresponding language strings in supported language codes. It can handle
|
|
RFC4646 and ISO639 language tags.
|
|
In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
|
|
In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
|
|
|
|
For example:
|
|
SupportedLang = "engfraengfra"
|
|
Index = "1"
|
|
Iso639Language = TRUE
|
|
The return value is "fra".
|
|
Another example:
|
|
SupportedLang = "en;fr;en-US;fr-FR"
|
|
Index = "1"
|
|
Iso639Language = FALSE
|
|
The return value is "fr".
|
|
|
|
@param SupportedLang Platform supported language codes.
|
|
@param Index The index in supported language codes.
|
|
@param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
|
|
|
|
@retval The language string in the language codes.
|
|
|
|
**/
|
|
CHAR8 *
|
|
GetLangFromSupportedLangCodes (
|
|
IN CHAR8 *SupportedLang,
|
|
IN UINTN Index,
|
|
IN BOOLEAN Iso639Language
|
|
)
|
|
{
|
|
UINTN SubIndex;
|
|
UINTN CompareLength;
|
|
CHAR8 *Supported;
|
|
|
|
SubIndex = 0;
|
|
Supported = SupportedLang;
|
|
if (Iso639Language) {
|
|
//
|
|
// According to the index of Lang string in SupportedLang string to get the language.
|
|
// This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
|
|
// In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
|
|
//
|
|
CompareLength = ISO_639_2_ENTRY_SIZE;
|
|
mVariableModuleGlobal->Lang[CompareLength] = '\0';
|
|
return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
|
|
|
|
} else {
|
|
while (TRUE) {
|
|
//
|
|
// Take semicolon as delimitation, sequentially traverse supported language codes.
|
|
//
|
|
for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
|
|
Supported++;
|
|
}
|
|
if ((*Supported == '\0') && (SubIndex != Index)) {
|
|
//
|
|
// Have completed the traverse, but not find corrsponding string.
|
|
// This case is not allowed to happen.
|
|
//
|
|
ASSERT(FALSE);
|
|
return NULL;
|
|
}
|
|
if (SubIndex == Index) {
|
|
//
|
|
// According to the index of Lang string in SupportedLang string to get the language.
|
|
// As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
|
|
// In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
|
|
//
|
|
mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
|
|
return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
|
|
}
|
|
SubIndex++;
|
|
|
|
//
|
|
// Skip ';' characters in Supported
|
|
//
|
|
for (; *Supported != '\0' && *Supported == ';'; Supported++);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Returns a pointer to an allocated buffer that contains the best matching language
|
|
from a set of supported languages.
|
|
|
|
This function supports both ISO 639-2 and RFC 4646 language codes, but language
|
|
code types may not be mixed in a single call to this function. This function
|
|
supports a variable argument list that allows the caller to pass in a prioritized
|
|
list of language codes to test against all the language codes in SupportedLanguages.
|
|
|
|
If SupportedLanguages is NULL, then ASSERT().
|
|
|
|
@param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
|
|
contains a set of language codes in the format
|
|
specified by Iso639Language.
|
|
@param[in] Iso639Language If TRUE, then all language codes are assumed to be
|
|
in ISO 639-2 format. If FALSE, then all language
|
|
codes are assumed to be in RFC 4646 language format
|
|
@param[in] ... A variable argument list that contains pointers to
|
|
Null-terminated ASCII strings that contain one or more
|
|
language codes in the format specified by Iso639Language.
|
|
The first language code from each of these language
|
|
code lists is used to determine if it is an exact or
|
|
close match to any of the language codes in
|
|
SupportedLanguages. Close matches only apply to RFC 4646
|
|
language codes, and the matching algorithm from RFC 4647
|
|
is used to determine if a close match is present. If
|
|
an exact or close match is found, then the matching
|
|
language code from SupportedLanguages is returned. If
|
|
no matches are found, then the next variable argument
|
|
parameter is evaluated. The variable argument list
|
|
is terminated by a NULL.
|
|
|
|
@retval NULL The best matching language could not be found in SupportedLanguages.
|
|
@retval NULL There are not enough resources available to return the best matching
|
|
language.
|
|
@retval Other A pointer to a Null-terminated ASCII string that is the best matching
|
|
language in SupportedLanguages.
|
|
|
|
**/
|
|
CHAR8 *
|
|
EFIAPI
|
|
VariableGetBestLanguage (
|
|
IN CONST CHAR8 *SupportedLanguages,
|
|
IN BOOLEAN Iso639Language,
|
|
...
|
|
)
|
|
{
|
|
VA_LIST Args;
|
|
CHAR8 *Language;
|
|
UINTN CompareLength;
|
|
UINTN LanguageLength;
|
|
CONST CHAR8 *Supported;
|
|
CHAR8 *Buffer;
|
|
|
|
if (SupportedLanguages == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
VA_START (Args, Iso639Language);
|
|
while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
|
|
//
|
|
// Default to ISO 639-2 mode
|
|
//
|
|
CompareLength = 3;
|
|
LanguageLength = MIN (3, AsciiStrLen (Language));
|
|
|
|
//
|
|
// If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
|
|
//
|
|
if (!Iso639Language) {
|
|
for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
|
|
}
|
|
|
|
//
|
|
// Trim back the length of Language used until it is empty
|
|
//
|
|
while (LanguageLength > 0) {
|
|
//
|
|
// Loop through all language codes in SupportedLanguages
|
|
//
|
|
for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
|
|
//
|
|
// In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
|
|
//
|
|
if (!Iso639Language) {
|
|
//
|
|
// Skip ';' characters in Supported
|
|
//
|
|
for (; *Supported != '\0' && *Supported == ';'; Supported++);
|
|
//
|
|
// Determine the length of the next language code in Supported
|
|
//
|
|
for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
|
|
//
|
|
// If Language is longer than the Supported, then skip to the next language
|
|
//
|
|
if (LanguageLength > CompareLength) {
|
|
continue;
|
|
}
|
|
}
|
|
//
|
|
// See if the first LanguageLength characters in Supported match Language
|
|
//
|
|
if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
|
|
VA_END (Args);
|
|
|
|
Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
|
|
Buffer[CompareLength] = '\0';
|
|
return CopyMem (Buffer, Supported, CompareLength);
|
|
}
|
|
}
|
|
|
|
if (Iso639Language) {
|
|
//
|
|
// If ISO 639 mode, then each language can only be tested once
|
|
//
|
|
LanguageLength = 0;
|
|
} else {
|
|
//
|
|
// If RFC 4646 mode, then trim Language from the right to the next '-' character
|
|
//
|
|
for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
|
|
}
|
|
}
|
|
}
|
|
VA_END (Args);
|
|
|
|
//
|
|
// No matches were found
|
|
//
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
|
|
|
|
When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
|
|
|
|
According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
|
|
and are read-only. Therefore, in variable driver, only store the original value for other use.
