audk/ArmPkg/Library/BdsLib/BdsLinuxFdt.c

648 lines
20 KiB
C

/** @file
*
* Copyright (c) 2011-2013, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Library/ArmSmcLib.h>
#include <Library/PcdLib.h>
#include <libfdt.h>
#include <IndustryStandard/ArmSmc.h>
#include "BdsInternal.h"
#include "BdsLinuxLoader.h"
#define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1))
#define PALIGN(p, a) ((void *)(ALIGN((unsigned long)(p), (a))))
#define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4)))
STATIC inline
UINTN
cpu_to_fdtn (UINTN x) {
if (sizeof (UINTN) == sizeof (UINT32)) {
return cpu_to_fdt32 (x);
} else {
return cpu_to_fdt64 (x);
}
}
typedef struct {
UINTN Base;
UINTN Size;
} FdtRegion;
STATIC
UINTN
IsPrintableString (
IN CONST VOID* data,
IN UINTN len
)
{
CONST CHAR8 *s = data;
CONST CHAR8 *ss;
// Zero length is not
if (len == 0) {
return 0;
}
// Must terminate with zero
if (s[len - 1] != '\0') {
return 0;
}
ss = s;
while (*s/* && isprint(*s)*/) {
s++;
}
// Not zero, or not done yet
if (*s != '\0' || (s + 1 - ss) < len) {
return 0;
}
return 1;
}
STATIC
VOID
PrintData (
IN CONST CHAR8* data,
IN UINTN len
)
{
UINTN i;
CONST CHAR8 *p = data;
// No data, don't print
if (len == 0)
return;
if (IsPrintableString (data, len)) {
Print(L" = \"%a\"", (const char *)data);
} else if ((len % 4) == 0) {
Print(L" = <");
for (i = 0; i < len; i += 4) {
Print(L"0x%08x%a", fdt32_to_cpu(GET_CELL(p)),i < (len - 4) ? " " : "");
}
Print(L">");
} else {
Print(L" = [");
for (i = 0; i < len; i++)
Print(L"%02x%a", *p++, i < len - 1 ? " " : "");
Print(L"]");
}
}
VOID
DebugDumpFdt (
IN VOID* FdtBlob
)
{
struct fdt_header *bph;
UINT32 off_dt;
UINT32 off_str;
CONST CHAR8* p_struct;
CONST CHAR8* p_strings;
CONST CHAR8* p;
CONST CHAR8* s;
CONST CHAR8* t;
UINT32 tag;
UINTN sz;
UINTN depth;
UINTN shift;
UINT32 version;
{
// Can 'memreserve' be printed by below code?
INTN num = fdt_num_mem_rsv(FdtBlob);
INTN i, err;
UINT64 addr = 0,size = 0;
for (i = 0; i < num; i++) {
err = fdt_get_mem_rsv(FdtBlob, i, &addr, &size);
if (err) {
DEBUG((EFI_D_ERROR, "Error (%d) : Cannot get memreserve section (%d)\n", err, i));
}
else {
Print(L"/memreserve/ \t0x%lx \t0x%lx;\n",addr,size);
}
}
}
depth = 0;
shift = 4;
bph = FdtBlob;
off_dt = fdt32_to_cpu(bph->off_dt_struct);
off_str = fdt32_to_cpu(bph->off_dt_strings);
p_struct = (CONST CHAR8*)FdtBlob + off_dt;
p_strings = (CONST CHAR8*)FdtBlob + off_str;
version = fdt32_to_cpu(bph->version);
p = p_struct;
while ((tag = fdt32_to_cpu(GET_CELL(p))) != FDT_END) {
if (tag == FDT_BEGIN_NODE) {
s = p;
p = PALIGN(p + AsciiStrLen (s) + 1, 4);
if (*s == '\0')
s = "/";
Print(L"%*s%a {\n", depth * shift, L" ", s);
depth++;
continue;
}
if (tag == FDT_END_NODE) {
depth--;
Print(L"%*s};\n", depth * shift, L" ");
continue;
}
if (tag == FDT_NOP) {
Print(L"%*s// [NOP]\n", depth * shift, L" ");
continue;
}
if (tag != FDT_PROP) {
Print(L"%*s ** Unknown tag 0x%08x\n", depth * shift, L" ", tag);
break;
}
sz = fdt32_to_cpu(GET_CELL(p));
s = p_strings + fdt32_to_cpu(GET_CELL(p));
if (version < 16 && sz >= 8)
p = PALIGN(p, 8);
t = p;
p = PALIGN(p + sz, 4);
Print(L"%*s%a", depth * shift, L" ", s);
PrintData(t, sz);
Print(L";\n");
}
}
STATIC
BOOLEAN
IsLinuxReservedRegion (
IN EFI_MEMORY_TYPE MemoryType
)
{
switch(MemoryType) {
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiUnusableMemory:
case EfiACPIReclaimMemory:
case EfiACPIMemoryNVS:
return TRUE;
default:
return FALSE;
}
}
STATIC
