mirror of https://github.com/acidanthera/audk.git
2015 lines
61 KiB
C
2015 lines
61 KiB
C
/** @file
|
|
CPU MP Initialize Library common functions.
|
|
|
|
Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "MpLib.h"
|
|
|
|
EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
|
|
|
|
/**
|
|
The function will check if BSP Execute Disable is enabled.
|
|
DxeIpl may have enabled Execute Disable for BSP,
|
|
APs need to get the status and sync up the settings.
|
|
|
|
@retval TRUE BSP Execute Disable is enabled.
|
|
@retval FALSE BSP Execute Disable is not enabled.
|
|
**/
|
|
BOOLEAN
|
|
IsBspExecuteDisableEnabled (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 Eax;
|
|
CPUID_EXTENDED_CPU_SIG_EDX Edx;
|
|
MSR_IA32_EFER_REGISTER EferMsr;
|
|
BOOLEAN Enabled;
|
|
|
|
Enabled = FALSE;
|
|
AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
|
|
if (Eax >= CPUID_EXTENDED_CPU_SIG) {
|
|
AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
|
|
//
|
|
// CPUID 0x80000001
|
|
// Bit 20: Execute Disable Bit available.
|
|
//
|
|
if (Edx.Bits.NX != 0) {
|
|
EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
|
|
//
|
|
// MSR 0xC0000080
|
|
// Bit 11: Execute Disable Bit enable.
|
|
//
|
|
if (EferMsr.Bits.NXE != 0) {
|
|
Enabled = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Enabled;
|
|
}
|
|
|
|
/**
|
|
Get CPU Package/Core/Thread location information.
|
|
|
|
@param[in] InitialApicId CPU APIC ID
|
|
@param[out] Location Pointer to CPU location information
|
|
**/
|
|
VOID
|
|
ExtractProcessorLocation (
|
|
IN UINT32 InitialApicId,
|
|
OUT EFI_CPU_PHYSICAL_LOCATION *Location
|
|
)
|
|
{
|
|
BOOLEAN TopologyLeafSupported;
|
|
UINTN ThreadBits;
|
|
UINTN CoreBits;
|
|
CPUID_VERSION_INFO_EBX VersionInfoEbx;
|
|
CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
|
CPUID_CACHE_PARAMS_EAX CacheParamsEax;
|
|
CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax;
|
|
CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx;
|
|
CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx;
|
|
UINT32 MaxCpuIdIndex;
|
|
UINT32 SubIndex;
|
|
UINTN LevelType;
|
|
UINT32 MaxLogicProcessorsPerPackage;
|
|
UINT32 MaxCoresPerPackage;
|
|
|
|
//
|
|
// Check if the processor is capable of supporting more than one logical processor.
|
|
//
|
|
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
|
if (VersionInfoEdx.Bits.HTT == 0) {
|
|
Location->Thread = 0;
|
|
Location->Core = 0;
|
|
Location->Package = 0;
|
|
return;
|
|
}
|
|
|
|
ThreadBits = 0;
|
|
CoreBits = 0;
|
|
|
|
//
|
|
// Assume three-level mapping of APIC ID: Package:Core:SMT.
|
|
//
|
|
|
|
TopologyLeafSupported = FALSE;
|
|
//
|
|
// Get the max index of basic CPUID
|
|
//
|
|
AsmCpuid (CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL);
|
|
|
|
//
|
|
// If the extended topology enumeration leaf is available, it
|
|
// is the preferred mechanism for enumerating topology.
|
|
//
|
|
if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
|
|
AsmCpuidEx (
|
|
CPUID_EXTENDED_TOPOLOGY,
|
|
0,
|
|
&ExtendedTopologyEax.Uint32,
|
|
&ExtendedTopologyEbx.Uint32,
|
|
&ExtendedTopologyEcx.Uint32,
|
|
NULL
|
|
);
|
|
//
|
|
// If CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for
|
|
// basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not
|
|
// supported on that processor.
|
|
//
|
|
if (ExtendedTopologyEbx.Uint32 != 0) {
|
|
TopologyLeafSupported = TRUE;
|
|
|
|
//
|
|
// Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract
|
|
// the SMT sub-field of x2APIC ID.
|
|
//
|
|
LevelType = ExtendedTopologyEcx.Bits.LevelType;
|
|
ASSERT (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT);
|
|
ThreadBits = ExtendedTopologyEax.Bits.ApicIdShift;
|
|
|
|
//
|
|
// Software must not assume any "level type" encoding
|
|
// value to be related to any sub-leaf index, except sub-leaf 0.
|
|
//
|
|
SubIndex = 1;
|
|
do {
|
|
AsmCpuidEx (
|
|
CPUID_EXTENDED_TOPOLOGY,
|
|
SubIndex,
|
|
&ExtendedTopologyEax.Uint32,
|
|
NULL,
|
|
&ExtendedTopologyEcx.Uint32,
|
|
NULL
|
|
);
|
|
LevelType = ExtendedTopologyEcx.Bits.LevelType;
|
|
if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE) {
|
|
CoreBits = ExtendedTopologyEax.Bits.ApicIdShift - ThreadBits;
|
|
break;
|
|
}
|
|
SubIndex++;
|
|
} while (LevelType != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID);
|
|
}
|
|
}
|
|
|
|
if (!TopologyLeafSupported) {
|
|
AsmCpuid (CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL);
|
|
MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors;
|
|
if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) {
|
|
AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);
|
|
MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;
|
|
} else {
|
|
//
|
|
// Must be a single-core processor.
|
|
//
|
|
MaxCoresPerPackage = 1;
|
|
}
|
|
|
|
ThreadBits = (UINTN) (HighBitSet32 (MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1);
|
|
CoreBits = (UINTN) (HighBitSet32 (MaxCoresPerPackage - 1) + 1);
|
|
}
|
|
|
|
Location->Thread = InitialApicId & ((1 << ThreadBits) - 1);
|
|
Location->Core = (InitialApicId >> ThreadBits) & ((1 << CoreBits) - 1);
|
|
Location->Package = (InitialApicId >> (ThreadBits + CoreBits));
|
|
}
|
|
|
|
/**
|
|
Worker function for SwitchBSP().
|
|
|
|
Worker function for SwitchBSP(), assigned to the AP which is intended
|
|
to become BSP.
|
|
|
|
@param[in] Buffer Pointer to CPU MP Data
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
FutureBSPProc (
|
|
IN VOID *Buffer
|
|
)
|
|
{
|
|
CPU_MP_DATA *DataInHob;
|
|
|
|
DataInHob = (CPU_MP_DATA *) Buffer;
|
|
AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
|
|
}
|
|
|
|
/**
|
|
Get the Application Processors state.
|
|
|
|
@param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
|
|
|
@return The AP status
|
|
**/
|
|
CPU_STATE
|
|
GetApState (
|
|
IN CPU_AP_DATA *CpuData
|
|
)
|
|
{
|
|
return CpuData->State;
|
|
}
|
|
|
|
/**
|
|
Set the Application Processors state.
