audk/EmbeddedPkg/Universal/MmcDxe/MmcBlockIo.c

706 lines
23 KiB
C

/** @file
*
* Copyright (c) 2011-2013, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Protocol/MmcHost.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/TimerLib.h>
#include "Mmc.h"
// Untested ...
//#define USE_STREAM
#define MAX_RETRY_COUNT 1000
#define CMD_RETRY_COUNT 20
EFI_STATUS
MmcNotifyState (
IN MMC_HOST_INSTANCE *MmcHostInstance,
IN MMC_STATE State
)
{
MmcHostInstance->State = State;
return MmcHostInstance->MmcHost->NotifyState (MmcHostInstance->MmcHost, State);
}
VOID
PrintOCR (
IN UINT32 Ocr
)
{
UINTN MinV;
UINTN MaxV;
UINTN Volts;
UINTN Loop;
MinV = 36; // 3.6
MaxV = 20; // 2.0
Volts = 20; // 2.0
// The MMC register bits [23:8] indicate the working range of the card
for (Loop = 8; Loop < 24; Loop++) {
if (Ocr & (1 << Loop)) {
if (MinV > Volts) MinV = Volts;
if (MaxV < Volts) MaxV = Volts + 1;
}
Volts = Volts + 1;
}
DEBUG ((EFI_D_ERROR, "- PrintOCR Ocr (0x%X)\n",Ocr));
DEBUG ((EFI_D_ERROR, "\t- Card operating voltage: %d.%d to %d.%d\n", MinV/10, MinV % 10, MaxV/10, MaxV % 10));
if (((Ocr >> 29) & 3) == 0) {
DEBUG ((EFI_D_ERROR, "\t- AccessMode: Byte Mode\n"));
} else {
DEBUG ((EFI_D_ERROR, "\t- AccessMode: Block Mode (0x%X)\n", ((Ocr >> 29) & 3)));
}
if (Ocr & MMC_OCR_POWERUP) {
DEBUG ((EFI_D_ERROR, "\t- PowerUp\n"));
} else {
DEBUG ((EFI_D_ERROR, "\t- Voltage Not Supported\n"));
}
}
VOID PrintCID (
IN UINT32* Cid
)
{
DEBUG ((EFI_D_ERROR, "- PrintCID\n"));
DEBUG ((EFI_D_ERROR, "\t- Manufacturing date: %d/%d\n", (Cid[0] >> 8) & 0xF, (Cid[0] >> 12) & 0xFF));
DEBUG ((EFI_D_ERROR, "\t- Product serial number: 0x%X%X\n", Cid[1] & 0xFFFFFF, (Cid[0] >> 24) & 0xFF));
DEBUG ((EFI_D_ERROR, "\t- Product revision: %d\n", Cid[1] >> 24));
//DEBUG ((EFI_D_ERROR, "\t- Product name: %s\n", (char*)(Cid + 2)));
DEBUG ((EFI_D_ERROR, "\t- OEM ID: %c%c\n", (Cid[3] >> 8) & 0xFF, (Cid[3] >> 16) & 0xFF));
}
#if !defined(MDEPKG_NDEBUG)
CONST CHAR8* mStrUnit[] = { "100kbit/s", "1Mbit/s", "10Mbit/s", "100MBit/s",
"Unknown", "Unknown", "Unknown", "Unknown" };
CONST CHAR8* mStrValue[] = { "1.0", "1.2", "1.3", "1.5", "2.0", "2.5", "3.0", "3.5", "4.0", "4.5", "5.0",
"Unknown", "Unknown", "Unknown", "Unknown" };
#endif
VOID
PrintCSD (
IN UINT32* Csd
)
{
UINTN Value;
if (((Csd[2] >> 30) & 0x3) == 0) {
DEBUG ((EFI_D_ERROR, "- PrintCSD Version 1.01-1.10/Version 2.00/Standard Capacity\n"));
} else if (((Csd[2] >> 30) & 0x3) == 1) {
DEBUG ((EFI_D_ERROR, "- PrintCSD Version 2.00/High Capacity\n"));
} else {
DEBUG ((EFI_D_ERROR, "- PrintCSD Version Higher than v3.3\n"));