|
|
|
|
@param[in] VariableName Name of variable.
|
|
|
|
@param[in] Data Variable data.
|
|
|
|
@param[in] DataSize Size of data. 0 means delete.
|
|
|
|
**/
|
|
VOID
|
|
AutoUpdateLangVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN VOID *Data,
|
|
IN UINTN DataSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CHAR8 *BestPlatformLang;
|
|
CHAR8 *BestLang;
|
|
UINTN Index;
|
|
UINT32 Attributes;
|
|
VARIABLE_POINTER_TRACK Variable;
|
|
BOOLEAN SetLanguageCodes;
|
|
|
|
//
|
|
// Don't do updates for delete operation
|
|
//
|
|
if (DataSize == 0) {
|
|
return;
|
|
}
|
|
|
|
SetLanguageCodes = FALSE;
|
|
|
|
if (StrCmp (VariableName, L"PlatformLangCodes") == 0) {
|
|
//
|
|
// PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
|
|
//
|
|
if (AtRuntime ()) {
|
|
return;
|
|
}
|
|
|
|
SetLanguageCodes = TRUE;
|
|
|
|
//
|
|
// According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
|
|
// Therefore, in variable driver, only store the original value for other use.
|
|
//
|
|
if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
|
|
FreePool (mVariableModuleGlobal->PlatformLangCodes);
|
|
}
|
|
mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
|
|
ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
|
|
|
|
//
|
|
// PlatformLang holds a single language from PlatformLangCodes,
|
|
// so the size of PlatformLangCodes is enough for the PlatformLang.
|
|
//
|
|
if (mVariableModuleGlobal->PlatformLang != NULL) {
|
|
FreePool (mVariableModuleGlobal->PlatformLang);
|
|
}
|
|
mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
|
|
ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
|
|
|
|
} else if (StrCmp (VariableName, L"LangCodes") == 0) {
|
|
//
|
|
// LangCodes is a volatile variable, so it can not be updated at runtime.
|
|
//
|
|
if (AtRuntime ()) {
|
|
return;
|
|
}
|
|
|
|
SetLanguageCodes = TRUE;
|
|
|
|
//
|
|
// According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
|
|
// Therefore, in variable driver, only store the original value for other use.
|
|
//
|
|
if (mVariableModuleGlobal->LangCodes != NULL) {
|
|
FreePool (mVariableModuleGlobal->LangCodes);
|
|
}
|
|
mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
|
|
ASSERT (mVariableModuleGlobal->LangCodes != NULL);
|
|
}
|
|
|
|
if (SetLanguageCodes
|
|
&& (mVariableModuleGlobal->PlatformLangCodes != NULL)
|
|
&& (mVariableModuleGlobal->LangCodes != NULL)) {
|
|
//
|
|
// Update Lang if PlatformLang is already set
|
|
// Update PlatformLang if Lang is already set
|
|
//
|
|
Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Update Lang
|
|
//
|
|
VariableName = L"PlatformLang";
|
|
Data = GetVariableDataPtr (Variable.CurrPtr);
|
|
DataSize = Variable.CurrPtr->DataSize;
|
|
} else {
|
|
Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Update PlatformLang
|
|
//
|
|
VariableName = L"Lang";
|
|
Data = GetVariableDataPtr (Variable.CurrPtr);
|
|
DataSize = Variable.CurrPtr->DataSize;
|
|
} else {
|
|
//
|
|
// Neither PlatformLang nor Lang is set, directly return
|
|
//
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
|
|
//
|
|
Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
|
|
|
|
if (StrCmp (VariableName, L"PlatformLang") == 0) {
|
|
//
|
|
// Update Lang when PlatformLangCodes/LangCodes were set.
|
|
//
|
|
if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
|
|
//
|
|
// When setting PlatformLang, firstly get most matched language string from supported language codes.
|
|
//
|
|
BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
|
|
if (BestPlatformLang != NULL) {
|
|
//
|
|
// Get the corresponding index in language codes.
|
|
//
|
|
Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
|
|
|
|
//
|
|
// Get the corresponding ISO639 language tag according to RFC4646 language tag.
|
|
//
|
|
BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
|
|
|
|
//
|
|
// Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
|
|
//
|
|
FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
|
|
Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang,
|
|
ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
|
|
|
|
DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
|
|
|
|
ASSERT_EFI_ERROR(Status);
|
|
}
|
|
}
|
|
|
|
} else if (StrCmp (VariableName, L"Lang") == 0) {
|
|
//
|
|
// Update PlatformLang when PlatformLangCodes/LangCodes were set.
|
|
//
|
|
if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
|
|
//
|
|
// When setting Lang, firstly get most matched language string from supported language codes.
|
|
//
|
|
BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
|
|
if (BestLang != NULL) {
|
|
//
|
|
// Get the corresponding index in language codes.
|
|
//
|
|
Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
|
|
|
|
//
|
|
// Get the corresponding RFC4646 language tag according to ISO639 language tag.
|
|
//
|
|
BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
|
|
|
|
//
|
|
// Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
|
|
//
|
|
FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
|
|
Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang,
|
|
AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
|
|
|
|
DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
|
|
index of associated public key is needed.
|
|
|
|
@param[in] VariableName Name of variable.
|
|
@param[in] VendorGuid Guid of variable.
|
|
@param[in] Data Variable data.
|
|
@param[in] DataSize Size of data. 0 means delete.
|
|
@param[in] Attributes Attributes of the variable.
|
|
@param[in] KeyIndex Index of associated public key.
|
|
@param[in] MonotonicCount Value of associated monotonic count.
|
|
@param[in] CacheVariable The variable information which is used to keep track of variable usage.
|
|
@param[in] TimeStamp Value of associated TimeStamp.
|
|
|
|
@retval EFI_SUCCESS The update operation is success.