|
|
|
|
@param[in] CpuData The pointer to CPU_AP_DATA of specified AP
|
|
@param[in] State The AP status
|
|
**/
|
|
VOID
|
|
SetApState (
|
|
IN CPU_AP_DATA *CpuData,
|
|
IN CPU_STATE State
|
|
)
|
|
{
|
|
AcquireSpinLock (&CpuData->ApLock);
|
|
CpuData->State = State;
|
|
ReleaseSpinLock (&CpuData->ApLock);
|
|
}
|
|
|
|
/**
|
|
Save the volatile registers required to be restored following INIT IPI.
|
|
|
|
@param[out] VolatileRegisters Returns buffer saved the volatile resisters
|
|
**/
|
|
VOID
|
|
SaveVolatileRegisters (
|
|
OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
|
|
)
|
|
{
|
|
CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
|
|
|
VolatileRegisters->Cr0 = AsmReadCr0 ();
|
|
VolatileRegisters->Cr3 = AsmReadCr3 ();
|
|
VolatileRegisters->Cr4 = AsmReadCr4 ();
|
|
|
|
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
|
if (VersionInfoEdx.Bits.DE != 0) {
|
|
//
|
|
// If processor supports Debugging Extensions feature
|
|
// by CPUID.[EAX=01H]:EDX.BIT2
|
|
//
|
|
VolatileRegisters->Dr0 = AsmReadDr0 ();
|
|
VolatileRegisters->Dr1 = AsmReadDr1 ();
|
|
VolatileRegisters->Dr2 = AsmReadDr2 ();
|
|
VolatileRegisters->Dr3 = AsmReadDr3 ();
|
|
VolatileRegisters->Dr6 = AsmReadDr6 ();
|
|
VolatileRegisters->Dr7 = AsmReadDr7 ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
Restore the volatile registers following INIT IPI.
|
|
|
|
@param[in] VolatileRegisters Pointer to volatile resisters
|
|
@param[in] IsRestoreDr TRUE: Restore DRx if supported
|
|
FALSE: Do not restore DRx
|
|
**/
|
|
VOID
|
|
RestoreVolatileRegisters (
|
|
IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
|
|
IN BOOLEAN IsRestoreDr
|
|
)
|
|
{
|
|
CPUID_VERSION_INFO_EDX VersionInfoEdx;
|
|
|
|
AsmWriteCr0 (VolatileRegisters->Cr0);
|
|
AsmWriteCr3 (VolatileRegisters->Cr3);
|
|
AsmWriteCr4 (VolatileRegisters->Cr4);
|
|
|
|
if (IsRestoreDr) {
|
|
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
|
|
if (VersionInfoEdx.Bits.DE != 0) {
|
|
//
|
|
// If processor supports Debugging Extensions feature
|
|
// by CPUID.[EAX=01H]:EDX.BIT2
|
|
//
|
|
AsmWriteDr0 (VolatileRegisters->Dr0);
|
|
AsmWriteDr1 (VolatileRegisters->Dr1);
|
|
AsmWriteDr2 (VolatileRegisters->Dr2);
|
|
AsmWriteDr3 (VolatileRegisters->Dr3);
|
|
AsmWriteDr6 (VolatileRegisters->Dr6);
|
|
AsmWriteDr7 (VolatileRegisters->Dr7);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Detect whether Mwait-monitor feature is supported.
|
|
|
|
@retval TRUE Mwait-monitor feature is supported.
|
|
@retval FALSE Mwait-monitor feature is not supported.
|
|
**/
|
|
BOOLEAN
|
|
IsMwaitSupport (
|
|
VOID
|
|
)
|
|
{
|
|
CPUID_VERSION_INFO_ECX VersionInfoEcx;
|
|
|
|
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
|
|
return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
|
|
}
|
|
|
|
/**
|
|
Get AP loop mode.
|
|
|
|
@param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
|
|
|
|
@return The AP loop mode.
|
|
**/
|
|
UINT8
|
|
GetApLoopMode (
|
|
OUT UINT32 *MonitorFilterSize
|
|
)
|
|
{
|
|
UINT8 ApLoopMode;
|
|
CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
|
|
|
|
ASSERT (MonitorFilterSize != NULL);
|
|
|
|
ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
|
|
ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
|
|
if (ApLoopMode == ApInMwaitLoop) {
|
|
if (!IsMwaitSupport ()) {
|
|
//
|
|
// If processor does not support MONITOR/MWAIT feature,
|
|
// force AP in Hlt-loop mode
|
|
//
|
|
ApLoopMode = ApInHltLoop;
|
|
}
|
|
}
|
|
|
|
if (ApLoopMode != ApInMwaitLoop) {
|
|
*MonitorFilterSize = sizeof (UINT32);
|
|
} else {
|
|
//
|
|
// CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
|
|
// CPUID.[EAX=05H].EDX: C-states supported using MWAIT
|
|
//
|
|
AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
|
|
*MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
|
|
}
|
|
|
|
return ApLoopMode;
|
|
}
|
|
|
|
/**
|
|
Sort the APIC ID of all processors.
|
|
|
|
This function sorts the APIC ID of all processors so that processor number is
|
|
assigned in the ascending order of APIC ID which eases MP debugging.
|
|
|
|
@param[in] CpuMpData Pointer to PEI CPU MP Data
|
|
**/
|
|
VOID
|
|
SortApicId (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
UINTN Index1;
|
|
UINTN Index2;
|
|
UINTN Index3;
|
|
UINT32 ApicId;
|
|
CPU_AP_DATA CpuData;
|
|
UINT32 ApCount;
|
|
CPU_INFO_IN_HOB *CpuInfoInHob;
|
|
|
|
ApCount = CpuMpData->CpuCount - 1;
|
|
|
|
if (ApCount != 0) {
|
|
for (Index1 = 0; Index1 < ApCount; Index1++) {
|
|
Index3 = Index1;
|
|
//
|
|
// Sort key is the hardware default APIC ID
|
|
//
|
|
ApicId = CpuMpData->CpuData[Index1].ApicId;
|
|
for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
|
|
if (ApicId > CpuMpData->CpuData[Index2].ApicId) {
|
|
Index3 = Index2;
|
|
ApicId = CpuMpData->CpuData[Index2].ApicId;
|
|
}
|
|
}
|
|
if (Index3 != Index1) {
|
|
CopyMem (&CpuData, &CpuMpData->CpuData[Index3], sizeof (CPU_AP_DATA));
|
|
CopyMem (
|
|
&CpuMpData->CpuData[Index3],
|
|
&CpuMpData->CpuData[Index1],
|
|
sizeof (CPU_AP_DATA)
|
|
);
|
|
CopyMem (&CpuMpData->CpuData[Index1], &CpuData, sizeof (CPU_AP_DATA));
|
|
}
|
|
}
|
|
|
|
//
|
|
// Get the processor number for the BSP
|
|
//
|
|
ApicId = GetInitialApicId ();
|
|
for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
|
|
if (CpuMpData->CpuData[Index1].ApicId == ApicId) {
|
|
CpuMpData->BspNumber = (UINT32) Index1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
|
|
for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
|
|
CpuInfoInHob[Index1].InitialApicId = CpuMpData->CpuData[Index1].InitialApicId;
|
|
CpuInfoInHob[Index1].ApicId = CpuMpData->CpuData[Index1].ApicId;
|
|
CpuInfoInHob[Index1].Health = CpuMpData->CpuData[Index1].Health;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Enable x2APIC mode on APs.