BOOLEAN
IsPsciSmcSupported (
VOID
)
{
BOOLEAN PsciSmcSupported;
UINTN Rx;
PsciSmcSupported = FALSE;
// Check the SMC response to the Presence SMC
Rx = ARM_SMC_ID_PRESENCE;
ArmCallSmc (&Rx);
if (Rx == 1) {
// Check the SMC UID
Rx = ARM_SMC_ID_UID;
ArmCallSmc (&Rx);
if (Rx == ARM_TRUSTZONE_UID_4LETTERID) {
Rx = ARM_SMC_ID_UID + 1;
ArmCallSmc (&Rx);
if (Rx == ARM_TRUSTZONE_ARM_UID) {
PsciSmcSupported = TRUE;
}
}
}
return PsciSmcSupported;
}
/**
** Relocate the FDT blob to a more appropriate location for the Linux kernel.
** This function will allocate memory for the relocated FDT blob.
**
** @retval EFI_SUCCESS on success.
** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure.
*/
STATIC
EFI_STATUS
RelocateFdt (
EFI_PHYSICAL_ADDRESS OriginalFdt,
UINTN OriginalFdtSize,
EFI_PHYSICAL_ADDRESS *RelocatedFdt,
UINTN *RelocatedFdtSize,
EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc
)
{
EFI_STATUS Status;
INTN Error;
UINT32 FdtAlignment;
*RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE;
// If FDT load address needs to be aligned, allocate more space.
FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment);
if (FdtAlignment != 0) {
*RelocatedFdtSize += FdtAlignment;
}
// Try below a watermark address.
Status = EFI_NOT_FOUND;
if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) {
*RelocatedFdt = LINUX_FDT_MAX_OFFSET;
Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData,
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status));
}
}
// Try anywhere there is available space.
if (EFI_ERROR (Status)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData,
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return EFI_OUT_OF_RESOURCES;
} else {
DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt));
}
}
*RelocatedFdtAlloc = *RelocatedFdt;
if (FdtAlignment != 0) {
*RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment);
}
// Load the Original FDT tree into the new region
Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt,
(VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize);
if (Error) {
DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error)));
gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize));
return EFI_INVALID_PARAMETER;
}
DEBUG_CODE_BEGIN();
//DebugDumpFdt (fdt);
DEBUG_CODE_END();
return EFI_SUCCESS;
}
EFI_STATUS
PrepareFdt (
IN CONST CHAR8* CommandLineArguments,
IN EFI_PHYSICAL_ADDRESS InitrdImage,
IN UINTN InitrdImageSize,
IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase,
IN OUT UINTN *FdtBlobSize
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS NewFdtBlobBase;
EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation;
UINTN NewFdtBlobSize;
VOID* fdt;
INTN err;
INTN node;
INTN cpu_node;
INT32 lenp;
CONST VOID* BootArg;
CONST VOID* Method;
EFI_PHYSICAL_ADDRESS InitrdImageStart;
EFI_PHYSICAL_ADDRESS InitrdImageEnd;
FdtRegion Region;
UINTN Index;
CHAR8 Name[10];
LIST_ENTRY ResourceList;
BDS_SYSTEM_MEMORY_RESOURCE *Resource;
ARM_PROCESSOR_TABLE *ArmProcessorTable;
ARM_CORE_INFO *ArmCoreInfoTable;
UINT32 MpId;
UINT32 ClusterId;
UINT32 CoreId;
UINT64 CpuReleaseAddr;
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMap;
EFI_MEMORY_DESCRIPTOR *MemoryMapPtr;
UINTN MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
UINTN Pages;
BOOLEAN PsciSmcSupported;
UINTN OriginalFdtSize;
BOOLEAN CpusNodeExist;
UINTN CoreMpId;
UINTN Smc;
NewFdtBlobAllocation = 0;
//
// Sanity checks on the original FDT blob.