|
|
@retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
UpdateVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
IN VOID *Data,
|
|
IN UINTN DataSize,
|
|
IN UINT32 Attributes OPTIONAL,
|
|
IN UINT32 KeyIndex OPTIONAL,
|
|
IN UINT64 MonotonicCount OPTIONAL,
|
|
IN VARIABLE_POINTER_TRACK *CacheVariable,
|
|
IN EFI_TIME *TimeStamp OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
VARIABLE_HEADER *NextVariable;
|
|
UINTN ScratchSize;
|
|
UINTN ScratchDataSize;
|
|
UINTN NonVolatileVarableStoreSize;
|
|
UINTN VarNameOffset;
|
|
UINTN VarDataOffset;
|
|
UINTN VarNameSize;
|
|
UINTN VarSize;
|
|
BOOLEAN Volatile;
|
|
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
|
|
UINT8 State;
|
|
BOOLEAN Reclaimed;
|
|
VARIABLE_POINTER_TRACK *Variable;
|
|
VARIABLE_POINTER_TRACK NvVariable;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader;
|
|
UINTN CacheOffset;
|
|
UINTN BufSize;
|
|
UINTN DataOffset;
|
|
UINTN RevBufSize;
|
|
|
|
if (mVariableModuleGlobal->FvbInstance == NULL) {
|
|
//
|
|
// The FVB protocol is not installed, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
|
|
//
|
|
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
|
|
//
|
|
// Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
|
|
//
|
|
return EFI_NOT_AVAILABLE_YET;
|
|
} else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
|
|
//
|
|
// Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
|
|
// The authenticated variable perhaps is not initialized, just return here.
|
|
//
|
|
return EFI_NOT_AVAILABLE_YET;
|
|
}
|
|
}
|
|
|
|
if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
|
|
Variable = CacheVariable;
|
|
} else {
|
|
//
|
|
// Update/Delete existing NV variable.
|
|
// CacheVariable points to the variable in the memory copy of Flash area
|
|
// Now let Variable points to the same variable in Flash area.
|
|
//
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
|
|
Variable = &NvVariable;
|
|
Variable->StartPtr = GetStartPointer (VariableStoreHeader);
|
|
Variable->EndPtr = GetEndPointer (VariableStoreHeader);
|
|
Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
|
|
Variable->Volatile = FALSE;
|
|
}
|
|
|
|
Fvb = mVariableModuleGlobal->FvbInstance;
|
|
Reclaimed = FALSE;
|
|
|
|
//
|
|
// Tricky part: Use scratch data area at the end of volatile variable store
|
|
// as a temporary storage.
|
|
//
|
|
NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
|
|
ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
|
|
ScratchDataSize = ScratchSize - sizeof (VARIABLE_HEADER) - StrSize (VariableName) - GET_PAD_SIZE (StrSize (VariableName));
|
|
|
|
if (Variable->CurrPtr != NULL) {
|
|
//
|
|
// Update/Delete existing variable.
|
|
//
|
|
if (AtRuntime ()) {
|
|
//
|
|
// If AtRuntime and the variable is Volatile and Runtime Access,
|
|
// the volatile is ReadOnly, and SetVariable should be aborted and
|
|
// return EFI_WRITE_PROTECTED.
|
|
//
|
|
if (Variable->Volatile) {
|
|
Status = EFI_WRITE_PROTECTED;
|
|
goto Done;
|
|
}
|
|
//
|
|
// Only variable that have NV attributes can be updated/deleted in Runtime.
|
|
//
|
|
if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Only variable that have RT attributes can be updated/deleted in Runtime.
|
|
//
|
|
if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Setting a data variable with no access, or zero DataSize attributes
|
|
// causes it to be deleted.
|
|
// When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
|
|
// not delete the variable.
|
|
//
|
|
if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
|
|
State = Variable->CurrPtr->State;
|
|
State &= VAR_DELETED;
|
|
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
Variable->Volatile,
|
|
FALSE,
|
|
Fvb,
|
|
(UINTN) &Variable->CurrPtr->State,
|
|
sizeof (UINT8),
|
|
&State
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
|
|
if (!Variable->Volatile) {
|
|
CacheVariable->CurrPtr->State = State;
|
|
}
|
|
}
|
|
goto Done;
|
|
}
|
|
//
|
|
// If the variable is marked valid, and the same data has been passed in,
|
|
// then return to the caller immediately.
|
|
//
|
|
if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
|
|
(CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) &&
|
|
((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
|
|
(TimeStamp == NULL)) {
|
|
//
|
|
// Variable content unchanged and no need to update timestamp, just return.
|
|
//
|
|
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
|
|
Status = EFI_SUCCESS;
|
|
goto Done;
|
|
} else if ((Variable->CurrPtr->State == VAR_ADDED) ||
|
|
(Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
|
|
|
|
//
|
|
// EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable
|
|
//
|
|
if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
|
|
//
|
|
// Cache the previous variable data into StorageArea.
|
|
//
|
|
DataOffset = sizeof (VARIABLE_HEADER) + Variable->CurrPtr->NameSize + GET_PAD_SIZE (Variable->CurrPtr->NameSize);
|
|
CopyMem (mStorageArea, (UINT8*)((UINTN) Variable->CurrPtr + DataOffset), Variable->CurrPtr->DataSize);
|
|
|
|
if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) ||
|
|
(CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0))) {
|
|
//
|
|
// For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID (i.e. where the data
|
|
// buffer is formatted as EFI_SIGNATURE_LIST), the driver shall not perform an append of
|
|
// EFI_SIGNATURE_DATA values that are already part of the existing variable value.
|
|
//
|
|
BufSize = AppendSignatureList (mStorageArea, Variable->CurrPtr->DataSize, Data, DataSize);
|
|
if (BufSize == Variable->CurrPtr->DataSize) {
|
|
if ((TimeStamp == NULL) || CompareTimeStamp (TimeStamp, &Variable->CurrPtr->TimeStamp)) {
|
|
//
|
|
// New EFI_SIGNATURE_DATA is not found and timestamp is not later
|
|
// than current timestamp, return EFI_SUCCESS directly.
|
|
//
|
|
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
|
|
Status = EFI_SUCCESS;
|
|
goto Done;
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// For other Variables, append the new data to the end of previous data.
|
|
//
|
|
CopyMem ((UINT8*)((UINTN) mStorageArea + Variable->CurrPtr->DataSize), Data, DataSize);
|
|
BufSize = Variable->CurrPtr->DataSize + DataSize;
|
|
}
|
|
|
|
RevBufSize = MIN (PcdGet32 (PcdMaxVariableSize), ScratchDataSize);
|
|
if (BufSize > RevBufSize) {
|
|
//
|
|
// If variable size (previous + current) is bigger than reserved buffer in runtime,
|
|
// return EFI_OUT_OF_RESOURCES.