|
|
|
|
@param[in, out] Buffer Pointer to private data buffer.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
ApFuncEnableX2Apic (
|
|
IN OUT VOID *Buffer
|
|
)
|
|
{
|
|
SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
|
}
|
|
|
|
/**
|
|
Do sync on APs.
|
|
|
|
@param[in, out] Buffer Pointer to private data buffer.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
ApInitializeSync (
|
|
IN OUT VOID *Buffer
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = (CPU_MP_DATA *) Buffer;
|
|
//
|
|
// Sync BSP's MTRR table to AP
|
|
//
|
|
MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
|
|
//
|
|
// Load microcode on AP
|
|
//
|
|
MicrocodeDetect (CpuMpData);
|
|
}
|
|
|
|
/**
|
|
Find the current Processor number by APIC ID.
|
|
|
|
@param[in] CpuMpData Pointer to PEI CPU MP Data
|
|
@param[in] ProcessorNumber Return the pocessor number found
|
|
|
|
@retval EFI_SUCCESS ProcessorNumber is found and returned.
|
|
@retval EFI_NOT_FOUND ProcessorNumber is not found.
|
|
**/
|
|
EFI_STATUS
|
|
GetProcessorNumber (
|
|
IN CPU_MP_DATA *CpuMpData,
|
|
OUT UINTN *ProcessorNumber
|
|
)
|
|
{
|
|
UINTN TotalProcessorNumber;
|
|
UINTN Index;
|
|
|
|
TotalProcessorNumber = CpuMpData->CpuCount;
|
|
for (Index = 0; Index < TotalProcessorNumber; Index ++) {
|
|
if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) {
|
|
*ProcessorNumber = Index;
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
This function will get CPU count in the system.
|
|
|
|
@param[in] CpuMpData Pointer to PEI CPU MP Data
|
|
|
|
@return CPU count detected
|
|
**/
|
|
UINTN
|
|
CollectProcessorCount (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
//
|
|
// Send 1st broadcast IPI to APs to wakeup APs
|
|
//
|
|
CpuMpData->InitFlag = ApInitConfig;
|
|
CpuMpData->X2ApicEnable = FALSE;
|
|
WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
|
|
CpuMpData->InitFlag = ApInitDone;
|
|
ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
|
|
//
|
|
// Wait for all APs finished the initialization
|
|
//
|
|
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
|
CpuPause ();
|
|
}
|
|
|
|
if (CpuMpData->X2ApicEnable) {
|
|
DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
|
|
//
|
|
// Wakeup all APs to enable x2APIC mode
|
|
//
|
|
WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
|
|
//
|
|
// Wait for all known APs finished
|
|
//
|
|
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
|
CpuPause ();
|
|
}
|
|
//
|
|
// Enable x2APIC on BSP
|
|
//
|
|
SetApicMode (LOCAL_APIC_MODE_X2APIC);
|
|
}
|
|
DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
|
|
//
|
|
// Sort BSP/Aps by CPU APIC ID in ascending order
|
|
//
|
|
SortApicId (CpuMpData);
|
|
|
|
DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
|
|
|
|
return CpuMpData->CpuCount;
|
|
}
|
|
|
|
/*
|
|
Initialize CPU AP Data when AP is wakeup at the first time.
|
|
|
|
@param[in, out] CpuMpData Pointer to PEI CPU MP Data
|
|
@param[in] ProcessorNumber The handle number of processor
|
|
@param[in] BistData Processor BIST data
|
|
|
|
**/
|
|
VOID
|
|
InitializeApData (
|
|
IN OUT CPU_MP_DATA *CpuMpData,
|
|
IN UINTN ProcessorNumber,
|
|
IN UINT32 BistData
|
|
)
|
|
{
|
|
CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
|
CpuMpData->CpuData[ProcessorNumber].Health = BistData;
|
|
CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
|
|
CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();
|
|
CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
|
if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) {
|
|
//
|
|
// Set x2APIC mode if there are any logical processor reporting
|
|
// an Initial APIC ID of 255 or greater.
|
|
//
|
|
AcquireSpinLock(&CpuMpData->MpLock);
|
|
CpuMpData->X2ApicEnable = TRUE;
|
|
ReleaseSpinLock(&CpuMpData->MpLock);
|
|
}
|
|
|
|
InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
|
}
|
|
|
|
/**
|
|
This function will be called from AP reset code if BSP uses WakeUpAP.
|
|
|
|
@param[in] ExchangeInfo Pointer to the MP exchange info buffer
|
|
@param[in] NumApsExecuting Number of current executing AP
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
ApWakeupFunction (
|
|
IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
|
|
IN UINTN NumApsExecuting
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN ProcessorNumber;
|
|
EFI_AP_PROCEDURE Procedure;
|
|
VOID *Parameter;
|
|
UINT32 BistData;
|
|
volatile UINT32 *ApStartupSignalBuffer;
|
|
|
|
//
|
|
// AP finished assembly code and begin to execute C code
|
|
//
|
|
CpuMpData = ExchangeInfo->CpuMpData;
|
|
|
|
ProgramVirtualWireMode ();
|
|
|
|
while (TRUE) {
|
|
if (CpuMpData->InitFlag == ApInitConfig) {
|
|
//
|
|
// Add CPU number
|
|
//
|
|
InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
|
|
ProcessorNumber = NumApsExecuting;
|
|
//
|
|
// This is first time AP wakeup, get BIST information from AP stack
|
|
//
|
|
BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN));
|
|
//
|
|
// Do some AP initialize sync
|
|
//
|
|
ApInitializeSync (CpuMpData);
|
|
//
|
|
// Sync BSP's Control registers to APs
|
|
//
|
|
RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
|
|
InitializeApData (CpuMpData, ProcessorNumber, BistData);
|
|
ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
|
} else {
|
|
//
|
|
// Execute AP function if AP is ready
|
|
//
|
|
GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
|
//
|
|
// Clear AP start-up signal when AP waken up
|
|
//
|
|
ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
|
|
InterlockedCompareExchange32 (
|
|
(UINT32 *) ApStartupSignalBuffer,
|
|
WAKEUP_AP_SIGNAL,
|
|
0
|
|
);
|
|
if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
|
//
|
|
// Restore AP's volatile registers saved
|
|
//
|
|
RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
|
|
}
|
|
|
|
if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
|
|
Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
|
|
Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
|
|
if (Procedure != NULL) {
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
|
|
//
|
|
// Invoke AP function here
|
|
//
|
|
Procedure (Parameter);
|
|
if (CpuMpData->SwitchBspFlag) {
|
|
//
|
|
// Re-get the processor number due to BSP/AP maybe exchange in AP function
|
|
//
|
|
GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
|
CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
|
|
CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
|
|
} else {
|
|
//
|
|
// Re-get the CPU APICID and Initial APICID
|
|
//
|
|
CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();
|
|
CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();
|
|
}
|
|
}
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
|
|
}
|
|
}
|
|
|
|
//
|
|
// AP finished executing C code
|
|
//
|
|
InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
|
|
|
|
//
|
|
// Place AP is specified loop mode
|
|
//
|
|
if (CpuMpData->ApLoopMode == ApInHltLoop) {
|
|
//
|
|
// Save AP volatile registers
|
|
//
|
|
SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
|
|
//
|
|
// Place AP in HLT-loop
|
|
//
|
|
while (TRUE) {
|
|
DisableInterrupts ();
|
|
CpuSleep ();
|
|
CpuPause ();
|
|
}
|
|
}
|
|
while (TRUE) {
|
|
DisableInterrupts ();
|
|
if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
|
|
//
|
|
// Place AP in MWAIT-loop
|
|
//
|
|
AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
|
|
if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
|
|
//
|
|
// Check AP start-up signal again.