//
err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase));
if (err != 0) {
Print (L"ERROR: Device Tree header not valid (err:%d)\n", err);
return EFI_INVALID_PARAMETER;
}
// The original FDT blob might have been loaded partially.
// Check that it is not the case.
OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
if (OriginalFdtSize > *FdtBlobSize) {
Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n",
*FdtBlobSize, OriginalFdtSize);
return EFI_INVALID_PARAMETER;
}
//
// Relocate the FDT to its final location.
//
Status = RelocateFdt (*FdtBlobBase, OriginalFdtSize,
&NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation);
if (EFI_ERROR (Status)) {
goto FAIL_RELOCATE_FDT;
}
//
// Ensure the Power State Coordination Interface (PSCI) SMCs are there if supported
//
PsciSmcSupported = FALSE;
if (FeaturePcdGet (PcdArmPsciSupport) == TRUE) {
PsciSmcSupported = IsPsciSmcSupported();
if (PsciSmcSupported == FALSE) {
DEBUG ((EFI_D_ERROR, "Warning: The Power State Coordination Interface (PSCI) is not supported by your platform Trusted Firmware.\n"));
}
}
fdt = (VOID*)(UINTN)NewFdtBlobBase;
node = fdt_subnode_offset (fdt, 0, "chosen");
if (node < 0) {
// The 'chosen' node does not exist, create it
node = fdt_add_subnode(fdt, 0, "chosen");
if (node < 0) {
DEBUG((EFI_D_ERROR,"Error on finding 'chosen' node\n"));
Status = EFI_INVALID_PARAMETER;
goto FAIL_COMPLETE_FDT;
}
}
DEBUG_CODE_BEGIN();
BootArg = fdt_getprop(fdt, node, "bootargs", &lenp);
if (BootArg != NULL) {
DEBUG((EFI_D_ERROR,"BootArg: %a\n",BootArg));
}
DEBUG_CODE_END();
//
// Set Linux CmdLine
//
if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) {
err = fdt_setprop(fdt, node, "bootargs", CommandLineArguments, AsciiStrSize(CommandLineArguments));
if (err) {
DEBUG((EFI_D_ERROR,"Fail to set new 'bootarg' (err:%d)\n",err));
}
}
//
// Set Linux Initrd
//
if (InitrdImageSize != 0) {
InitrdImageStart = cpu_to_fdt64 (InitrdImage);
err = fdt_setprop(fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof(EFI_PHYSICAL_ADDRESS));
if (err) {
DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err));
}
InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize);
err = fdt_setprop(fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof(EFI_PHYSICAL_ADDRESS));
if (err) {
DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err));
}
}
//
// Set Physical memory setup if does not exist
//
node = fdt_subnode_offset(fdt, 0, "memory");
if (node < 0) {
// The 'memory' node does not exist, create it
node = fdt_add_subnode(fdt, 0, "memory");
if (node >= 0) {
fdt_setprop_string(fdt, node, "name", "memory");
fdt_setprop_string(fdt, node, "device_type", "memory");
GetSystemMemoryResources (&ResourceList);
Resource = (BDS_SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink;
Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart);
Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength);
err = fdt_setprop(fdt, node, "reg", &Region, sizeof(Region));
if (err) {
DEBUG((EFI_D_ERROR,"Fail to set new 'memory region' (err:%d)\n",err));
}
}
}
//
// Add the memory regions reserved by the UEFI Firmware
//
// Retrieve the UEFI Memory Map
MemoryMap = NULL;
MemoryMapSize = 0;
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
if (Status == EFI_BUFFER_TOO_SMALL) {
// The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive
// calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size.
Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1;
MemoryMap = AllocatePages (Pages);
if (MemoryMap == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FAIL_COMPLETE_FDT;
}
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
}
// Go through the list and add the reserved region to the Device Tree
if (!EFI_ERROR(Status)) {
MemoryMapPtr = MemoryMap;
for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) {
if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) {
DEBUG((DEBUG_VERBOSE, "Reserved region of type %d [0x%X, 0x%X]\n",
MemoryMapPtr->Type,
(UINTN)MemoryMapPtr->PhysicalStart,
(UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE)));
err = fdt_add_mem_rsv(fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE);
if (err != 0) {
Print(L"Warning: Fail to add 'memreserve' (err:%d)\n", err);
}
}
MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize);
}
}
//
// Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms.