|
|
//
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Override Data and DataSize which are used for combined data area including previous and new data.
|
|
//
|
|
Data = mStorageArea;
|
|
DataSize = BufSize;
|
|
}
|
|
|
|
//
|
|
// Mark the old variable as in delete transition.
|
|
//
|
|
State = Variable->CurrPtr->State;
|
|
State &= VAR_IN_DELETED_TRANSITION;
|
|
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
Variable->Volatile,
|
|
FALSE,
|
|
Fvb,
|
|
(UINTN) &Variable->CurrPtr->State,
|
|
sizeof (UINT8),
|
|
&State
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
if (!Variable->Volatile) {
|
|
CacheVariable->CurrPtr->State = State;
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// Not found existing variable. Create a new variable.
|
|
//
|
|
|
|
if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
|
|
Status = EFI_SUCCESS;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Make sure we are trying to create a new variable.
|
|
// Setting a data variable with zero DataSize or no access attributes means to delete it.
|
|
//
|
|
if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
|
|
Status = EFI_NOT_FOUND;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Only variable have NV|RT attribute can be created in Runtime.
|
|
//
|
|
if (AtRuntime () &&
|
|
(((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Function part - create a new variable and copy the data.
|
|
// Both update a variable and create a variable will come here.
|
|
|
|
SetMem (NextVariable, ScratchSize, 0xff);
|
|
|
|
NextVariable->StartId = VARIABLE_DATA;
|
|
//
|
|
// NextVariable->State = VAR_ADDED;
|
|
//
|
|
NextVariable->Reserved = 0;
|
|
NextVariable->PubKeyIndex = KeyIndex;
|
|
NextVariable->MonotonicCount = MonotonicCount;
|
|
ZeroMem (&NextVariable->TimeStamp, sizeof (EFI_TIME));
|
|
|
|
if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
|
|
(TimeStamp != NULL)) {
|
|
if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
|
|
CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
|
|
} else {
|
|
//
|
|
// In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
|
|
// when the new TimeStamp value is later than the current timestamp associated
|
|
// with the variable, we need associate the new timestamp with the updated value.
|
|
//
|
|
if (Variable->CurrPtr != NULL) {
|
|
if (CompareTimeStamp (&Variable->CurrPtr->TimeStamp, TimeStamp)) {
|
|
CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
|
|
// Attributes bitmask parameter of a GetVariable() call.
|
|
//
|
|
NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
|
|
|
|
VarNameOffset = sizeof (VARIABLE_HEADER);
|
|
VarNameSize = StrSize (VariableName);
|
|
CopyMem (
|
|
(UINT8 *) ((UINTN) NextVariable + VarNameOffset),
|
|
VariableName,
|
|
VarNameSize
|
|
);
|
|
VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
|
|
CopyMem (
|
|
(UINT8 *) ((UINTN) NextVariable + VarDataOffset),
|
|
Data,
|
|
DataSize
|
|
);
|
|
CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
|
|
//
|
|
// There will be pad bytes after Data, the NextVariable->NameSize and
|
|
// NextVariable->DataSize should not include pad size so that variable
|
|
// service can get actual size in GetVariable.
|
|
//
|
|
NextVariable->NameSize = (UINT32)VarNameSize;
|
|
NextVariable->DataSize = (UINT32)DataSize;
|
|
|
|
//
|
|
// The actual size of the variable that stores in storage should
|
|
// include pad size.
|
|
//
|
|
VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
|
|
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
|
|
//
|
|
// Create a nonvolatile variable.
|
|
//
|
|
Volatile = FALSE;
|
|
NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
|
|
if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
|
|
&& ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
|
|
|| (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
|
|
&& ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
|
|
if (AtRuntime ()) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Done;
|
|
}
|
|
//
|
|
// Perform garbage collection & reclaim operation.
|
|
//
|
|
Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
|
|
&mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable->CurrPtr);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// If still no enough space, return out of resources.
|
|
//
|
|
if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
|
|
&& ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
|
|
|| (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
|
|
&& ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Done;
|
|
}
|
|
Reclaimed = TRUE;
|
|
}
|
|
//
|
|
// Four steps
|
|
// 1. Write variable header
|
|
// 2. Set variable state to header valid
|
|
// 3. Write variable data
|
|
// 4. Set variable state to valid
|
|
//
|
|
//
|
|
// Step 1:
|
|
//
|
|
CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
FALSE,
|
|
TRUE,
|
|
Fvb,
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset,
|
|
sizeof (VARIABLE_HEADER),
|
|
(UINT8 *) NextVariable
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Step 2:
|
|
//
|
|
NextVariable->State = VAR_HEADER_VALID_ONLY;
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
FALSE,
|
|
TRUE,
|
|
Fvb,
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
|
|
sizeof (UINT8),
|
|
&NextVariable->State
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Step 3:
|
|
//
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
FALSE,
|
|
TRUE,
|
|
Fvb,
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
|
|
(UINT32) VarSize - sizeof (VARIABLE_HEADER),
|
|
(UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Step 4:
|
|
//
|
|
NextVariable->State = VAR_ADDED;
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
FALSE,
|
|
TRUE,
|
|
Fvb,
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
|
|
sizeof (UINT8),
|
|
&NextVariable->State
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
|
|
|
|
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
|
|
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
|
|
} else {
|
|
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
|
|
}
|
|
//
|
|
// update the memory copy of Flash region.
|
|
//
|
|
CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
|
|
} else {
|
|
//
|
|
// Create a volatile variable.
|
|
//
|
|
Volatile = TRUE;
|
|
|
|
if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
|
|
((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
|
|
//
|
|
// Perform garbage collection & reclaim operation.
|
|
//
|
|
Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
|
|
&mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable->CurrPtr);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// If still no enough space, return out of resources.
|
|
//
|
|
if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
|
|
((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size
|
|
) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Done;
|
|
}
|
|
Reclaimed = TRUE;
|
|
}
|
|
|
|
NextVariable->State = VAR_ADDED;
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
TRUE,
|
|
TRUE,
|
|
Fvb,
|
|
mVariableModuleGlobal->VolatileLastVariableOffset,
|
|
(UINT32) VarSize,
|
|
(UINT8 *) NextVariable
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
|
|
}
|
|
|
|
//
|
|
// Mark the old variable as deleted.