|
|
// If AP start-up signal is not set, place AP into
|
|
// the specified C-state
|
|
//
|
|
AsmMwait (CpuMpData->ApTargetCState << 4, 0);
|
|
}
|
|
} else if (CpuMpData->ApLoopMode == ApInRunLoop) {
|
|
//
|
|
// Place AP in Run-loop
|
|
//
|
|
CpuPause ();
|
|
} else {
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
//
|
|
// If AP start-up signal is written, AP is waken up
|
|
// otherwise place AP in loop again
|
|
//
|
|
if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Wait for AP wakeup and write AP start-up signal till AP is waken up.
|
|
|
|
@param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
|
|
**/
|
|
VOID
|
|
WaitApWakeup (
|
|
IN volatile UINT32 *ApStartupSignalBuffer
|
|
)
|
|
{
|
|
//
|
|
// If AP is waken up, StartupApSignal should be cleared.
|
|
// Otherwise, write StartupApSignal again till AP waken up.
|
|
//
|
|
while (InterlockedCompareExchange32 (
|
|
(UINT32 *) ApStartupSignalBuffer,
|
|
WAKEUP_AP_SIGNAL,
|
|
WAKEUP_AP_SIGNAL
|
|
) != 0) {
|
|
CpuPause ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
This function will fill the exchange info structure.
|
|
|
|
@param[in] CpuMpData Pointer to CPU MP Data
|
|
|
|
**/
|
|
VOID
|
|
FillExchangeInfoData (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
|
|
|
ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
|
ExchangeInfo->Lock = 0;
|
|
ExchangeInfo->StackStart = CpuMpData->Buffer;
|
|
ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
|
|
ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
|
|
ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
|
|
|
|
ExchangeInfo->CodeSegment = AsmReadCs ();
|
|
ExchangeInfo->DataSegment = AsmReadDs ();
|
|
|
|
ExchangeInfo->Cr3 = AsmReadCr3 ();
|
|
|
|
ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
|
|
ExchangeInfo->NumApsExecuting = 0;
|
|
ExchangeInfo->CpuMpData = CpuMpData;
|
|
|
|
ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
|
|
|
|
//
|
|
// Get the BSP's data of GDT and IDT
|
|
//
|
|
AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
|
|
AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
|
|
}
|
|
|
|
/**
|
|
This function will be called by BSP to wakeup AP.
|
|
|
|
@param[in] CpuMpData Pointer to CPU MP Data
|
|
@param[in] Broadcast TRUE: Send broadcast IPI to all APs
|
|
FALSE: Send IPI to AP by ApicId
|
|
@param[in] ProcessorNumber The handle number of specified processor
|
|
@param[in] Procedure The function to be invoked by AP
|
|
@param[in] ProcedureArgument The argument to be passed into AP function
|
|
**/
|
|
VOID
|
|
WakeUpAP (
|
|
IN CPU_MP_DATA *CpuMpData,
|
|
IN BOOLEAN Broadcast,
|
|
IN UINTN ProcessorNumber,
|
|
IN EFI_AP_PROCEDURE Procedure, OPTIONAL
|
|
IN VOID *ProcedureArgument OPTIONAL
|
|
)
|
|
{
|
|
volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
|
|
UINTN Index;
|
|
CPU_AP_DATA *CpuData;
|
|
BOOLEAN ResetVectorRequired;
|
|
|
|
CpuMpData->FinishedCount = 0;
|
|
ResetVectorRequired = FALSE;
|
|
|
|
if (CpuMpData->ApLoopMode == ApInHltLoop ||
|
|
CpuMpData->InitFlag != ApInitDone) {
|
|
ResetVectorRequired = TRUE;
|
|
AllocateResetVector (CpuMpData);
|
|
FillExchangeInfoData (CpuMpData);
|
|
} else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
|
|
//
|
|
// Get AP target C-state each time when waking up AP,
|
|
// for it maybe updated by platform again
|
|
//
|
|
CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
|
|
}
|
|
|
|
ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
|
|
|
|
if (Broadcast) {
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
if (Index != CpuMpData->BspNumber) {
|
|
CpuData = &CpuMpData->CpuData[Index];
|
|
CpuData->ApFunction = (UINTN) Procedure;
|
|
CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
|
|
SetApState (CpuData, CpuStateReady);
|
|
if (CpuMpData->InitFlag != ApInitConfig) {
|
|
*(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
|
}
|
|
}
|
|
}
|
|
if (ResetVectorRequired) {
|
|
//
|
|
// Wakeup all APs
|
|
//
|
|
SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
|
|
}
|
|
if (CpuMpData->InitFlag == ApInitConfig) {
|
|
//
|
|
// Wait for all potential APs waken up in one specified period
|
|
//
|
|
MicroSecondDelay (PcdGet32(PcdCpuApInitTimeOutInMicroSeconds));
|
|
} else {
|
|
//
|
|
// Wait all APs waken up if this is not the 1st broadcast of SIPI
|
|
//
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
CpuData = &CpuMpData->CpuData[Index];
|
|
if (Index != CpuMpData->BspNumber) {
|
|
WaitApWakeup (CpuData->StartupApSignal);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
CpuData->ApFunction = (UINTN) Procedure;
|
|
CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
|
|
SetApState (CpuData, CpuStateReady);
|
|
//
|
|
// Wakeup specified AP
|
|
//
|
|
ASSERT (CpuMpData->InitFlag != ApInitConfig);
|
|
*(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
|
|
if (ResetVectorRequired) {
|
|
SendInitSipiSipi (
|
|
CpuData->ApicId,
|
|
(UINT32) ExchangeInfo->BufferStart
|
|
);
|
|
}
|
|
//
|
|
// Wait specified AP waken up
|
|
//
|
|
WaitApWakeup (CpuData->StartupApSignal);
|
|
}
|
|
|
|
if (ResetVectorRequired) {
|
|
FreeResetVector (CpuMpData);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Calculate timeout value and return the current performance counter value.