}
DEBUG ((EFI_D_ERROR, "\t- Supported card command class: 0x%X\n", MMC_CSD_GET_CCC(Csd)));
DEBUG ((EFI_D_ERROR, "\t- Speed: %a %a\n",mStrValue[(MMC_CSD_GET_TRANSPEED(Csd) >> 3) & 0xF],mStrUnit[MMC_CSD_GET_TRANSPEED(Csd) & 7]));
DEBUG ((EFI_D_ERROR, "\t- Maximum Read Data Block: %d\n",2 << (MMC_CSD_GET_READBLLEN(Csd)-1)));
DEBUG ((EFI_D_ERROR, "\t- Maximum Write Data Block: %d\n",2 << (MMC_CSD_GET_WRITEBLLEN(Csd)-1)));
if (!MMC_CSD_GET_FILEFORMATGRP(Csd)) {
Value = MMC_CSD_GET_FILEFORMAT (Csd);
if (Value == 0) DEBUG ((EFI_D_ERROR, "\t- Format (0): Hard disk-like file system with partition table\n"));
else if (Value == 1) DEBUG ((EFI_D_ERROR, "\t- Format (1): DOS FAT (floppy-like) with boot sector only (no partition table)\n"));
else if (Value == 2) DEBUG ((EFI_D_ERROR, "\t- Format (2): Universal File Format\n"));
else DEBUG ((EFI_D_ERROR, "\t- Format (3): Others/Unknown\n"));
} else {
DEBUG ((EFI_D_ERROR, "\t- Format: Reserved\n"));
}
}
VOID
PrintRCA (
IN UINT32 Rca
)
{
DEBUG ((EFI_D_ERROR, "- PrintRCA: 0x%X\n", Rca));
DEBUG ((EFI_D_ERROR, "\t- Status: 0x%X\n", Rca & 0xFFFF));
DEBUG ((EFI_D_ERROR, "\t- RCA: 0x%X\n", (Rca >> 16) & 0xFFFF));
}
VOID
PrintResponseR1 (
IN UINT32 Response
)
{
DEBUG ((EFI_D_INFO, "Response: 0x%X\n", Response));
if (Response & MMC_R0_READY_FOR_DATA) {
DEBUG ((EFI_D_INFO, "\t- READY_FOR_DATA\n"));
}
if (((Response >> 9) & 0xF) == 0) DEBUG ((EFI_D_INFO, "\t- State: Idle\n"));
else if (((Response >> 9) & 0xF) == 1) DEBUG ((EFI_D_INFO, "\t- State: Ready\n"));
else if (((Response >> 9) & 0xF) == 2) DEBUG ((EFI_D_INFO, "\t- State: Ident\n"));
else if (((Response >> 9) & 0xF) == 3) DEBUG ((EFI_D_INFO, "\t- State: StandBy\n"));
else if (((Response >> 9) & 0xF) == 4) DEBUG ((EFI_D_INFO, "\t- State: Tran\n"));
else if (((Response >> 9) & 0xF) == 5) DEBUG ((EFI_D_INFO, "\t- State: Data\n"));
else if (((Response >> 9) & 0xF) == 6) DEBUG ((EFI_D_INFO, "\t- State: Rcv\n"));
else if (((Response >> 9) & 0xF) == 7) DEBUG ((EFI_D_INFO, "\t- State: Prg\n"));
else if (((Response >> 9) & 0xF) == 8) DEBUG ((EFI_D_INFO, "\t- State: Dis\n"));
else DEBUG ((EFI_D_INFO, "\t- State: Reserved\n"));
}
EFI_STATUS
EFIAPI
MmcGetCardStatus(
IN MMC_HOST_INSTANCE *MmcHostInstance
)
{
EFI_STATUS Status;
UINT32 Response[4];
UINTN CmdArg;
EFI_MMC_HOST_PROTOCOL *MmcHost;
Status = EFI_SUCCESS;
MmcHost = MmcHostInstance->MmcHost;
CmdArg = 0;
if (MmcHost == NULL) {
return EFI_INVALID_PARAMETER;
}
if(MmcHostInstance->State != MmcHwInitializationState){
//Get the Status of the card.