|
|
//
|
|
if (!Reclaimed && !EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
|
|
State = Variable->CurrPtr->State;
|
|
State &= VAR_DELETED;
|
|
|
|
Status = UpdateVariableStore (
|
|
&mVariableModuleGlobal->VariableGlobal,
|
|
Variable->Volatile,
|
|
FALSE,
|
|
Fvb,
|
|
(UINTN) &Variable->CurrPtr->State,
|
|
sizeof (UINT8),
|
|
&State
|
|
);
|
|
if (!EFI_ERROR (Status) && !Variable->Volatile) {
|
|
CacheVariable->CurrPtr->State = State;
|
|
}
|
|
}
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
|
|
}
|
|
|
|
Done:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check if a Unicode character is a hexadecimal character.
|
|
|
|
This function checks if a Unicode character is a
|
|
hexadecimal character. The valid hexadecimal character is
|
|
L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
|
|
|
|
|
|
@param Char The character to check against.
|
|
|
|
@retval TRUE If the Char is a hexadecmial character.
|
|
@retval FALSE If the Char is not a hexadecmial character.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
IsHexaDecimalDigitCharacter (
|
|
IN CHAR16 Char
|
|
)
|
|
{
|
|
return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
|
|
}
|
|
|
|
/**
|
|
|
|
This code checks if variable is hardware error record variable or not.
|
|
|
|
According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
|
|
and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
|
|
|
|
@param VariableName Pointer to variable name.
|
|
@param VendorGuid Variable Vendor Guid.
|
|
|
|
@retval TRUE Variable is hardware error record variable.
|
|
@retval FALSE Variable is not hardware error record variable.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
IsHwErrRecVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid
|
|
)
|
|
{
|
|
if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
|
|
(StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
|
|
(StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
|
|
!IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
|
|
!IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
|
|
!IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
|
|
!IsHexaDecimalDigitCharacter (VariableName[0xB])) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
This code checks if variable should be treated as read-only variable.
|
|
|
|
@param[in] VariableName Name of the Variable.
|
|
@param[in] VendorGuid GUID of the Variable.
|
|
|
|
@retval TRUE This variable is read-only variable.
|
|
@retval FALSE This variable is NOT read-only variable.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsReadOnlyVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid
|
|
)
|
|
{
|
|
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)) {
|
|
if ((StrCmp (VariableName, EFI_SETUP_MODE_NAME) == 0) ||
|
|
(StrCmp (VariableName, EFI_SIGNATURE_SUPPORT_NAME) == 0) ||
|
|
(StrCmp (VariableName, EFI_SECURE_BOOT_MODE_NAME) == 0)) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
|
|
This code finds variable in storage blocks (Volatile or Non-Volatile).
|
|
|
|
Caution: This function may receive untrusted input.
|
|
This function may be invoked in SMM mode, and datasize is external input.
|
|
This function will do basic validation, before parse the data.
|
|
|
|
@param VariableName Name of Variable to be found.
|
|
@param VendorGuid Variable vendor GUID.
|
|
@param Attributes Attribute value of the variable found.
|
|
@param DataSize Size of Data found. If size is less than the
|
|
data, this value contains the required size.
|
|
@param Data Data pointer.
|
|
|
|
@return EFI_INVALID_PARAMETER Invalid parameter.
|
|
@return EFI_SUCCESS Find the specified variable.
|
|
@return EFI_NOT_FOUND Not found.
|
|
@return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
VariableServiceGetVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
OUT UINT32 *Attributes OPTIONAL,
|
|
IN OUT UINTN *DataSize,
|
|
OUT VOID *Data
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
VARIABLE_POINTER_TRACK Variable;
|
|
UINTN VarDataSize;
|
|
|
|
if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
|
|
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Get data size
|
|
//
|
|
VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
|
|
ASSERT (VarDataSize != 0);
|
|
|
|
if (*DataSize >= VarDataSize) {
|
|
if (Data == NULL) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto Done;
|
|
}
|
|
|
|
CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
|
|
if (Attributes != NULL) {
|
|
*Attributes = Variable.CurrPtr->Attributes;
|
|
}
|
|
|
|
*DataSize = VarDataSize;
|
|
UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
|
|
|
|
Status = EFI_SUCCESS;
|
|
goto Done;
|
|
} else {
|
|
*DataSize = VarDataSize;
|
|
Status = EFI_BUFFER_TOO_SMALL;
|
|
goto Done;
|
|
}
|
|
|
|
Done:
|
|
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
This code Finds the Next available variable.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
|
|
|
|
@param VariableNameSize Size of the variable name.
|
|
@param VariableName Pointer to variable name.
|
|
@param VendorGuid Variable Vendor Guid.
|
|
|
|
@return EFI_INVALID_PARAMETER Invalid parameter.
|
|
@return EFI_SUCCESS Find the specified variable.
|
|
@return EFI_NOT_FOUND Not found.
|
|
@return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
VariableServiceGetNextVariableName (
|
|
IN OUT UINTN *VariableNameSize,
|
|
IN OUT CHAR16 *VariableName,
|
|
IN OUT EFI_GUID *VendorGuid
|
|
)
|
|
{
|
|
VARIABLE_STORE_TYPE Type;
|
|
VARIABLE_POINTER_TRACK Variable;
|
|
VARIABLE_POINTER_TRACK VariableInHob;
|
|
UINTN VarNameSize;
|
|
EFI_STATUS Status;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
|
|
|
|
if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
|
|
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
|
|
if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
if (VariableName[0] != 0) {
|
|
//
|
|
// If variable name is not NULL, get next variable.
|
|
//
|
|
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
|
|
}
|
|
|
|
//
|
|
// 0: Volatile, 1: HOB, 2: Non-Volatile.
|
|
// The index and attributes mapping must be kept in this order as FindVariable
|
|
// makes use of this mapping to implement search algorithm.
|
|
//
|
|
VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
|
|
VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
|
|
VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
|
|
|
|
while (TRUE) {
|
|
//
|
|
// Switch from Volatile to HOB, to Non-Volatile.