|
|
|
|
Calculate the number of performance counter ticks required for a timeout.
|
|
If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
|
as infinity.
|
|
|
|
@param[in] TimeoutInMicroseconds Timeout value in microseconds.
|
|
@param[out] CurrentTime Returns the current value of the performance counter.
|
|
|
|
@return Expected time stamp counter for timeout.
|
|
If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
|
as infinity.
|
|
|
|
**/
|
|
UINT64
|
|
CalculateTimeout (
|
|
IN UINTN TimeoutInMicroseconds,
|
|
OUT UINT64 *CurrentTime
|
|
)
|
|
{
|
|
//
|
|
// Read the current value of the performance counter
|
|
//
|
|
*CurrentTime = GetPerformanceCounter ();
|
|
|
|
//
|
|
// If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
|
|
// as infinity.
|
|
//
|
|
if (TimeoutInMicroseconds == 0) {
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// GetPerformanceCounterProperties () returns the timestamp counter's frequency
|
|
// in Hz. So multiply the return value with TimeoutInMicroseconds and then divide
|
|
// it by 1,000,000, to get the number of ticks for the timeout value.
|
|
//
|
|
return DivU64x32 (
|
|
MultU64x64 (
|
|
GetPerformanceCounterProperties (NULL, NULL),
|
|
TimeoutInMicroseconds
|
|
),
|
|
1000000
|
|
);
|
|
}
|
|
|
|
/**
|
|
Checks whether timeout expires.
|
|
|
|
Check whether the number of elapsed performance counter ticks required for
|
|
a timeout condition has been reached.
|
|
If Timeout is zero, which means infinity, return value is always FALSE.
|
|
|
|
@param[in, out] PreviousTime On input, the value of the performance counter
|
|
when it was last read.
|
|
On output, the current value of the performance
|
|
counter
|
|
@param[in] TotalTime The total amount of elapsed time in performance
|
|
counter ticks.
|
|
@param[in] Timeout The number of performance counter ticks required
|
|
to reach a timeout condition.
|
|
|
|
@retval TRUE A timeout condition has been reached.
|
|
@retval FALSE A timeout condition has not been reached.
|
|
|
|
**/
|
|
BOOLEAN
|
|
CheckTimeout (
|
|
IN OUT UINT64 *PreviousTime,
|
|
IN UINT64 *TotalTime,
|
|
IN UINT64 Timeout
|
|
)
|
|
{
|
|
UINT64 Start;
|
|
UINT64 End;
|
|
UINT64 CurrentTime;
|
|
INT64 Delta;
|
|
INT64 Cycle;
|
|
|
|
if (Timeout == 0) {
|
|
return FALSE;
|
|
}
|
|
GetPerformanceCounterProperties (&Start, &End);
|
|
Cycle = End - Start;
|
|
if (Cycle < 0) {
|
|
Cycle = -Cycle;
|
|
}
|
|
Cycle++;
|
|
CurrentTime = GetPerformanceCounter();
|
|
Delta = (INT64) (CurrentTime - *PreviousTime);
|
|
if (Start > End) {
|
|
Delta = -Delta;
|
|
}
|
|
if (Delta < 0) {
|
|
Delta += Cycle;
|
|
}
|
|
*TotalTime += Delta;
|
|
*PreviousTime = CurrentTime;
|
|
if (*TotalTime > Timeout) {
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Reset an AP to Idle state.
|
|
|
|
Any task being executed by the AP will be aborted and the AP
|
|
will be waiting for a new task in Wait-For-SIPI state.
|
|
|
|
@param[in] ProcessorNumber The handle number of processor.
|
|
**/
|
|
VOID
|
|
ResetProcessorToIdleState (
|
|
IN UINTN ProcessorNumber
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);
|
|
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
|
}
|
|
|
|
/**
|
|
Searches for the next waiting AP.
|
|
|
|
Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
|
|
|
|
@param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
|
|
|
|
@retval EFI_SUCCESS The next waiting AP has been found.
|
|
@retval EFI_NOT_FOUND No waiting AP exists.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
GetNextWaitingProcessorNumber (
|
|
OUT UINTN *NextProcessorNumber
|
|
)
|
|
{
|
|
UINTN ProcessorNumber;
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
|
if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
|
*NextProcessorNumber = ProcessorNumber;
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/** Checks status of specified AP.
|
|
|
|
This function checks whether the specified AP has finished the task assigned
|
|
by StartupThisAP(), and whether timeout expires.
|
|
|
|
@param[in] ProcessorNumber The handle number of processor.
|
|
|
|
@retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
|
|
@retval EFI_TIMEOUT The timeout expires.
|
|
@retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
|
|
**/
|
|
EFI_STATUS
|
|
CheckThisAP (
|
|
IN UINTN ProcessorNumber
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
CPU_AP_DATA *CpuData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
|
|
//
|
|
// Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
|
|
// Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
|
// value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
|
|
//
|
|
//
|
|
// If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
|
|
//
|
|
if (GetApState(CpuData) == CpuStateFinished) {
|
|
if (CpuData->Finished != NULL) {
|
|
*(CpuData->Finished) = TRUE;
|
|
}
|
|
SetApState (CpuData, CpuStateIdle);
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
//
|
|
// If timeout expires for StartupThisAP(), report timeout.
|
|
//
|
|
if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
|
|
if (CpuData->Finished != NULL) {
|
|
*(CpuData->Finished) = FALSE;
|
|
}
|
|
//
|
|
// Reset failed AP to idle state
|
|
//
|
|
ResetProcessorToIdleState (ProcessorNumber);
|
|
|
|
return EFI_TIMEOUT;
|
|
}
|
|
}
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
/**
|
|
Checks status of all APs.
|
|
|
|
This function checks whether all APs have finished task assigned by StartupAllAPs(),
|
|
and whether timeout expires.
|
|
|
|
@retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
|
|
@retval EFI_TIMEOUT The timeout expires.
|
|
@retval EFI_NOT_READY APs have not finished task and timeout has not expired.
|
|
**/
|
|
EFI_STATUS
|
|
CheckAllAPs (
|
|
VOID
|
|
)
|
|
{
|
|
UINTN ProcessorNumber;
|
|
UINTN NextProcessorNumber;
|
|
UINTN ListIndex;
|
|
EFI_STATUS Status;
|
|
CPU_MP_DATA *CpuMpData;
|
|
CPU_AP_DATA *CpuData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
NextProcessorNumber = 0;
|
|
|
|
//
|
|
// Go through all APs that are responsible for the StartupAllAPs().
