mirror of https://github.com/acidanthera/audk.git
863 lines
21 KiB
C
863 lines
21 KiB
C
/** @file
|
|
Simple PC RTC
|
|
|
|
Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
|
|
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
|
|
Copyright (c) 2014, ARM Ltd. All rights reserved.
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
typedef struct {
|
|
EFI_LOCK RtcLock;
|
|
UINT16 SavedTimeZone;
|
|
UINT8 Daylight;
|
|
} PC_RTC_GLOBALS;
|
|
|
|
#define PCAT_RTC_ADDRESS_REGISTER 0x70
|
|
#define PCAT_RTC_DATA_REGISTER 0x71
|
|
|
|
//
|
|
// Dallas DS12C887 Real Time Clock
|
|
//
|
|
#define RTC_ADDRESS_SECONDS 0 // R/W Range 0..59
|
|
#define RTC_ADDRESS_SECONDS_ALARM 1 // R/W Range 0..59
|
|
#define RTC_ADDRESS_MINUTES 2 // R/W Range 0..59
|
|
#define RTC_ADDRESS_MINUTES_ALARM 3 // R/W Range 0..59
|
|
#define RTC_ADDRESS_HOURS 4 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
|
|
#define RTC_ADDRESS_HOURS_ALARM 5 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM
|
|
#define RTC_ADDRESS_DAY_OF_THE_WEEK 6 // R/W Range 1..7
|
|
#define RTC_ADDRESS_DAY_OF_THE_MONTH 7 // R/W Range 1..31
|
|
#define RTC_ADDRESS_MONTH 8 // R/W Range 1..12
|
|
#define RTC_ADDRESS_YEAR 9 // R/W Range 0..99
|
|
#define RTC_ADDRESS_REGISTER_A 10 // R/W[0..6] R0[7]
|
|
#define RTC_ADDRESS_REGISTER_B 11 // R/W
|
|
#define RTC_ADDRESS_REGISTER_C 12 // RO
|
|
#define RTC_ADDRESS_REGISTER_D 13 // RO
|
|
#define RTC_ADDRESS_CENTURY 50 // R/W Range 19..20 Bit 8 is R/W
|
|
//
|
|
// Date and time initial values.
|
|
// They are used if the RTC values are invalid during driver initialization
|
|
//
|
|
#define RTC_INIT_SECOND 0
|
|
#define RTC_INIT_MINUTE 0
|
|
#define RTC_INIT_HOUR 0
|
|
#define RTC_INIT_DAY 1
|
|
#define RTC_INIT_MONTH 1
|
|
#define RTC_INIT_YEAR 2001
|
|
|
|
//
|
|
// Register initial values
|
|
//
|
|
#define RTC_INIT_REGISTER_A 0x26
|
|
#define RTC_INIT_REGISTER_B 0x02
|
|
#define RTC_INIT_REGISTER_D 0x0
|
|
|
|
#pragma pack(1)
|
|
//
|
|
// Register A
|
|
//
|
|
typedef struct {
|
|
UINT8 RS : 4; // Rate Selection Bits
|
|
UINT8 DV : 3; // Divisor
|
|
UINT8 UIP : 1; // Update in progress
|
|
} RTC_REGISTER_A_BITS;
|
|
|
|
typedef union {
|
|
RTC_REGISTER_A_BITS Bits;
|
|
UINT8 Data;
|
|
} RTC_REGISTER_A;
|
|
|
|
//
|
|
// Register B
|
|
//
|
|
typedef struct {
|
|
UINT8 DSE : 1; // 0 - Daylight saving disabled 1 - Daylight savings enabled
|
|
UINT8 MIL : 1; // 0 - 12 hour mode 1 - 24 hour mode
|
|
UINT8 DM : 1; // 0 - BCD Format 1 - Binary Format
|
|
UINT8 SQWE : 1; // 0 - Disable SQWE output 1 - Enable SQWE output
|
|
UINT8 UIE : 1; // 0 - Update INT disabled 1 - Update INT enabled
|
|
UINT8 AIE : 1; // 0 - Alarm INT disabled 1 - Alarm INT Enabled
|
|
UINT8 PIE : 1; // 0 - Periodic INT disabled 1 - Periodic INT Enabled
|
|
UINT8 SET : 1; // 0 - Normal operation. 1 - Updates inhibited
|
|
} RTC_REGISTER_B_BITS;
|
|
|
|
typedef union {
|
|
RTC_REGISTER_B_BITS Bits;
|
|
UINT8 Data;
|
|
} RTC_REGISTER_B;
|
|
|
|
//
|
|
// Register C
|
|
//
|
|
typedef struct {
|
|
UINT8 Reserved : 4; // Read as zero. Can not be written.