|
|
//
|
|
while ((Variable.CurrPtr >= Variable.EndPtr) ||
|
|
(Variable.CurrPtr == NULL) ||
|
|
!IsValidVariableHeader (Variable.CurrPtr)
|
|
) {
|
|
//
|
|
// Find current storage index
|
|
//
|
|
for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
|
|
if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
|
|
break;
|
|
}
|
|
}
|
|
ASSERT (Type < VariableStoreTypeMax);
|
|
//
|
|
// Switch to next storage
|
|
//
|
|
for (Type++; Type < VariableStoreTypeMax; Type++) {
|
|
if (VariableStoreHeader[Type] != NULL) {
|
|
break;
|
|
}
|
|
}
|
|
//
|
|
// Capture the case that
|
|
// 1. current storage is the last one, or
|
|
// 2. no further storage
|
|
//
|
|
if (Type == VariableStoreTypeMax) {
|
|
Status = EFI_NOT_FOUND;
|
|
goto Done;
|
|
}
|
|
Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
|
|
Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
|
|
Variable.CurrPtr = Variable.StartPtr;
|
|
}
|
|
|
|
//
|
|
// Variable is found
|
|
//
|
|
if (Variable.CurrPtr->State == VAR_ADDED) {
|
|
if ((AtRuntime () && ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) == 0) {
|
|
|
|
//
|
|
// Don't return NV variable when HOB overrides it
|
|
//
|
|
if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
|
|
(Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
|
|
) {
|
|
VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
|
|
VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
|
|
Status = FindVariableEx (
|
|
GetVariableNamePtr (Variable.CurrPtr),
|
|
&Variable.CurrPtr->VendorGuid,
|
|
FALSE,
|
|
&VariableInHob
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
|
|
ASSERT (VarNameSize != 0);
|
|
|
|
if (VarNameSize <= *VariableNameSize) {
|
|
CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
|
|
CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
|
|
Status = EFI_SUCCESS;
|
|
} else {
|
|
Status = EFI_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
*VariableNameSize = VarNameSize;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
|
|
}
|
|
|
|
Done:
|
|
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
|
|
This code sets variable in storage blocks (Volatile or Non-Volatile).
|
|
|
|
Caution: This function may receive untrusted input.
|
|
This function may be invoked in SMM mode, and datasize and data are external input.
|
|
This function will do basic validation, before parse the data.
|
|
This function will parse the authentication carefully to avoid security issues, like
|
|
buffer overflow, integer overflow.
|
|
This function will check attribute carefully to avoid authentication bypass.
|
|
|
|
@param VariableName Name of Variable to be found.
|
|
@param VendorGuid Variable vendor GUID.
|
|
@param Attributes Attribute value of the variable found
|
|
@param DataSize Size of Data found. If size is less than the
|
|
data, this value contains the required size.
|
|
@param Data Data pointer.
|
|
|
|
@return EFI_INVALID_PARAMETER Invalid parameter.
|
|
@return EFI_SUCCESS Set successfully.
|
|
@return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
|
|
@return EFI_NOT_FOUND Not found.
|
|
@return EFI_WRITE_PROTECTED Variable is read-only.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
VariableServiceSetVariable (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid,
|
|
IN UINT32 Attributes,
|
|
IN UINTN DataSize,
|
|
IN VOID *Data
|
|
)
|
|
{
|
|
VARIABLE_POINTER_TRACK Variable;
|
|
EFI_STATUS Status;
|
|
VARIABLE_HEADER *NextVariable;
|
|
EFI_PHYSICAL_ADDRESS Point;
|
|
UINTN PayloadSize;
|
|
|
|
//
|
|
// Check input parameters.
|
|
//
|
|
if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (IsReadOnlyVariable (VariableName, VendorGuid)) {
|
|
return EFI_WRITE_PROTECTED;
|
|
}
|
|
|
|
if (DataSize != 0 && Data == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Make sure if runtime bit is set, boot service bit is set also.
|
|
//
|
|
if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
|
|
// cannot be set both.
|
|
//
|
|
if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
|
|
&& ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
|
|
if (DataSize < AUTHINFO_SIZE) {
|
|
//
|
|
// Try to write Authenticated Variable without AuthInfo.
|
|
//
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
PayloadSize = DataSize - AUTHINFO_SIZE;
|
|
} else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
|
|
//
|
|
// Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
|
|
//
|
|
if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
|
|
((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
|
|
((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
|
|
} else {
|
|
PayloadSize = DataSize;
|
|
}
|
|
|
|
//
|
|
// The size of the VariableName, including the Unicode Null in bytes plus
|
|
// the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
|
|
// bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
|
|
//
|
|
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
|
if ((PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize)) ||
|
|
(sizeof (VARIABLE_HEADER) + StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
} else {
|
|
//
|
|
// The size of the VariableName, including the Unicode Null in bytes plus
|
|
// the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
|
|
//
|
|
if ((PayloadSize > PcdGet32 (PcdMaxVariableSize)) ||
|
|
(sizeof (VARIABLE_HEADER) + StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxVariableSize))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
if (AtRuntime ()) {
|
|
//
|
|
// HwErrRecSupport Global Variable identifies the level of hardware error record persistence
|
|
// support implemented by the platform. This variable is only modified by firmware and is read-only to the OS.
|
|
//
|
|
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, L"HwErrRecSupport") == 0)) {
|
|
return EFI_WRITE_PROTECTED;
|
|
}
|
|
}
|
|
|
|
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
|
|
//
|
|
// Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
|
|
//
|
|
if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
|
|
Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
|
|
//
|
|
// Parse non-volatile variable data and get last variable offset.
|
|
//
|
|
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
|
|
while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
|
|
&& IsValidVariableHeader (NextVariable)) {
|
|
NextVariable = GetNextVariablePtr (NextVariable);
|
|
}
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
|
|
}
|
|
|
|
//
|
|
// Check whether the input variable is already existed.
|
|
//
|
|
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
|
|
if (!EFI_ERROR (Status)) {
|
|
if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
|
|
return EFI_WRITE_PROTECTED;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
|
|
//
|
|
AutoUpdateLangVariable (VariableName, Data, DataSize);
|
|
//
|
|
// Process PK, KEK, Sigdb seperately.
|
|
//
|
|
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){
|
|
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, TRUE);
|
|
} else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) {
|
|
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
|
|
} else if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
|
|
((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) {
|
|
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
|
|
if (EFI_ERROR (Status)) {
|
|
Status = ProcessVarWithKek (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
|
|
}
|
|
} else {
|
|
Status = ProcessVariable (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
|
|
}
|
|
|
|
InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
|
|
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
|
|
This code returns information about the EFI variables.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
|
|
|
|
@param Attributes Attributes bitmask to specify the type of variables
|
|
on which to return information.
|
|
@param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
|
|
for the EFI variables associated with the attributes specified.