|
|
//
|
|
for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
|
if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
|
continue;
|
|
}
|
|
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
//
|
|
// Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
|
|
// Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
|
|
// value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
|
|
//
|
|
if (GetApState(CpuData) == CpuStateFinished) {
|
|
CpuMpData->RunningCount ++;
|
|
CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
|
SetApState(CpuData, CpuStateIdle);
|
|
|
|
//
|
|
// If in Single Thread mode, then search for the next waiting AP for execution.
|
|
//
|
|
if (CpuMpData->SingleThread) {
|
|
Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
WakeUpAP (
|
|
CpuMpData,
|
|
FALSE,
|
|
(UINT32) NextProcessorNumber,
|
|
CpuMpData->Procedure,
|
|
CpuMpData->ProcArguments
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// If all APs finish, return EFI_SUCCESS.
|
|
//
|
|
if (CpuMpData->RunningCount == CpuMpData->StartCount) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// If timeout expires, report timeout.
|
|
//
|
|
if (CheckTimeout (
|
|
&CpuMpData->CurrentTime,
|
|
&CpuMpData->TotalTime,
|
|
CpuMpData->ExpectedTime)
|
|
) {
|
|
//
|
|
// If FailedCpuList is not NULL, record all failed APs in it.
|
|
//
|
|
if (CpuMpData->FailedCpuList != NULL) {
|
|
*CpuMpData->FailedCpuList =
|
|
AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));
|
|
ASSERT (*CpuMpData->FailedCpuList != NULL);
|
|
}
|
|
ListIndex = 0;
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
|
//
|
|
// Check whether this processor is responsible for StartupAllAPs().
|
|
//
|
|
if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
|
//
|
|
// Reset failed APs to idle state
|
|
//
|
|
ResetProcessorToIdleState (ProcessorNumber);
|
|
CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
|
|
if (CpuMpData->FailedCpuList != NULL) {
|
|
(*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
|
|
}
|
|
}
|
|
}
|
|
if (CpuMpData->FailedCpuList != NULL) {
|
|
(*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
|
|
}
|
|
return EFI_TIMEOUT;
|
|
}
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
/**
|
|
MP Initialize Library initialization.
|
|
|
|
This service will allocate AP reset vector and wakeup all APs to do APs
|
|
initialization.
|
|
|
|
This service must be invoked before all other MP Initialize Library
|
|
service are invoked.
|
|
|
|
@retval EFI_SUCCESS MP initialization succeeds.
|
|
@retval Others MP initialization fails.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
CPU_MP_DATA *OldCpuMpData;
|
|
CPU_INFO_IN_HOB *CpuInfoInHob;
|
|
UINT32 MaxLogicalProcessorNumber;
|
|
UINT32 ApStackSize;
|
|
MP_ASSEMBLY_ADDRESS_MAP AddressMap;
|
|
UINTN BufferSize;
|
|
UINT32 MonitorFilterSize;
|
|
VOID *MpBuffer;
|
|
UINTN Buffer;
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINT8 ApLoopMode;
|
|
UINT8 *MonitorBuffer;
|
|
UINTN Index;
|
|
UINTN ApResetVectorSize;
|
|
UINTN BackupBufferAddr;
|
|
|
|
OldCpuMpData = GetCpuMpDataFromGuidedHob ();
|
|
if (OldCpuMpData == NULL) {
|
|
MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
|
|
} else {
|
|
MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
|
|
}
|
|
|
|
AsmGetAddressMap (&AddressMap);
|
|
ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
|
|
ApStackSize = PcdGet32(PcdCpuApStackSize);
|
|
ApLoopMode = GetApLoopMode (&MonitorFilterSize);
|
|
|
|
BufferSize = ApStackSize * MaxLogicalProcessorNumber;
|
|
BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
|
|
BufferSize += sizeof (CPU_MP_DATA);
|
|
BufferSize += ApResetVectorSize;
|
|
BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
|
|
MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
|
|
ASSERT (MpBuffer != NULL);
|
|
ZeroMem (MpBuffer, BufferSize);
|
|
Buffer = (UINTN) MpBuffer;
|
|
|
|
MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
|
|
BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
|
|
CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);
|
|
CpuMpData->Buffer = Buffer;
|
|
CpuMpData->CpuApStackSize = ApStackSize;
|
|
CpuMpData->BackupBuffer = BackupBufferAddr;
|
|
CpuMpData->BackupBufferSize = ApResetVectorSize;
|
|
CpuMpData->EndOfPeiFlag = FALSE;
|
|
CpuMpData->WakeupBuffer = (UINTN) -1;
|
|
CpuMpData->CpuCount = 1;
|
|
CpuMpData->BspNumber = 0;
|
|
CpuMpData->WaitEvent = NULL;
|
|
CpuMpData->SwitchBspFlag = FALSE;
|
|
CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
|
|
CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
|
|
InitializeSpinLock(&CpuMpData->MpLock);
|
|
//
|
|
// Save BSP's Control registers to APs
|
|
//
|
|
SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);
|
|
//
|
|
// Set BSP basic information
|
|
//
|
|
InitializeApData (CpuMpData, 0, 0);
|
|
//
|
|
// Save assembly code information
|
|
//
|
|
CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
|
|
//
|
|
// Finally set AP loop mode
|
|
//
|
|
CpuMpData->ApLoopMode = ApLoopMode;
|
|
DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
|
|
//
|
|
// Set up APs wakeup signal buffer
|
|
//
|
|
for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
|
|
CpuMpData->CpuData[Index].StartupApSignal =
|
|
(UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
|
|
}
|
|
//
|
|
// Load Microcode on BSP
|
|
//
|
|
MicrocodeDetect (CpuMpData);
|
|
//
|
|
// Store BSP's MTRR setting
|
|
//
|
|
MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
|
|
|
|
if (OldCpuMpData == NULL) {
|
|
//
|
|
// Wakeup all APs and calculate the processor count in system
|
|
//
|
|
CollectProcessorCount (CpuMpData);
|
|
} else {
|
|
//
|
|
// APs have been wakeup before, just get the CPU Information
|
|
// from HOB
|
|
//
|
|
CpuMpData->CpuCount = OldCpuMpData->CpuCount;
|
|
CpuMpData->BspNumber = OldCpuMpData->BspNumber;
|
|
CpuMpData->InitFlag = ApInitReconfig;
|
|
CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) OldCpuMpData->CpuInfoInHob;
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
|
|
CpuMpData->CpuData[Index].ApicId = CpuInfoInHob[Index].ApicId;
|
|
CpuMpData->CpuData[Index].InitialApicId = CpuInfoInHob[Index].InitialApicId;
|
|
if (CpuMpData->CpuData[Index].InitialApicId >= 255) {
|
|
CpuMpData->X2ApicEnable = TRUE;
|
|
}
|
|
CpuMpData->CpuData[Index].Health = CpuInfoInHob[Index].Health;
|
|
CpuMpData->CpuData[Index].CpuHealthy = (CpuMpData->CpuData[Index].Health == 0)? TRUE:FALSE;
|
|
CpuMpData->CpuData[Index].ApFunction = 0;
|
|
CopyMem (
|
|
&CpuMpData->CpuData[Index].VolatileRegisters,
|
|
&CpuMpData->CpuData[0].VolatileRegisters,
|
|
sizeof (CPU_VOLATILE_REGISTERS)
|
|
);
|
|
}
|
|
//
|
|
// Wakeup APs to do some AP initialize sync
|
|
//
|
|
WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
|
|
//
|
|
// Wait for all APs finished initialization
|
|
//
|
|
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
|
|
CpuPause ();
|
|
}
|
|
CpuMpData->InitFlag = ApInitDone;
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Initialize global data for MP support
|
|
//
|
|
InitMpGlobalData (CpuMpData);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Gets detailed MP-related information on the requested processor at the
|
|
instant this call is made. This service may only be called from the BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of processor.