|
|
UINT8 UF : 1; // Update End Interrupt Flag
|
|
UINT8 AF : 1; // Alarm Interrupt Flag
|
|
UINT8 PF : 1; // Periodic Interrupt Flag
|
|
UINT8 IRQF : 1; // Iterrupt Request Flag = PF & PIE | AF & AIE | UF & UIE
|
|
} RTC_REGISTER_C_BITS;
|
|
|
|
typedef union {
|
|
RTC_REGISTER_C_BITS Bits;
|
|
UINT8 Data;
|
|
} RTC_REGISTER_C;
|
|
|
|
//
|
|
// Register D
|
|
//
|
|
typedef struct {
|
|
UINT8 Reserved : 7; // Read as zero. Can not be written.
|
|
UINT8 VRT : 1; // Valid RAM and Time
|
|
} RTC_REGISTER_D_BITS;
|
|
|
|
typedef union {
|
|
RTC_REGISTER_D_BITS Bits;
|
|
UINT8 Data;
|
|
} RTC_REGISTER_D;
|
|
|
|
#pragma pack()
|
|
|
|
PC_RTC_GLOBALS mRtc;
|
|
|
|
BOOLEAN
|
|
IsLeapYear (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
if (Time->Year % 4 == 0) {
|
|
if (Time->Year % 100 == 0) {
|
|
if (Time->Year % 400 == 0) {
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
return TRUE;
|
|
}
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
const INTN mDayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
BOOLEAN
|
|
DayValid (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
if (Time->Day < 1 ||
|
|
Time->Day > mDayOfMonth[Time->Month - 1] ||
|
|
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
|
|
) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
UINT8
|
|
DecimaltoBcd (
|
|
IN UINT8 DecValue
|
|
)
|
|
{
|
|
UINTN High;
|
|
UINTN Low;
|
|
|
|
High = DecValue / 10;
|
|
Low = DecValue - (High * 10);
|
|
|
|
return (UINT8) (Low + (High << 4));
|
|
}
|
|
|
|
UINT8
|
|
BcdToDecimal (
|
|
IN UINT8 BcdValue
|
|
)
|
|
{
|
|
UINTN High;
|
|
UINTN Low;
|
|
|
|
High = BcdValue >> 4;
|
|
Low = BcdValue - (High << 4);
|
|
|
|
return (UINT8) (Low + (High * 10));
|
|
}
|
|
|
|
|
|
|
|
|
|
VOID
|
|
ConvertEfiTimeToRtcTime (
|
|
IN EFI_TIME *Time,
|
|
IN RTC_REGISTER_B RegisterB,
|
|
IN UINT8 *Century
|
|
)
|
|
{
|
|
BOOLEAN PM;
|
|
|
|
PM = TRUE;
|
|
//
|
|
// Adjust hour field if RTC in in 12 hour mode
|
|
//
|
|
if (RegisterB.Bits.MIL == 0) {
|
|
if (Time->Hour < 12) {
|
|
PM = FALSE;
|
|
}
|
|
|
|
if (Time->Hour >= 13) {
|
|
Time->Hour = (UINT8) (Time->Hour - 12);
|
|
} else if (Time->Hour == 0) {
|
|
Time->Hour = 12;
|
|
}
|
|
}
|
|
//
|
|
// Set the Time/Date/Daylight Savings values.