CmdArg = MmcHostInstance->CardInfo.RCA << 16;
Status = MmcHost->SendCommand (MmcHost, MMC_CMD13, CmdArg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcGetCardStatus(MMC_CMD13): Error and Status = %r\n", Status));
return Status;
}
//Read Response
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R1, Response);
PrintResponseR1 (Response[0]);
}
return Status;
}
EFI_STATUS
EFIAPI
MmcIdentificationMode (
IN MMC_HOST_INSTANCE *MmcHostInstance
)
{
EFI_STATUS Status;
UINT32 Response[4];
UINTN Timeout;
UINTN CmdArg;
BOOLEAN IsHCS;
EFI_MMC_HOST_PROTOCOL *MmcHost;
MmcHost = MmcHostInstance->MmcHost;
CmdArg = 0;
IsHCS = FALSE;
if (MmcHost == NULL) {
return EFI_INVALID_PARAMETER;
}
// We can get into this function if we restart the identification mode
if (MmcHostInstance->State == MmcHwInitializationState) {
// Initialize the MMC Host HW
Status = MmcNotifyState (MmcHostInstance, MmcHwInitializationState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcHwInitializationState\n"));
return Status;
}
}
Status = MmcHost->SendCommand (MmcHost, MMC_CMD0, 0);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD0): Error\n"));
return Status;
}
Status = MmcNotifyState (MmcHostInstance, MmcIdleState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcIdleState\n"));
return Status;
}
// Are we using SDIO ?
Status = MmcHost->SendCommand (MmcHost, MMC_CMD5, 0);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD5): Error - SDIO not supported.\n"));
return EFI_UNSUPPORTED;
}
// Check which kind of card we are using. Ver2.00 or later SD Memory Card (PL180 is SD v1.1)
CmdArg = (0x0UL << 12 | BIT8 | 0xCEUL << 0);
Status = MmcHost->SendCommand (MmcHost, MMC_CMD8, CmdArg);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_ERROR, "Card is SD2.0 => Supports high capacity\n"));
IsHCS = TRUE;
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R7, Response);
PrintResponseR1 (Response[0]);
//check if it is valid response
if(Response[0] != CmdArg){
DEBUG ((EFI_D_ERROR, "The Card is not usable\n"));
return EFI_UNSUPPORTED;
}
} else {
DEBUG ((EFI_D_ERROR, "Not a SD2.0 Card\n"));
}
// We need to wait for the MMC or SD card is ready => (gCardInfo.OCRData.PowerUp == 1)
Timeout = MAX_RETRY_COUNT;
while (Timeout > 0) {
// SD Card or MMC Card ? CMD55 indicates to the card that the next command is an application specific command
Status = MmcHost->SendCommand (MmcHost, MMC_CMD55, 0);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_INFO, "Card should be SD\n"));
if (IsHCS) {
MmcHostInstance->CardInfo.CardType = SD_CARD_2;
} else {
MmcHostInstance->CardInfo.CardType = SD_CARD;
}
// Note: The first time CmdArg will be zero
CmdArg = ((UINTN *) &(MmcHostInstance->CardInfo.OCRData))[0];
if (IsHCS) {
CmdArg |= BIT30;
}
Status = MmcHost->SendCommand (MmcHost, MMC_ACMD41, CmdArg);
if (!EFI_ERROR (Status)) {
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_OCR, Response);
((UINT32 *) &(MmcHostInstance->CardInfo.OCRData))[0] = Response[0];
}
} else {
DEBUG ((EFI_D_INFO, "Card should be MMC\n"));
MmcHostInstance->CardInfo.CardType = MMC_CARD;
Status = MmcHost->SendCommand (MmcHost, MMC_CMD1, 0x800000);
if (!EFI_ERROR (Status)) {
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_OCR, Response);
