audk/MdeModulePkg/Core/Dxe/FwVolBlock/FwVolBlock.c

726 lines
23 KiB
C

/** @file
Implementations for Firmware Volume Block protocol.
It consumes FV HOBs and creates read-only Firmare Volume Block protocol
instances for each of them.
Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DxeMain.h"
#include "FwVolBlock.h"
FV_MEMMAP_DEVICE_PATH mFvMemmapDevicePathTemplate = {
{
{
HARDWARE_DEVICE_PATH,
HW_MEMMAP_DP,
{
(UINT8)(sizeof (MEMMAP_DEVICE_PATH)),
(UINT8)(sizeof (MEMMAP_DEVICE_PATH) >> 8)
}
},
EfiMemoryMappedIO,
(EFI_PHYSICAL_ADDRESS) 0,
(EFI_PHYSICAL_ADDRESS) 0,
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
END_DEVICE_PATH_LENGTH,
0
}
}
};
FV_PIWG_DEVICE_PATH mFvPIWGDevicePathTemplate = {
{
{
MEDIA_DEVICE_PATH,
MEDIA_PIWG_FW_VOL_DP,
{
(UINT8)(sizeof (MEDIA_FW_VOL_DEVICE_PATH)),
(UINT8)(sizeof (MEDIA_FW_VOL_DEVICE_PATH) >> 8)
}
},
{ 0 }
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
END_DEVICE_PATH_LENGTH,
0
}
}
};
EFI_FW_VOL_BLOCK_DEVICE mFwVolBlock = {
FVB_DEVICE_SIGNATURE,
NULL,
NULL,
{
FwVolBlockGetAttributes,
(EFI_FVB_SET_ATTRIBUTES)FwVolBlockSetAttributes,
FwVolBlockGetPhysicalAddress,
FwVolBlockGetBlockSize,
FwVolBlockReadBlock,
(EFI_FVB_WRITE)FwVolBlockWriteBlock,
(EFI_FVB_ERASE_BLOCKS)FwVolBlockEraseBlock,
NULL
},
0,
NULL,
0,
0,
0
};
/**
Retrieves Volume attributes. No polarity translations are done.
@param This Calling context
@param Attributes output buffer which contains attributes
@retval EFI_SUCCESS The firmware volume attributes were returned.
**/
EFI_STATUS
EFIAPI
FwVolBlockGetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
//
// Since we are read only, it's safe to get attributes data from our in-memory copy.
//
*Attributes = FvbDevice->FvbAttributes & ~EFI_FVB2_WRITE_STATUS;
return EFI_SUCCESS;
}
/**
Modifies the current settings of the firmware volume according to the input parameter.
@param This Calling context
@param Attributes input buffer which contains attributes
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in conflict with
the capabilities as declared in the firmware
volume header.
@retval EFI_UNSUPPORTED Not supported.
**/
EFI_STATUS
EFIAPI
FwVolBlockSetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN CONST EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
return EFI_UNSUPPORTED;
}
/**
The EraseBlock() function erases one or more blocks as denoted by the
variable argument list. The entire parameter list of blocks must be verified
prior to erasing any blocks. If a block is requested that does not exist
within the associated firmware volume (it has a larger index than the last
block of the firmware volume), the EraseBlock() function must return
EFI_INVALID_PARAMETER without modifying the contents of the firmware volume.
@param This Calling context
@param ... Starting LBA followed by Number of Lba to erase.
a -1 to terminate the list.
@retval EFI_SUCCESS The erase request was successfully completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled
state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly
and could not be written. The firmware device
may have been partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable
argument list do
@retval EFI_UNSUPPORTED Not supported.
**/
EFI_STATUS
EFIAPI
FwVolBlockEraseBlock (
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
...
)
{
return EFI_UNSUPPORTED;
}
/**
Read the specified number of bytes from the block to the input buffer.
@param This Indicates the calling context.
@param Lba The starting logical block index to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINT32. At entry, *NumBytes
contains the total size of the buffer. At exit,
*NumBytes contains the total number of bytes
actually read.
@param Buffer Pinter to a caller-allocated buffer that
contains the destine for the read.
@retval EFI_SUCCESS The firmware volume was read successfully.
@retval EFI_BAD_BUFFER_SIZE The read was attempted across an LBA boundary.
@retval EFI_ACCESS_DENIED Access denied.
@retval EFI_DEVICE_ERROR The block device is malfunctioning and could not
be read.
**/
EFI_STATUS
EFIAPI
FwVolBlockReadBlock (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN CONST EFI_LBA Lba,
IN CONST UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
UINT8 *LbaOffset;
UINTN LbaStart;
UINTN NumOfBytesRead;
UINTN LbaIndex;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
//
// Check if This FW can be read
//
if ((FvbDevice->FvbAttributes & EFI_FVB2_READ_STATUS) == 0) {
return EFI_ACCESS_DENIED;
}
LbaIndex = (UINTN) Lba;
if (LbaIndex >= FvbDevice->NumBlocks) {
//
// Invalid Lba, read nothing.