|
|
//
|
|
*Century = DecimaltoBcd ((UINT8) (Time->Year / 100));
|
|
|
|
Time->Year = (UINT16) (Time->Year % 100);
|
|
|
|
if (RegisterB.Bits.DM == 0) {
|
|
Time->Year = DecimaltoBcd ((UINT8) Time->Year);
|
|
Time->Month = DecimaltoBcd (Time->Month);
|
|
Time->Day = DecimaltoBcd (Time->Day);
|
|
Time->Hour = DecimaltoBcd (Time->Hour);
|
|
Time->Minute = DecimaltoBcd (Time->Minute);
|
|
Time->Second = DecimaltoBcd (Time->Second);
|
|
}
|
|
//
|
|
// If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field.
|
|
//
|
|
if (RegisterB.Bits.MIL == 0 && PM) {
|
|
Time->Hour = (UINT8) (Time->Hour | 0x80);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Check the validity of all the fields of a data structure of type EFI_TIME
|
|
|
|
@param[in] Time Pointer to a data structure of type EFI_TIME that defines a date and time
|
|
|
|
@retval EFI_SUCCESS All date and time fields are valid
|
|
@retval EFI_INVALID_PARAMETER At least one date or time field is not valid
|
|
**/
|
|
EFI_STATUS
|
|
RtcTimeFieldsValid (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
if ((Time->Year < 1998 ) ||
|
|
(Time->Year > 2099 ) ||
|
|
(Time->Month < 1 ) ||
|
|
(Time->Month > 12 ) ||
|
|
(!DayValid (Time)) ||
|
|
(Time->Hour > 23 ) ||
|
|
(Time->Minute > 59 ) ||
|
|
(Time->Second > 59 ) ||
|
|
(Time->Nanosecond > 999999999) ||
|
|
((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) &&
|
|
((Time->TimeZone < -1440) ||
|
|
(Time->TimeZone > 1440 ) ) ) ||
|
|
(Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT |
|
|
EFI_TIME_IN_DAYLIGHT )))
|
|
) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
UINT8
|
|
RtcRead (
|
|
IN UINT8 Address
|
|
)
|
|
{
|
|
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
|
|
return IoRead8 (PCAT_RTC_DATA_REGISTER);
|
|
}
|
|
|
|
VOID
|
|
RtcWrite (
|
|
IN UINT8 Address,
|
|
IN UINT8 Data
|
|
)
|
|
{
|
|
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
|
|
IoWrite8 (PCAT_RTC_DATA_REGISTER, Data);
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
RtcTestCenturyRegister (
|
|
VOID
|
|
)
|
|
{
|
|
UINT8 Century;
|
|
UINT8 Temp;
|
|
|
|
Century = RtcRead (RTC_ADDRESS_CENTURY);
|
|
//
|
|
// RtcWrite (RTC_ADDRESS_CENTURY, 0x00);
|
|
//
|
|
Temp = (UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f);
|
|
RtcWrite (RTC_ADDRESS_CENTURY, Century);
|
|
if (Temp == 0x19 || Temp == 0x20) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
VOID
|
|
ConvertRtcTimeToEfiTime (
|
|
IN EFI_TIME *Time,
|
|
IN RTC_REGISTER_B RegisterB
|
|
)
|
|
{
|
|
BOOLEAN PM;
|
|
|
|
if ((Time->Hour) & 0x80) {
|
|
PM = TRUE;
|
|
} else {
|
|
PM = FALSE;
|
|
}
|
|
|
|
Time->Hour = (UINT8) (Time->Hour & 0x7f);
|
|
|
|
if (RegisterB.Bits.DM == 0) {
|
|
Time->Year = BcdToDecimal ((UINT8) Time->Year);
|
|
Time->Month = BcdToDecimal (Time->Month);
|
|
Time->Day = BcdToDecimal (Time->Day);
|
|
Time->Hour = BcdToDecimal (Time->Hour);
|
|
Time->Minute = BcdToDecimal (Time->Minute);
|
|
Time->Second = BcdToDecimal (Time->Second);
|
|
}
|
|
//
|
|
// If time is in 12 hour format, convert it to 24 hour format
|
|
//
|
|
if (RegisterB.Bits.MIL == 0) {
|
|
if (PM && Time->Hour < 12) {
|
|
Time->Hour = (UINT8) (Time->Hour + 12);
|
|
}
|
|
|
|
if (!PM && Time->Hour == 12) {
|
|
Time->Hour = 0;
|
|
}
|
|
}
|
|
|
|
Time->Nanosecond = 0;
|
|
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
|
Time->Daylight = 0;
|
|
}
|
|
|
|
EFI_STATUS
|
|
RtcWaitToUpdate (
|
|
UINTN Timeout
|
|
)
|
|
{
|
|
RTC_REGISTER_A RegisterA;
|
|
RTC_REGISTER_D RegisterD;
|
|
|
|
//
|
|
// See if the RTC is functioning correctly
|
|
//
|
|
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
|
|
|
|
if (RegisterD.Bits.VRT == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be ready.