|
|
@param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
|
|
for EFI variables associated with the attributes specified.
|
|
@param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
|
|
associated with the attributes specified.
|
|
|
|
@return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
|
|
@return EFI_SUCCESS Query successfully.
|
|
@return EFI_UNSUPPORTED The attribute is not supported on this platform.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
VariableServiceQueryVariableInfo (
|
|
IN UINT32 Attributes,
|
|
OUT UINT64 *MaximumVariableStorageSize,
|
|
OUT UINT64 *RemainingVariableStorageSize,
|
|
OUT UINT64 *MaximumVariableSize
|
|
)
|
|
{
|
|
VARIABLE_HEADER *Variable;
|
|
VARIABLE_HEADER *NextVariable;
|
|
UINT64 VariableSize;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader;
|
|
UINT64 CommonVariableTotalSize;
|
|
UINT64 HwErrVariableTotalSize;
|
|
|
|
CommonVariableTotalSize = 0;
|
|
HwErrVariableTotalSize = 0;
|
|
|
|
if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
|
|
//
|
|
// Make sure the Attributes combination is supported by the platform.
|
|
//
|
|
return EFI_UNSUPPORTED;
|
|
} else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
|
|
//
|
|
// Make sure if runtime bit is set, boot service bit is set also.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
} else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
|
|
//
|
|
// Make sure RT Attribute is set if we are in Runtime phase.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
} else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
|
//
|
|
// Make sure Hw Attribute is set with NV.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
|
|
if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
|
|
//
|
|
// Query is Volatile related.
|
|
//
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
|
|
} else {
|
|
//
|
|
// Query is Non-Volatile related.
|
|
//
|
|
VariableStoreHeader = mNvVariableCache;
|
|
}
|
|
|
|
//
|
|
// Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
|
|
// with the storage size (excluding the storage header size).
|
|
//
|
|
*MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
|
|
|
|
//
|
|
// Harware error record variable needs larger size.
|
|
//
|
|
if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
*MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
|
|
*MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
|
|
} else {
|
|
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
|
|
ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
|
|
*MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
|
|
}
|
|
|
|
//
|
|
// Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
|
|
//
|
|
*MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
|
|
}
|
|
|
|
//
|
|
// Point to the starting address of the variables.
|
|
//
|
|
Variable = GetStartPointer (VariableStoreHeader);
|
|
|
|
//
|
|
// Now walk through the related variable store.
|
|
//
|
|
while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
|
|
NextVariable = GetNextVariablePtr (Variable);
|
|
VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
|
|
|
|
if (AtRuntime ()) {
|
|
//
|
|
// We don't take the state of the variables in mind
|
|
// when calculating RemainingVariableStorageSize,
|
|
// since the space occupied by variables not marked with
|
|
// VAR_ADDED is not allowed to be reclaimed in Runtime.
|
|
//
|
|
if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
|
HwErrVariableTotalSize += VariableSize;
|
|
} else {
|
|
CommonVariableTotalSize += VariableSize;
|
|
}
|
|
} else {
|
|
//
|
|
// Only care about Variables with State VAR_ADDED, because
|
|
// the space not marked as VAR_ADDED is reclaimable now.
|
|
//
|
|
if (Variable->State == VAR_ADDED) {
|
|
if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
|
HwErrVariableTotalSize += VariableSize;
|
|
} else {
|
|
CommonVariableTotalSize += VariableSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Go to the next one.
|
|
//
|
|
Variable = NextVariable;
|
|
}
|
|
|
|
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
|
|
*RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
|
|
}else {
|
|
*RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
|
|
}
|
|
|
|
if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
|
|
*MaximumVariableSize = 0;
|
|
} else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
|
|
*MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
|
|
}
|
|
|
|
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
This function reclaims variable storage if free size is below the threshold.
|
|
|
|
Caution: This function may be invoked at SMM mode.
|
|
Care must be taken to make sure not security issue.
|
|
|
|
**/
|
|
VOID
|
|
ReclaimForOS(
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN CommonVariableSpace;
|
|
UINTN RemainingCommonVariableSpace;
|
|
UINTN RemainingHwErrVariableSpace;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
|
|
|
|
RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
|
|
|
|
RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
|
|
//
|
|
// Check if the free area is blow a threshold.
|
|
//
|
|
if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
|
|
|| ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
|
|
(RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
|
|
Status = Reclaim (
|
|
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
|
|
&mVariableModuleGlobal->NonVolatileLastVariableOffset,
|
|
FALSE,
|
|
NULL
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Initializes variable write service after FVB was ready.
|
|
|
|
@retval EFI_SUCCESS Function successfully executed.
|
|
@retval Others Fail to initialize the variable service.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VariableWriteServiceInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader;
|
|
UINTN Index;
|
|
UINT8 Data;
|
|
EFI_PHYSICAL_ADDRESS VariableStoreBase;
|
|
VARIABLE_HEADER *Variable;
|
|
VOID *VariableData;
|
|
|
|
VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
|
|
|
|
//
|
|
// Check if the free area is really free.
|
|
//
|
|
for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
|
|
Data = ((UINT8 *) mNvVariableCache)[Index];
|
|
if (Data != 0xff) {
|
|
//
|
|
// There must be something wrong in variable store, do reclaim operation.
|
|
//
|
|
Status = Reclaim (
|
|
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
|
|
&mVariableModuleGlobal->NonVolatileLastVariableOffset,
|
|
FALSE,
|
|
NULL
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Flush the HOB variable to flash and invalidate HOB variable.
|
|
//
|
|
if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
|
|
//
|
|
// Clear the HobVariableBase to avoid SetVariable() updating the variable in HOB
|
|
//
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
|
|
mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
|
|
|
|
for ( Variable = GetStartPointer (VariableStoreHeader)
|
|
; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
|
|
; Variable = GetNextVariablePtr (Variable)
|
|
) {
|
|
ASSERT (Variable->State == VAR_ADDED);
|
|
ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
|
|
VariableData = GetVariableDataPtr (Variable);
|
|
Status = VariableServiceSetVariable (
|
|
GetVariableNamePtr (Variable),
|
|
&Variable->VendorGuid,
|
|
Variable->Attributes,
|
|
Variable->DataSize,
|
|
VariableData
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Authenticated variable initialize.
|
|
//
|
|
Status = AutenticatedVariableServiceInitialize ();
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Initializes variable store area for non-volatile and volatile variable.