((UINT32 *) &(MmcHostInstance->CardInfo.OCRData))[0] = Response[0];
}
}
if (!EFI_ERROR (Status)) {
if (!MmcHostInstance->CardInfo.OCRData.PowerUp) {
MicroSecondDelay (1);
Timeout--;
} else {
if ((MmcHostInstance->CardInfo.CardType == SD_CARD_2) && (MmcHostInstance->CardInfo.OCRData.AccessMode & BIT1)) {
MmcHostInstance->CardInfo.CardType = SD_CARD_2_HIGH;
DEBUG ((EFI_D_ERROR, "High capacity card.\n"));
}
break; // The MMC/SD card is ready. Continue the Identification Mode
}
} else {
MicroSecondDelay (1);
Timeout--;
}
}
if (Timeout == 0) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(): No Card\n"));
return EFI_NO_MEDIA;
} else {
PrintOCR (Response[0]);
}
Status = MmcNotifyState (MmcHostInstance, MmcReadyState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcReadyState\n"));
return Status;
}
Status = MmcHost->SendCommand (MmcHost, MMC_CMD2, 0);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD2): Error\n"));
return Status;
}
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_CID, Response);
PrintCID(Response);
Status = MmcNotifyState (MmcHostInstance, MmcIdentificationState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcIdentificationState\n"));
return Status;
}
//
// Note, SD specifications say that "if the command execution causes a state change, it
// will be visible to the host in the response to the next command"
// The status returned for this CMD3 will be 2 - identification
//
CmdArg = 1;
Status = MmcHost->SendCommand (MmcHost, MMC_CMD3, CmdArg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD3): Error\n"));
return Status;
}
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_RCA, Response);
PrintRCA (Response[0]);
// For MMC card, RCA is assigned by CMD3 while CMD3 dumps the RCA for SD card
if (MmcHostInstance->CardInfo.CardType != MMC_CARD) {
MmcHostInstance->CardInfo.RCA = Response[0] >> 16;
} else {
MmcHostInstance->CardInfo.RCA = CmdArg;
}
Status = MmcNotifyState (MmcHostInstance, MmcStandByState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcStandByState\n"));
return Status;
}
return EFI_SUCCESS;
}
EFI_STATUS InitializeMmcDevice (
IN MMC_HOST_INSTANCE *MmcHostInstance
)
{
UINT32 Response[4];
EFI_STATUS Status;
UINTN CardSize, NumBlocks, BlockSize, CmdArg;
EFI_MMC_HOST_PROTOCOL *MmcHost;
UINTN BlockCount = 1;
MmcHost = MmcHostInstance->MmcHost;
MmcIdentificationMode (MmcHostInstance);
//Send a command to get Card specific data
CmdArg = MmcHostInstance->CardInfo.RCA << 16;
Status = MmcHost->SendCommand (MmcHost, MMC_CMD9, CmdArg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD9): Error, Status=%r\n", Status));
return Status;
}
//Read Response
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_CSD, Response);
PrintCSD(Response);
if (MmcHostInstance->CardInfo.CardType == SD_CARD_2_HIGH) {
CardSize = HC_MMC_CSD_GET_DEVICESIZE (Response);
NumBlocks = ((CardSize + 1) * 1024);
BlockSize = 1 << MMC_CSD_GET_READBLLEN(Response);
} else {
CardSize = MMC_CSD_GET_DEVICESIZE (Response);
NumBlocks = (CardSize + 1) * (1 << (MMC_CSD_GET_DEVICESIZEMULT (Response) + 2));
BlockSize = 1 << MMC_CSD_GET_READBLLEN(Response);
}
//For >=2G card, BlockSize may be 1K, but the transfer size is 512 bytes.