|
|
//
|
|
Timeout = (Timeout / 10) + 1;
|
|
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
|
|
while (RegisterA.Bits.UIP == 1 && Timeout > 0) {
|
|
MicroSecondDelay (10);
|
|
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
|
|
Timeout--;
|
|
}
|
|
|
|
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
|
|
if (Timeout == 0 || RegisterD.Bits.VRT == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
LibGetTime (
|
|
OUT EFI_TIME *Time,
|
|
OUT EFI_TIME_CAPABILITIES *Capabilities
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
RTC_REGISTER_B RegisterB;
|
|
UINT8 Century;
|
|
UINTN BufferSize;
|
|
|
|
//
|
|
// Check parameters for null pointer
|
|
//
|
|
if (Time == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
//
|
|
// Acquire RTC Lock to make access to RTC atomic
|
|
//
|
|
EfiAcquireLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be updated
|
|
//
|
|
Status = RtcWaitToUpdate (100000);
|
|
if (EFI_ERROR (Status)) {
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
return Status;
|
|
}
|
|
//
|
|
// Read Register B
|
|
//
|
|
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
|
|
|
//
|
|
// Get the Time/Date/Daylight Savings values.
|
|
//
|
|
Time->Second = RtcRead (RTC_ADDRESS_SECONDS);
|
|
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES);
|
|
Time->Hour = RtcRead (RTC_ADDRESS_HOURS);
|
|
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
|
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
|
|
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
|
|
|
|
ConvertRtcTimeToEfiTime (Time, RegisterB);
|
|
|
|
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
|
|
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
|
|
} else {
|
|
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
|
|
}
|
|
|
|
Time->Year = (UINT16) (Century * 100 + Time->Year);
|
|
|
|
//
|
|
// Release RTC Lock.
|
|
//
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Get the variable that containts the TimeZone and Daylight fields
|
|
//
|
|
Time->TimeZone = mRtc.SavedTimeZone;
|
|
Time->Daylight = mRtc.Daylight;
|
|
|
|
BufferSize = sizeof (INT16) + sizeof (UINT8);
|
|
|
|
//
|
|
// Make sure all field values are in correct range
|
|
//
|
|
Status = RtcTimeFieldsValid (Time);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Fill in Capabilities if it was passed in
|
|
//
|
|
if (Capabilities) {
|
|
Capabilities->Resolution = 1;
|
|
//
|
|
// 1 hertz
|
|
//
|
|
Capabilities->Accuracy = 50000000;
|
|
//
|
|
// 50 ppm
|
|
//
|
|
Capabilities->SetsToZero = FALSE;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
LibSetTime (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_TIME RtcTime;
|
|
RTC_REGISTER_B RegisterB;
|
|
UINT8 Century;
|
|
|
|
if (Time == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Make sure that the time fields are valid
|
|
//
|
|
Status = RtcTimeFieldsValid (Time);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
|
|
|
|
//
|
|
// Acquire RTC Lock to make access to RTC atomic
|
|
//
|
|
EfiAcquireLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be updated
|
|
//
|
|
Status = RtcWaitToUpdate (100000);
|
|
if (EFI_ERROR (Status)) {
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
return Status;
|
|
}
|
|
//
|
|
// Read Register B, and inhibit updates of the RTC
|
|
//
|
|
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
|
RegisterB.Bits.SET = 1;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
|
|
|
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
|
|
|
|
RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second);
|
|
RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute);
|
|
RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour);
|
|
RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day);
|
|
RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month);
|
|
RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year);
|
|
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
|
|
Century = (UINT8) ((Century & 0x7f) | (RtcRead (RTC_ADDRESS_CENTURY) & 0x80));
|
|
}
|
|
|
|
RtcWrite (RTC_ADDRESS_CENTURY, Century);
|
|
|
|
//
|
|
// Allow updates of the RTC registers
|
|
//
|
|
RegisterB.Bits.SET = 0;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
|
|
|
//
|
|
// Release RTC Lock.