|
|
|
|
@retval EFI_SUCCESS Function successfully executed.
|
|
@retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VariableCommonInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
VARIABLE_STORE_HEADER *VolatileVariableStore;
|
|
VARIABLE_STORE_HEADER *VariableStoreHeader;
|
|
VARIABLE_HEADER *NextVariable;
|
|
EFI_PHYSICAL_ADDRESS TempVariableStoreHeader;
|
|
EFI_PHYSICAL_ADDRESS VariableStoreBase;
|
|
UINT64 VariableStoreLength;
|
|
UINTN ScratchSize;
|
|
UINTN VariableSize;
|
|
EFI_HOB_GUID_TYPE *GuidHob;
|
|
|
|
//
|
|
// Allocate runtime memory for variable driver global structure.
|
|
//
|
|
mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
|
|
if (mVariableModuleGlobal == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
|
|
|
|
//
|
|
// Note that in EdkII variable driver implementation, Hardware Error Record type variable
|
|
// is stored with common variable in the same NV region. So the platform integrator should
|
|
// ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
|
|
// PcdFlashNvStorageVariableSize.
|
|
//
|
|
ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
|
|
|
|
//
|
|
// Get HOB variable store.
|
|
//
|
|
GuidHob = GetFirstGuidHob (&gEfiAuthenticatedVariableGuid);
|
|
if (GuidHob != NULL) {
|
|
VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
|
|
if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
|
|
mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
|
|
} else {
|
|
DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
|
|
}
|
|
}
|
|
|
|
//
|
|
// Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
|
|
//
|
|
ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
|
|
VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
|
|
if (VolatileVariableStore == NULL) {
|
|
FreePool (mVariableModuleGlobal);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
|
|
|
|
//
|
|
// Initialize Variable Specific Data.
|
|
//
|
|
mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
|
|
mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
|
|
mVariableModuleGlobal->FvbInstance = NULL;
|
|
|
|
CopyGuid (&VolatileVariableStore->Signature, &gEfiAuthenticatedVariableGuid);
|
|
VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
|
|
VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
|
|
VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
|
|
VolatileVariableStore->Reserved = 0;
|
|
VolatileVariableStore->Reserved1 = 0;
|
|
|
|
//
|
|
// Get non-volatile variable store.
|
|
//
|
|
|
|
TempVariableStoreHeader = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
|
|
if (TempVariableStoreHeader == 0) {
|
|
TempVariableStoreHeader = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
|
|
}
|
|
|
|
//
|
|
// Check if the Firmware Volume is not corrupted
|
|
//
|
|
if ((((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader))->Signature != EFI_FVH_SIGNATURE) ||
|
|
(!CompareGuid (&gEfiSystemNvDataFvGuid, &((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader))->FileSystemGuid))) {
|
|
Status = EFI_VOLUME_CORRUPTED;
|
|
DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
|
|
goto Done;
|
|
}
|
|
|
|
VariableStoreBase = TempVariableStoreHeader + \
|
|
(((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength);
|
|
VariableStoreLength = (UINT64) PcdGet32 (PcdFlashNvStorageVariableSize) - \
|
|
(((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength);
|
|
|
|
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
|
|
VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
|
|
if (GetVariableStoreStatus (VariableStoreHeader) != EfiValid) {
|
|
Status = EFI_VOLUME_CORRUPTED;
|
|
DEBUG((EFI_D_INFO, "Variable Store header is corrupted\n"));
|
|
goto Done;
|
|
}
|
|
ASSERT(VariableStoreHeader->Size == VariableStoreLength);
|
|
|
|
//
|
|
// Parse non-volatile variable data and get last variable offset.
|
|
//
|
|
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
|
|
while (IsValidVariableHeader (NextVariable)) {
|
|
VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
|
|
if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
|
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
|
|
} else {
|
|
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
|
|
}
|
|
|
|
NextVariable = GetNextVariablePtr (NextVariable);
|
|
}
|
|
|
|
mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
|
|
|
|
//
|
|
// Allocate runtime memory used for a memory copy of the FLASH region.
|
|
// Keep the memory and the FLASH in sync as updates occur
|
|
//
|
|
mNvVariableCache = AllocateRuntimeZeroPool ((UINTN)VariableStoreLength);
|
|
if (mNvVariableCache == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Done;
|
|
}
|
|
CopyMem (mNvVariableCache, (CHAR8 *)(UINTN)VariableStoreBase, (UINTN)VariableStoreLength);
|
|
Status = EFI_SUCCESS;
|
|
|
|
Done:
|
|
if (EFI_ERROR (Status)) {
|
|
FreePool (mVariableModuleGlobal);
|
|
FreePool (VolatileVariableStore);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Get the proper fvb handle and/or fvb protocol by the given Flash address.
|
|
|
|
@param[in] Address The Flash address.
|
|
@param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
|
|
@param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
GetFvbInfoByAddress (
|
|
IN EFI_PHYSICAL_ADDRESS Address,
|
|
OUT EFI_HANDLE *FvbHandle OPTIONAL,
|
|
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE *HandleBuffer;
|
|
UINTN HandleCount;
|
|
UINTN Index;
|
|
EFI_PHYSICAL_ADDRESS FvbBaseAddress;
|
|
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
|
|
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
|
|
EFI_FVB_ATTRIBUTES_2 Attributes;
|
|
|
|
//
|
|
// Get all FVB handles.
|
|
//
|
|
Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Get the FVB to access variable store.
|
|
//
|
|
Fvb = NULL;
|
|
for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
|
|
Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
|
|
if (EFI_ERROR (Status)) {
|
|
Status = EFI_NOT_FOUND;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Ensure this FVB protocol supported Write operation.
|
|
//
|
|
Status = Fvb->GetAttributes (Fvb, &Attributes);
|
|
if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Compare the address and select the right one.
|
|
//
|
|
Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
|
|
if (EFI_ERROR (Status)) {
|
|
continue;
|
|
}
|
|
|
|
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
|
|
if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
|
|
if (FvbHandle != NULL) {
|
|
*FvbHandle = HandleBuffer[Index];
|
|
}
|
|
if (FvbProtocol != NULL) {
|
|
*FvbProtocol = Fvb;
|
|
}
|
|
Status = EFI_SUCCESS;
|
|
break;
|
|
}
|
|
}
|
|
FreePool (HandleBuffer);
|
|
|
|
if (Fvb == NULL) {
|
|
Status = EFI_NOT_FOUND;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|