//
*NumBytes = 0;
return EFI_BAD_BUFFER_SIZE;
}
if (Offset > FvbDevice->LbaCache[LbaIndex].Length) {
//
// all exceed boundary, read nothing.
//
*NumBytes = 0;
return EFI_BAD_BUFFER_SIZE;
}
NumOfBytesRead = *NumBytes;
if (Offset + NumOfBytesRead > FvbDevice->LbaCache[LbaIndex].Length) {
//
// partial exceed boundary, read data from current postion to end.
//
NumOfBytesRead = FvbDevice->LbaCache[LbaIndex].Length - Offset;
}
LbaStart = FvbDevice->LbaCache[LbaIndex].Base;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)((UINTN) FvbDevice->BaseAddress);
LbaOffset = (UINT8 *) FwVolHeader + LbaStart + Offset;
//
// Perform read operation
//
CopyMem (Buffer, LbaOffset, NumOfBytesRead);
if (NumOfBytesRead == *NumBytes) {
return EFI_SUCCESS;
}
*NumBytes = NumOfBytesRead;
return EFI_BAD_BUFFER_SIZE;
}
/**
Writes the specified number of bytes from the input buffer to the block.
@param This Indicates the calling context.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes Pointer to a UINT32. At entry, *NumBytes
contains the total size of the buffer. At exit,
*NumBytes contains the total number of bytes
actually written.
@param Buffer Pinter to a caller-allocated buffer that
contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary.
On output, NumBytes contains the total number of
bytes actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled
state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning and could not
be written.
@retval EFI_UNSUPPORTED Not supported.
**/
EFI_STATUS
EFIAPI
FwVolBlockWriteBlock (
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
return EFI_UNSUPPORTED;
}
/**
Get Fvb's base address.
@param This Indicates the calling context.
@param Address Fvb device base address.
@retval EFI_SUCCESS Successfully got Fvb's base address.
@retval EFI_UNSUPPORTED Not supported.
**/
EFI_STATUS
EFIAPI
FwVolBlockGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
if ((FvbDevice->FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) {
*Address = FvbDevice->BaseAddress;
return EFI_SUCCESS;
}
return EFI_UNSUPPORTED;
}
/**
Retrieves the size in bytes of a specific block within a firmware volume.
@param This Indicates the calling context.
@param Lba Indicates the block for which to return the
size.
@param BlockSize Pointer to a caller-allocated UINTN in which the
size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in which the
number of consecutive blocks starting with Lba
is returned. All blocks in this range have a
size of BlockSize.
@retval EFI_SUCCESS The firmware volume base address is returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
EFI_STATUS
EFIAPI
FwVolBlockGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN CONST EFI_LBA Lba,
IN OUT UINTN *BlockSize,
IN OUT UINTN *NumberOfBlocks
)
{
UINTN TotalBlocks;
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
FvbDevice = FVB_DEVICE_FROM_THIS (This);
//
// Do parameter checking
//
if (Lba >= FvbDevice->NumBlocks) {
return EFI_INVALID_PARAMETER;
}
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)((UINTN)FvbDevice->BaseAddress);
PtrBlockMapEntry = FwVolHeader->BlockMap;
//
// Search the block map for the given block
//
TotalBlocks = 0;
while ((PtrBlockMapEntry->NumBlocks != 0) || (PtrBlockMapEntry->Length !=0 )) {
TotalBlocks += PtrBlockMapEntry->NumBlocks;
if (Lba < TotalBlocks) {
//
// We find the range
//
break;
}
PtrBlockMapEntry++;
}
*BlockSize = PtrBlockMapEntry->Length;
*NumberOfBlocks = TotalBlocks - (UINTN)Lba;
return EFI_SUCCESS;
}
/**
Get FVB authentication status
@param FvbProtocol FVB protocol.
@return Authentication status.
**/
UINT32
GetFvbAuthenticationStatus (
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol
)
{
EFI_FW_VOL_BLOCK_DEVICE *FvbDevice;
UINT32 AuthenticationStatus;
AuthenticationStatus = 0;
FvbDevice = BASE_CR (FvbProtocol, EFI_FW_VOL_BLOCK_DEVICE, FwVolBlockInstance);
if (FvbDevice->Signature == FVB_DEVICE_SIGNATURE) {
AuthenticationStatus = FvbDevice->AuthenticationStatus;
}
return AuthenticationStatus;
}
/**
This routine produces a firmware volume block protocol on a given
buffer.
@param BaseAddress base address of the firmware volume image
@param Length length of the firmware volume image
@param ParentHandle handle of parent firmware volume, if this image
came from an FV image file and section in another firmware
volume (ala capsules)
@param AuthenticationStatus Authentication status inherited, if this image
came from an FV image file and section in another firmware volume.