|
|
//
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Set the variable that containts the TimeZone and Daylight fields
|
|
//
|
|
mRtc.SavedTimeZone = Time->TimeZone;
|
|
mRtc.Daylight = Time->Daylight;
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
libGetWakeupTime (
|
|
OUT BOOLEAN *Enabled,
|
|
OUT BOOLEAN *Pending,
|
|
OUT EFI_TIME *Time
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
RTC_REGISTER_B RegisterB;
|
|
RTC_REGISTER_C RegisterC;
|
|
UINT8 Century;
|
|
|
|
//
|
|
// Check paramters for null pointers
|
|
//
|
|
if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
//
|
|
// Acquire RTC Lock to make access to RTC atomic
|
|
//
|
|
EfiAcquireLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be updated
|
|
//
|
|
Status = RtcWaitToUpdate (100000);
|
|
if (EFI_ERROR (Status)) {
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Read Register B and Register C
|
|
//
|
|
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
|
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
|
|
|
|
//
|
|
// Get the Time/Date/Daylight Savings values.
|
|
//
|
|
*Enabled = RegisterB.Bits.AIE;
|
|
if (*Enabled) {
|
|
Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
|
|
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
|
|
Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
|
|
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
|
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
|
|
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
|
|
} else {
|
|
Time->Second = 0;
|
|
Time->Minute = 0;
|
|
Time->Hour = 0;
|
|
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
|
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
|
|
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
|
|
}
|
|
|
|
ConvertRtcTimeToEfiTime (Time, RegisterB);
|
|
|
|
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
|
|
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
|
|
} else {
|
|
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
|
|
}
|
|
|
|
Time->Year = (UINT16) (Century * 100 + Time->Year);
|
|
|
|
//
|
|
// Release RTC Lock.
|
|
//
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Make sure all field values are in correct range
|
|
//
|
|
Status = RtcTimeFieldsValid (Time);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
*Pending = RegisterC.Bits.AF;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
LibSetWakeupTime (
|
|
IN BOOLEAN Enabled,
|
|
OUT EFI_TIME *Time
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_TIME RtcTime;
|
|
RTC_REGISTER_B RegisterB;
|
|
UINT8 Century;
|
|
EFI_TIME_CAPABILITIES Capabilities;
|
|
|
|
if (Enabled) {
|
|
|
|
if (Time == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Make sure that the time fields are valid
|
|
//
|
|
Status = RtcTimeFieldsValid (Time);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Just support set alarm time within 24 hours
|
|
//
|
|
LibGetTime (&RtcTime, &Capabilities);
|
|
if (Time->Year != RtcTime.Year ||
|
|
Time->Month != RtcTime.Month ||
|
|
(Time->Day != RtcTime.Day && Time->Day != (RtcTime.Day + 1))
|
|
) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Make a local copy of the time and date
|
|
//
|
|
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
|
|
|
|
}
|
|
//
|
|
// Acquire RTC Lock to make access to RTC atomic
|
|
//
|
|
EfiAcquireLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be updated
|
|
//
|
|
Status = RtcWaitToUpdate (100000);
|
|
if (EFI_ERROR (Status)) {
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Read Register B, and inhibit updates of the RTC
|
|
//
|
|
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
|
|
|
RegisterB.Bits.SET = 1;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
|
|
|
if (Enabled) {
|
|
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
|
|
|
|
//
|
|
// Set RTC alarm time
|
|
//
|
|
RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second);
|
|
RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute);
|
|
RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour);
|
|
|
|
RegisterB.Bits.AIE = 1;
|
|
|
|
} else {
|
|
RegisterB.Bits.AIE = 0;
|
|
}
|
|
//
|
|
// Allow updates of the RTC registers
|
|
//
|
|
RegisterB.Bits.SET = 0;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
|
|
|
//
|
|
// Release RTC Lock.