if (BlockSize > 512) {
NumBlocks = MultU64x32 (NumBlocks, BlockSize/512);
BlockSize = 512;
}
MmcHostInstance->BlockIo.Media->LastBlock = (NumBlocks - 1);
MmcHostInstance->BlockIo.Media->BlockSize = BlockSize;
MmcHostInstance->BlockIo.Media->ReadOnly = MmcHost->IsReadOnly (MmcHost);
MmcHostInstance->BlockIo.Media->MediaPresent = TRUE;
MmcHostInstance->BlockIo.Media->MediaId++;
CmdArg = MmcHostInstance->CardInfo.RCA << 16;
Status = MmcHost->SendCommand (MmcHost, MMC_CMD7, CmdArg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD7): Error and Status = %r\n", Status));
return Status;
}
Status = MmcNotifyState (MmcHostInstance, MmcTransferState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcTransferState\n"));
return Status;
}
// Set Block Length
Status = MmcHost->SendCommand (MmcHost, MMC_CMD16, MmcHostInstance->BlockIo.Media->BlockSize);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD16): Error MmcHostInstance->BlockIo.Media->BlockSize: %d and Error = %r\n", MmcHostInstance->BlockIo.Media->BlockSize, Status));
return Status;
}
// Block Count (not used). Could return an error for SD card
if (MmcHostInstance->CardInfo.CardType == MMC_CARD) {
MmcHost->SendCommand (MmcHost, MMC_CMD23, BlockCount);
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
MmcReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
MMC_HOST_INSTANCE *MmcHostInstance;
MmcHostInstance = MMC_HOST_INSTANCE_FROM_BLOCK_IO_THIS (This);
if (MmcHostInstance->MmcHost == NULL) {
// Nothing to do
return EFI_SUCCESS;
}
// If a card is not present then clear all media settings
if (!MmcHostInstance->MmcHost->IsCardPresent (MmcHostInstance->MmcHost)) {
MmcHostInstance->BlockIo.Media->MediaPresent = FALSE;
MmcHostInstance->BlockIo.Media->LastBlock = 0;
MmcHostInstance->BlockIo.Media->BlockSize = 512; // Should be zero but there is a bug in DiskIo
MmcHostInstance->BlockIo.Media->ReadOnly = FALSE;
// Indicate that the driver requires initialization
MmcHostInstance->State = MmcHwInitializationState;
return EFI_SUCCESS;
}
// Implement me. Either send a CMD0 (could not work for some MMC host) or just turn off/turn
// on power and restart Identification mode
return EFI_SUCCESS;
}
EFI_STATUS
MmcDetectCard (
EFI_MMC_HOST_PROTOCOL *MmcHost
)
{
if (!MmcHost->IsCardPresent (MmcHost)) {
return EFI_NO_MEDIA;
} else {
return EFI_SUCCESS;
}
}
#define MMCI0_BLOCKLEN 512
#define MMCI0_TIMEOUT 10000
EFI_STATUS
MmcIoBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINTN Transfer,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
UINT32 Response[4];
EFI_STATUS Status;
UINTN CmdArg;
INTN Timeout;
UINTN Cmd;
MMC_HOST_INSTANCE *MmcHostInstance;
EFI_MMC_HOST_PROTOCOL *MmcHost;
UINTN BytesRemainingToBeTransfered;
UINTN BlockCount = 1;
MmcHostInstance = MMC_HOST_INSTANCE_FROM_BLOCK_IO_THIS (This);
ASSERT (MmcHostInstance != 0);
MmcHost = MmcHostInstance->MmcHost;
ASSERT (MmcHost);
if (This->Media->MediaId != MediaId) {
return EFI_MEDIA_CHANGED;
}
if ((MmcHost == 0)|| (Buffer == NULL)) {
return EFI_INVALID_PARAMETER;
}
// Check if a Card is Present
if (!MmcHostInstance->BlockIo.Media->MediaPresent) {
return EFI_NO_MEDIA;
}
// All blocks must be within the device
if ((Lba + (BufferSize / This->Media->BlockSize)) > (This->Media->LastBlock + 1)){
return EFI_INVALID_PARAMETER;
}
if((Transfer == MMC_IOBLOCKS_WRITE) && (This->Media->ReadOnly == TRUE)) {
return EFI_WRITE_PROTECTED;
}
// Reading 0 Byte is valid
if (BufferSize == 0) {
return EFI_SUCCESS;
}
// The buffer size must be an exact multiple of the block size
if ((BufferSize % This->Media->BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Check the alignment
if ((This->Media->IoAlign > 2) && (((UINTN)Buffer & (This->Media->IoAlign - 1)) != 0)) {