@param FvProtocol Firmware volume block protocol produced.
@retval EFI_VOLUME_CORRUPTED Volume corrupted.
@retval EFI_OUT_OF_RESOURCES No enough buffer to be allocated.
@retval EFI_SUCCESS Successfully produced a FVB protocol on given
buffer.
**/
EFI_STATUS
ProduceFVBProtocolOnBuffer (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_HANDLE ParentHandle,
IN UINT32 AuthenticationStatus,
OUT EFI_HANDLE *FvProtocol OPTIONAL
)
{
EFI_STATUS Status;
EFI_FW_VOL_BLOCK_DEVICE *FvbDev;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
UINTN BlockIndex;
UINTN BlockIndex2;
UINTN LinearOffset;
UINT32 FvAlignment;
EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
FvAlignment = 0;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN) BaseAddress;
//
// Validate FV Header, if not as expected, return
//
if (FwVolHeader->Signature != EFI_FVH_SIGNATURE) {
return EFI_VOLUME_CORRUPTED;
}
//
// If EFI_FVB2_WEAK_ALIGNMENT is set in the volume header then the first byte of the volume
// can be aligned on any power-of-two boundary. A weakly aligned volume can not be moved from
// its initial linked location and maintain its alignment.
//
if ((FwVolHeader->Attributes & EFI_FVB2_WEAK_ALIGNMENT) != EFI_FVB2_WEAK_ALIGNMENT) {
//
// Get FvHeader alignment
//
FvAlignment = 1 << ((FwVolHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
//
// FvAlignment must be greater than or equal to 8 bytes of the minimum FFS alignment value.
//
if (FvAlignment < 8) {
FvAlignment = 8;
}
if ((UINTN)BaseAddress % FvAlignment != 0) {
//
// FvImage buffer is not at its required alignment.
//
DEBUG ((
DEBUG_ERROR,
"Unaligned FvImage found at 0x%lx:0x%lx, the required alignment is 0x%x\n",
BaseAddress,
Length,
FvAlignment
));
return EFI_VOLUME_CORRUPTED;
}
}
//
// Allocate EFI_FW_VOL_BLOCK_DEVICE
//
FvbDev = AllocateCopyPool (sizeof (EFI_FW_VOL_BLOCK_DEVICE), &mFwVolBlock);
if (FvbDev == NULL) {
return EFI_OUT_OF_RESOURCES;
}
FvbDev->BaseAddress = BaseAddress;
FvbDev->FvbAttributes = FwVolHeader->Attributes;
FvbDev->FwVolBlockInstance.ParentHandle = ParentHandle;
FvbDev->AuthenticationStatus = AuthenticationStatus;
//
// Init the block caching fields of the device
// First, count the number of blocks
//
FvbDev->NumBlocks = 0;
for (PtrBlockMapEntry = FwVolHeader->BlockMap;
PtrBlockMapEntry->NumBlocks != 0;
PtrBlockMapEntry++) {
FvbDev->NumBlocks += PtrBlockMapEntry->NumBlocks;
}
//
// Second, allocate the cache
//
if (FvbDev->NumBlocks >= (MAX_ADDRESS / sizeof (LBA_CACHE))) {
CoreFreePool (FvbDev);
return EFI_OUT_OF_RESOURCES;
}
FvbDev->LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE));
if (FvbDev->LbaCache == NULL) {
CoreFreePool (FvbDev);
return EFI_OUT_OF_RESOURCES;
}
//
// Last, fill in the cache with the linear address of the blocks
//
BlockIndex = 0;
LinearOffset = 0;
for (PtrBlockMapEntry = FwVolHeader->BlockMap;
PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
FvbDev->LbaCache[BlockIndex].Base = LinearOffset;
FvbDev->LbaCache[BlockIndex].Length = PtrBlockMapEntry->Length;
LinearOffset += PtrBlockMapEntry->Length;
BlockIndex++;
}
}
//
// Judget whether FV name guid is produced in Fv extension header
//
if (FwVolHeader->ExtHeaderOffset == 0) {
//
// FV does not contains extension header, then produce MEMMAP_DEVICE_PATH
//
FvbDev->DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocateCopyPool (sizeof (FV_MEMMAP_DEVICE_PATH), &mFvMemmapDevicePathTemplate);
if (FvbDev->DevicePath == NULL) {
FreePool (FvbDev);
return EFI_OUT_OF_RESOURCES;
}
((FV_MEMMAP_DEVICE_PATH *) FvbDev->DevicePath)->MemMapDevPath.StartingAddress = BaseAddress;
((FV_MEMMAP_DEVICE_PATH *) FvbDev->DevicePath)->MemMapDevPath.EndingAddress = BaseAddress + FwVolHeader->FvLength - 1;
} else {
//
// FV contains extension header, then produce MEDIA_FW_VOL_DEVICE_PATH
//
FvbDev->DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocateCopyPool (sizeof (FV_PIWG_DEVICE_PATH), &mFvPIWGDevicePathTemplate);
if (FvbDev->DevicePath == NULL) {
FreePool (FvbDev);
return EFI_OUT_OF_RESOURCES;
}
CopyGuid (
&((FV_PIWG_DEVICE_PATH *)FvbDev->DevicePath)->FvDevPath.FvName,
(GUID *)(UINTN)(BaseAddress + FwVolHeader->ExtHeaderOffset)
);
}
//
//
// Attach FvVolBlock Protocol to new handle
//
Status = CoreInstallMultipleProtocolInterfaces (
&FvbDev->Handle,
&gEfiFirmwareVolumeBlockProtocolGuid, &FvbDev->FwVolBlockInstance,
&gEfiDevicePathProtocolGuid, FvbDev->DevicePath,
NULL
);
//
// If they want the handle back, set it.