|
|
//
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
VOID
|
|
LibRtcVirtualAddressChangeEvent (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
|
|
VOID
|
|
LibRtcInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
RTC_REGISTER_A RegisterA;
|
|
RTC_REGISTER_B RegisterB;
|
|
RTC_REGISTER_C RegisterC;
|
|
RTC_REGISTER_D RegisterD;
|
|
UINT8 Century;
|
|
EFI_TIME Time;
|
|
|
|
//
|
|
// Acquire RTC Lock to make access to RTC atomic
|
|
//
|
|
EfiAcquireLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Initialize RTC Register
|
|
//
|
|
// Make sure Division Chain is properly configured,
|
|
// or RTC clock won't "tick" -- time won't increment
|
|
//
|
|
RegisterA.Data = RTC_INIT_REGISTER_A;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data);
|
|
|
|
//
|
|
// Read Register B
|
|
//
|
|
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
|
|
|
//
|
|
// Clear RTC flag register
|
|
//
|
|
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
|
|
|
|
//
|
|
// Clear RTC register D
|
|
//
|
|
RegisterD.Data = RTC_INIT_REGISTER_D;
|
|
RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data);
|
|
|
|
//
|
|
// Wait for up to 0.1 seconds for the RTC to be updated
|
|
//
|
|
Status = RtcWaitToUpdate (100000);
|
|
if (EFI_ERROR (Status)) {
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Get the Time/Date/Daylight Savings values.
|
|
//
|
|
Time.Second = RtcRead (RTC_ADDRESS_SECONDS);
|
|
Time.Minute = RtcRead (RTC_ADDRESS_MINUTES);
|
|
Time.Hour = RtcRead (RTC_ADDRESS_HOURS);
|
|
Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
|
Time.Month = RtcRead (RTC_ADDRESS_MONTH);
|
|
Time.Year = RtcRead (RTC_ADDRESS_YEAR);
|
|
|
|
ConvertRtcTimeToEfiTime (&Time, RegisterB);
|
|
|
|
if (RtcTestCenturyRegister () == EFI_SUCCESS) {
|
|
Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
|
|
} else {
|
|
Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
|
|
}
|
|
|
|
Time.Year = (UINT16) (Century * 100 + Time.Year);
|
|
|
|
//
|
|
// Set RTC configuration after get original time
|
|
//
|
|
RtcWrite (RTC_ADDRESS_REGISTER_B, RTC_INIT_REGISTER_B);
|
|
|
|
//
|
|
// Release RTC Lock.
|
|
//
|
|
EfiReleaseLock (&mRtc.RtcLock);
|
|
|
|
//
|
|
// Validate time fields
|
|
//
|
|
Status = RtcTimeFieldsValid (&Time);
|
|
if (EFI_ERROR (Status)) {
|
|
Time.Second = RTC_INIT_SECOND;
|
|
Time.Minute = RTC_INIT_MINUTE;
|
|
Time.Hour = RTC_INIT_HOUR;
|
|
Time.Day = RTC_INIT_DAY;
|
|
Time.Month = RTC_INIT_MONTH;
|
|
Time.Year = RTC_INIT_YEAR;
|
|
}
|
|
//
|
|
// Reset time value according to new RTC configuration
|
|
//
|
|
LibSetTime (&Time);
|
|
|
|
return;
|
|
}
|
|
|
|
|