|
|
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
|
|
the requested processor is deposited.
|
|
@param[out] HealthData Return processor health data.
|
|
|
|
@retval EFI_SUCCESS Processor information was returned.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
ProcessorNumber does not exist in the platform.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibGetProcessorInfo (
|
|
IN UINTN ProcessorNumber,
|
|
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
|
|
OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN CallerNumber;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
if (ProcessorInfoBuffer == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (ProcessorNumber >= CpuMpData->CpuCount) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
ProcessorInfoBuffer->ProcessorId = (UINT64) CpuMpData->CpuData[ProcessorNumber].ApicId;
|
|
ProcessorInfoBuffer->StatusFlag = 0;
|
|
if (ProcessorNumber == CpuMpData->BspNumber) {
|
|
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
|
|
}
|
|
if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
|
|
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
|
|
}
|
|
if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
|
ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
|
|
} else {
|
|
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
|
|
}
|
|
|
|
//
|
|
// Get processor location information
|
|
//
|
|
ExtractProcessorLocation (CpuMpData->CpuData[ProcessorNumber].ApicId, &ProcessorInfoBuffer->Location);
|
|
|
|
if (HealthData != NULL) {
|
|
HealthData->Uint32 = CpuMpData->CpuData[ProcessorNumber].Health;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Worker function to switch the requested AP to be the BSP from that point onward.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
|
|
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
|
enabled AP. Otherwise, it will be disabled.
|
|
|
|
@retval EFI_SUCCESS BSP successfully switched.
|
|
@retval others Failed to switch BSP.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
SwitchBSPWorker (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableOldBSP
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN CallerNumber;
|
|
CPU_STATE State;
|
|
MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
if (ProcessorNumber >= CpuMpData->CpuCount) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Check whether specified AP is disabled
|
|
//
|
|
State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
|
|
if (State == CpuStateDisabled) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check whether ProcessorNumber specifies the current BSP
|
|
//
|
|
if (ProcessorNumber == CpuMpData->BspNumber) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check whether specified AP is busy
|
|
//
|
|
if (State == CpuStateBusy) {
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
|
|
CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
|
|
CpuMpData->SwitchBspFlag = TRUE;
|
|
|
|
//
|
|
// Clear the BSP bit of MSR_IA32_APIC_BASE
|
|
//
|
|
ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
|
ApicBaseMsr.Bits.BSP = 0;
|
|
AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
|
|
|
//
|
|
// Need to wakeUp AP (future BSP).
|
|
//
|
|
WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);
|
|
|
|
AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
|
|
|
|
//
|
|
// Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
|
|
//
|
|
ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
|
ApicBaseMsr.Bits.BSP = 1;
|
|
AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
|
|
|
|
//
|
|
// Wait for old BSP finished AP task
|
|
//
|
|
while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
|
|
CpuPause ();
|
|
}
|
|
|
|
CpuMpData->SwitchBspFlag = FALSE;
|
|
//
|
|
// Set old BSP enable state
|
|
//
|
|
if (!EnableOldBSP) {
|
|
SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
|
|
}
|
|
//
|
|
// Save new BSP number
|
|
//
|
|
CpuMpData->BspNumber = (UINT32) ProcessorNumber;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Worker function to let the caller enable or disable an AP from this point onward.
|
|
This service may only be called from the BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP.
|
|
@param[in] EnableAP Specifies the new state for the processor for
|
|
enabled, FALSE for disabled.
|
|
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
|
the new health status of the AP.
|
|
|
|
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
|
@retval others Failed to Enable/Disable AP.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EnableDisableApWorker (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableAP,
|
|
IN UINT32 *HealthFlag OPTIONAL
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN CallerNumber;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
if (ProcessorNumber == CpuMpData->BspNumber) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (ProcessorNumber >= CpuMpData->CpuCount) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if (!EnableAP) {
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
|
|
} else {
|
|
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
|
|
}
|
|
|
|
if (HealthFlag != NULL) {
|
|
CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
|
|
(BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This return the handle number for the calling processor. This service may be
|
|
called from the BSP and APs.
|
|
|
|
@param[out] ProcessorNumber Pointer to the handle number of AP.
|
|
The range is from 0 to the total number of
|
|
logical processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
|
|
@retval EFI_SUCCESS The current processor handle number was returned
|
|
in ProcessorNumber.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibWhoAmI (
|
|
OUT UINTN *ProcessorNumber
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
if (ProcessorNumber == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
return GetProcessorNumber (CpuMpData, ProcessorNumber);
|
|
}
|
|
|
|
/**
|
|
Retrieves the number of logical processor in the platform and the number of
|
|
those logical processors that are enabled on this boot. This service may only
|
|
be called from the BSP.
|
|
|
|
@param[out] NumberOfProcessors Pointer to the total number of logical
|
|
processors in the system, including the BSP
|
|
and disabled APs.
|
|
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
|
|
processors that exist in system, including
|
|
the BSP.
|
|
|
|
@retval EFI_SUCCESS The number of logical processors and enabled
|
|
logical processors was retrieved.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
|
|
is NULL.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibGetNumberOfProcessors (
|
|
OUT UINTN *NumberOfProcessors, OPTIONAL
|
|
OUT UINTN *NumberOfEnabledProcessors OPTIONAL
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN CallerNumber;
|
|
UINTN ProcessorNumber;
|
|
UINTN EnabledProcessorNumber;
|
|
UINTN Index;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
ProcessorNumber = CpuMpData->CpuCount;
|
|
EnabledProcessorNumber = 0;
|
|
for (Index = 0; Index < ProcessorNumber; Index++) {
|
|
if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
|
|
EnabledProcessorNumber ++;
|
|
}
|
|
}
|
|
|
|
if (NumberOfProcessors != NULL) {
|
|
*NumberOfProcessors = ProcessorNumber;
|
|
}
|
|
if (NumberOfEnabledProcessors != NULL) {
|
|
*NumberOfEnabledProcessors = EnabledProcessorNumber;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Worker function to execute a caller provided function on all enabled APs.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
enabled APs of the system.
|
|
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
|
the function specified by Procedure one by
|
|
one, in ascending order of processor handle
|
|
number. If FALSE, then all the enabled APs
|
|
execute the function specified by Procedure
|
|
simultaneously.