//
if (FvProtocol != NULL) {
*FvProtocol = FvbDev->Handle;
}
return Status;
}
/**
This routine consumes FV hobs and produces instances of FW_VOL_BLOCK_PROTOCOL as appropriate.
@param ImageHandle The image handle.
@param SystemTable The system table.
@retval EFI_SUCCESS Successfully initialized firmware volume block
driver.
**/
EFI_STATUS
EFIAPI
FwVolBlockDriverInit (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_PEI_HOB_POINTERS FvHob;
EFI_PEI_HOB_POINTERS Fv3Hob;
UINT32 AuthenticationStatus;
//
// Core Needs Firmware Volumes to function
//
FvHob.Raw = GetHobList ();
while ((FvHob.Raw = GetNextHob (EFI_HOB_TYPE_FV, FvHob.Raw)) != NULL) {
AuthenticationStatus = 0;
//
// Get the authentication status propagated from PEI-phase to DXE.
//
Fv3Hob.Raw = GetHobList ();
while ((Fv3Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV3, Fv3Hob.Raw)) != NULL) {
if ((Fv3Hob.FirmwareVolume3->BaseAddress == FvHob.FirmwareVolume->BaseAddress) &&
(Fv3Hob.FirmwareVolume3->Length == FvHob.FirmwareVolume->Length)) {
AuthenticationStatus = Fv3Hob.FirmwareVolume3->AuthenticationStatus;
break;
}
Fv3Hob.Raw = GET_NEXT_HOB (Fv3Hob);
}
//
// Produce an FVB protocol for it
//
ProduceFVBProtocolOnBuffer (FvHob.FirmwareVolume->BaseAddress, FvHob.FirmwareVolume->Length, NULL, AuthenticationStatus, NULL);
FvHob.Raw = GET_NEXT_HOB (FvHob);
}
return EFI_SUCCESS;
}
/**
This DXE service routine is used to process a firmware volume. In
particular, it can be called by BDS to process a single firmware
volume found in a capsule.
Caution: The caller need validate the input firmware volume to follow
PI specification.
DxeCore will trust the input data and process firmware volume directly.
@param FvHeader pointer to a firmware volume header
@param Size the size of the buffer pointed to by FvHeader
@param FVProtocolHandle the handle on which a firmware volume protocol
was produced for the firmware volume passed in.
@retval EFI_OUT_OF_RESOURCES if an FVB could not be produced due to lack of
system resources
@retval EFI_VOLUME_CORRUPTED if the volume was corrupted
@retval EFI_SUCCESS a firmware volume protocol was produced for the
firmware volume
**/
EFI_STATUS
EFIAPI
CoreProcessFirmwareVolume (
IN VOID *FvHeader,
IN UINTN Size,
OUT EFI_HANDLE *FVProtocolHandle
)
{
VOID *Ptr;
EFI_STATUS Status;
*FVProtocolHandle = NULL;
Status = ProduceFVBProtocolOnBuffer (
(EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader,
(UINT64)Size,
NULL,
0,
FVProtocolHandle
);
//
// Since in our implementation we use register-protocol-notify to put a
// FV protocol on the FVB protocol handle, we can't directly verify that
// the FV protocol was produced. Therefore here we will check the handle
// and make sure an FV protocol is on it. This indicates that all went
// well. Otherwise we have to assume that the volume was corrupted
// somehow.
//
if (!EFI_ERROR(Status)) {
ASSERT (*FVProtocolHandle != NULL);
Ptr = NULL;
Status = CoreHandleProtocol (*FVProtocolHandle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **) &Ptr);
if (EFI_ERROR(Status) || (Ptr == NULL)) {
return EFI_VOLUME_CORRUPTED;
}
return EFI_SUCCESS;
}
return Status;
}