return EFI_INVALID_PARAMETER;
}
BytesRemainingToBeTransfered = BufferSize;
while (BytesRemainingToBeTransfered > 0) {
// Check if the Card is in Ready status
CmdArg = MmcHostInstance->CardInfo.RCA << 16;
Response[0] = 0;
Timeout = 20;
while( (!(Response[0] & MMC_R0_READY_FOR_DATA))
&& (MMC_R0_CURRENTSTATE (Response) != MMC_R0_STATE_TRAN)
&& Timeout--) {
Status = MmcHost->SendCommand (MmcHost, MMC_CMD13, CmdArg);
if (!EFI_ERROR (Status)) {
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R1, Response);
}
}
if (0 == Timeout) {
DEBUG ((EFI_D_ERROR, "The Card is busy\n"));
return EFI_NOT_READY;
}
//Set command argument based on the card access mode (Byte mode or Block mode)
if (MmcHostInstance->CardInfo.OCRData.AccessMode & BIT1) {
CmdArg = Lba;
} else {
CmdArg = Lba * This->Media->BlockSize;
}
if (Transfer == MMC_IOBLOCKS_READ) {
#ifndef USE_STREAM
// Read a single block
Cmd = MMC_CMD17;
#else
//TODO: Should we support read stream (MMC_CMD11)
#endif
} else {
#ifndef USE_STREAM
// Write a single block
Cmd = MMC_CMD24;
#else
//TODO: Should we support write stream (MMC_CMD20)
#endif
}
Status = MmcHost->SendCommand (MmcHost, Cmd, CmdArg);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIoBlocks(MMC_CMD%d): Error %r\n", Cmd, Status));
return Status;
}
if (Transfer == MMC_IOBLOCKS_READ) {
#ifndef USE_STREAM
// Read one block of Data
Status = MmcHost->ReadBlockData (MmcHost, Lba, This->Media->BlockSize, Buffer);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_BLKIO, "MmcIoBlocks(): Error Read Block Data and Status = %r\n", Status));
return Status;
}
#else
//TODO: Read a stream
ASSERT (0);
#endif
Status = MmcNotifyState (MmcHostInstance, MmcProgrammingState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIoBlocks() : Error MmcProgrammingState\n"));
return Status;
}
} else {
#ifndef USE_STREAM
// Write one block of Data
Status = MmcHost->WriteBlockData (MmcHost, Lba, This->Media->BlockSize, Buffer);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_BLKIO, "MmcIoBlocks(): Error Write Block Data and Status = %r\n", Status));
return Status;
}
#else
//TODO: Write a stream
ASSERT (0);
#endif
}
// Command 12 - Stop transmission (ends read)
Status = MmcHost->SendCommand (MmcHost, MMC_CMD12, 0);
if (!EFI_ERROR (Status)) {
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R1b, Response);
}
// Command 13 - Read status and wait for programming to complete (return to tran)
Timeout = MMCI0_TIMEOUT;
CmdArg = MmcHostInstance->CardInfo.RCA << 16;
Response[0] = 0;
while( (!(Response[0] & MMC_R0_READY_FOR_DATA))
&& (MMC_R0_CURRENTSTATE (Response) != MMC_R0_STATE_TRAN)
&& Timeout--) {
Status = MmcHost->SendCommand (MmcHost, MMC_CMD13, CmdArg);
if (!EFI_ERROR (Status)) {
MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R1, Response);
if ((Response[0] & MMC_R0_READY_FOR_DATA)) {
break; // Prevents delay once finished
}
}
NanoSecondDelay (100);
}
Status = MmcNotifyState (MmcHostInstance, MmcTransferState);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "MmcIoBlocks() : Error MmcTransferState\n"));
return Status;
}
BytesRemainingToBeTransfered -= This->Media->BlockSize;
Lba += BlockCount;
Buffer = (UINT8 *)Buffer + This->Media->BlockSize;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
MmcReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
return MmcIoBlocks (This, MMC_IOBLOCKS_READ, MediaId, Lba, BufferSize, Buffer);
}
EFI_STATUS
EFIAPI
MmcWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
return MmcIoBlocks (This, MMC_IOBLOCKS_WRITE, MediaId, Lba, BufferSize, Buffer);
}
EFI_STATUS
EFIAPI
MmcFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
)
{
return EFI_SUCCESS;
}