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service.
|
|
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
|
APs to return from Procedure, either for
|
|
blocking or non-blocking mode.
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
all APs.
|
|
@param[out] FailedCpuList If all APs finish successfully, then its
|
|
content is set to NULL. If not all APs
|
|
finish before timeout expires, then its
|
|
content is set to address of the buffer
|
|
holding handle numbers of the failed APs.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
|
the timeout expired.
|
|
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
|
to all enabled APs.
|
|
@retval others Failed to Startup all APs.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
StartupAllAPsWorker (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN BOOLEAN SingleThread,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT UINTN **FailedCpuList OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CPU_MP_DATA *CpuMpData;
|
|
UINTN ProcessorCount;
|
|
UINTN ProcessorNumber;
|
|
UINTN CallerNumber;
|
|
CPU_AP_DATA *CpuData;
|
|
BOOLEAN HasEnabledAp;
|
|
CPU_STATE ApState;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
if (FailedCpuList != NULL) {
|
|
*FailedCpuList = NULL;
|
|
}
|
|
|
|
if (CpuMpData->CpuCount == 1) {
|
|
return EFI_NOT_STARTED;
|
|
}
|
|
|
|
if (Procedure == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
//
|
|
// Update AP state
|
|
//
|
|
CheckAndUpdateApsStatus ();
|
|
|
|
ProcessorCount = CpuMpData->CpuCount;
|
|
HasEnabledAp = FALSE;
|
|
//
|
|
// Check whether all enabled APs are idle.
|
|
// If any enabled AP is not idle, return EFI_NOT_READY.
|
|
//
|
|
for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
if (ProcessorNumber != CpuMpData->BspNumber) {
|
|
ApState = GetApState (CpuData);
|
|
if (ApState != CpuStateDisabled) {
|
|
HasEnabledAp = TRUE;
|
|
if (ApState != CpuStateIdle) {
|
|
//
|
|
// If any enabled APs are busy, return EFI_NOT_READY.
|
|
//
|
|
return EFI_NOT_READY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!HasEnabledAp) {
|
|
//
|
|
// If no enabled AP exists, return EFI_NOT_STARTED.
|
|
//
|
|
return EFI_NOT_STARTED;
|
|
}
|
|
|
|
CpuMpData->StartCount = 0;
|
|
for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
CpuData->Waiting = FALSE;
|
|
if (ProcessorNumber != CpuMpData->BspNumber) {
|
|
if (CpuData->State == CpuStateIdle) {
|
|
//
|
|
// Mark this processor as responsible for current calling.
|
|
//
|
|
CpuData->Waiting = TRUE;
|
|
CpuMpData->StartCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
CpuMpData->Procedure = Procedure;
|
|
CpuMpData->ProcArguments = ProcedureArgument;
|
|
CpuMpData->SingleThread = SingleThread;
|
|
CpuMpData->FinishedCount = 0;
|
|
CpuMpData->RunningCount = 0;
|
|
CpuMpData->FailedCpuList = FailedCpuList;
|
|
CpuMpData->ExpectedTime = CalculateTimeout (
|
|
TimeoutInMicroseconds,
|
|
&CpuMpData->CurrentTime
|
|
);
|
|
CpuMpData->TotalTime = 0;
|
|
CpuMpData->WaitEvent = WaitEvent;
|
|
|
|
if (!SingleThread) {
|
|
WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);
|
|
} else {
|
|
for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
|
|
if (ProcessorNumber == CallerNumber) {
|
|
continue;
|
|
}
|
|
if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
|
|
WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
if (WaitEvent == NULL) {
|
|
do {
|
|
Status = CheckAllAPs ();
|
|
} while (Status == EFI_NOT_READY);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Worker function to let the caller get one enabled AP to execute a caller-provided
|
|
function.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
enabled APs of the system.
|
|
@param[in] ProcessorNumber The handle number of the AP.
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service.
|
|
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
|
|
APs to return from Procedure, either for
|
|
blocking or non-blocking mode.
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
all APs.
|
|
@param[out] Finished If AP returns from Procedure before the
|
|
timeout expires, its content is set to TRUE.
|
|
Otherwise, the value is set to FALSE.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
|
the timeout expires.
|
|
@retval others Failed to Startup AP.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
StartupThisAPWorker (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN UINTN ProcessorNumber,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT BOOLEAN *Finished OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CPU_MP_DATA *CpuMpData;
|
|
CPU_AP_DATA *CpuData;
|
|
UINTN CallerNumber;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
if (Finished != NULL) {
|
|
*Finished = FALSE;
|
|
}
|
|
|
|
//
|
|
// Check whether caller processor is BSP
|
|
//
|
|
MpInitLibWhoAmI (&CallerNumber);
|
|
if (CallerNumber != CpuMpData->BspNumber) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
//
|
|
// Check whether processor with the handle specified by ProcessorNumber exists
|
|
//
|
|
if (ProcessorNumber >= CpuMpData->CpuCount) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Check whether specified processor is BSP
|
|
//
|
|
if (ProcessorNumber == CpuMpData->BspNumber) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check parameter Procedure
|
|
//
|
|
if (Procedure == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Update AP state
|
|
//
|
|
CheckAndUpdateApsStatus ();
|
|
|
|
//
|
|
// Check whether specified AP is disabled
|
|
//
|
|
if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// If WaitEvent is not NULL, execute in non-blocking mode.
|
|
// BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
|
|
// CheckAPsStatus() will check completion and timeout periodically.
|
|
//
|
|
CpuData = &CpuMpData->CpuData[ProcessorNumber];
|
|
CpuData->WaitEvent = WaitEvent;
|
|
CpuData->Finished = Finished;
|
|
CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
|
|
CpuData->TotalTime = 0;
|
|
|
|
WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
|
|
|
|
//
|
|
// If WaitEvent is NULL, execute in blocking mode.
|
|
// BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
if (WaitEvent == NULL) {
|
|
do {
|
|
Status = CheckThisAP (ProcessorNumber);
|
|
} while (Status == EFI_NOT_READY);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Get pointer to CPU MP Data structure from GUIDed HOB.
|
|
|
|
@return The pointer to CPU MP Data structure.
|
|
**/
|
|
CPU_MP_DATA *
|
|
GetCpuMpDataFromGuidedHob (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_HOB_GUID_TYPE *GuidHob;
|
|
VOID *DataInHob;
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = NULL;
|
|
GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
|
|
if (GuidHob != NULL) {
|
|
DataInHob = GET_GUID_HOB_DATA (GuidHob);
|
|
CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
|
|
}
|
|
return CpuMpData;
|
|
}
|