//
// For 'cpus' and 'cpu' device tree nodes bindings, refer to this file
// in the kernel documentation:
// Documentation/devicetree/bindings/arm/cpus.txt
//
for (Index=0; Index < gST->NumberOfTableEntries; Index++) {
// Check for correct GUID type
if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) {
MpId = ArmReadMpidr ();
ClusterId = GET_CLUSTER_ID(MpId);
CoreId = GET_CORE_ID(MpId);
node = fdt_subnode_offset(fdt, 0, "cpus");
if (node < 0) {
// Create the /cpus node
node = fdt_add_subnode(fdt, 0, "cpus");
fdt_setprop_string(fdt, node, "name", "cpus");
fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4);
fdt_setprop_cell(fdt, node, "#size-cells", 0);
CpusNodeExist = FALSE;
} else {
CpusNodeExist = TRUE;
}
// Get pointer to ARM processor table
ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable;
ArmCoreInfoTable = ArmProcessorTable->ArmCpus;
for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) {
CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId,
ArmCoreInfoTable[Index].CoreId);
AsciiSPrint (Name, 10, "cpu@%x", CoreMpId);
// If the 'cpus' node did not exist then create all the 'cpu' nodes.
// In case 'cpus' node is provided in the original FDT then we do not add
// any 'cpu' node.
if (!CpusNodeExist) {
cpu_node = fdt_add_subnode (fdt, node, Name);
if (cpu_node < 0) {
DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name));
Status = EFI_INVALID_PARAMETER;
goto FAIL_COMPLETE_FDT;
}
fdt_setprop_string (fdt, cpu_node, "device_type", "cpu");
CoreMpId = cpu_to_fdtn (CoreMpId);
fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId));
if (PsciSmcSupported) {
fdt_setprop_string (fdt, cpu_node, "enable-method", "psci");
}
} else {
cpu_node = fdt_subnode_offset(fdt, node, Name);
}
// If Power State Coordination Interface (PSCI) is not supported then it is expected the secondary
// cores are spinning waiting for the Operating System to release them
if ((PsciSmcSupported == FALSE) && (cpu_node >= 0)) {
// We as the bootloader are responsible for either creating or updating
// these entries. Do not trust the entries in the DT. We only know about
// 'spin-table' type. Do not try to update other types if defined.
Method = fdt_getprop(fdt, cpu_node, "enable-method", &lenp);
if ( (Method == NULL) || (!AsciiStrCmp((CHAR8 *)Method, "spin-table")) ) {
fdt_setprop_string(fdt, cpu_node, "enable-method", "spin-table");
CpuReleaseAddr = cpu_to_fdt64(ArmCoreInfoTable[Index].MailboxSetAddress);
fdt_setprop(fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof(CpuReleaseAddr));
// If it is not the primary core than the cpu should be disabled
if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) {
fdt_setprop_string(fdt, cpu_node, "status", "disabled");
}
} else {
Print(L"Warning: Unsupported enable-method type for CPU[%d] : %a\n", Index, (CHAR8 *)Method);
}
}
}
break;
}
}
// If the Power State Coordination Interface is supported then we signal it in the Device Tree
if (PsciSmcSupported == TRUE) {
// Before to create it we check if the node is not already defined in the Device Tree
node = fdt_subnode_offset(fdt, 0, "psci");
if (node < 0) {
// The 'psci' node does not exist, create it
node = fdt_add_subnode(fdt, 0, "psci");
if (node < 0) {
DEBUG((EFI_D_ERROR,"Error on creating 'psci' node\n"));
Status = EFI_INVALID_PARAMETER;
goto FAIL_COMPLETE_FDT;
} else {
fdt_setprop_string (fdt, node, "compatible", "arm,psci");
fdt_setprop_string (fdt, node, "method", "smc");
Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_SUSPEND);
fdt_setprop (fdt, node, "cpu_suspend", &Smc, sizeof (Smc));
Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_OFF);
fdt_setprop (fdt, node, "cpu_off", &Smc, sizeof (Smc));
Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_ON);
fdt_setprop (fdt, node, "cpu_on", &Smc, sizeof (Smc));
Smc = cpu_to_fdtn (ARM_SMC_ARM_MIGRATE);
fdt_setprop (fdt, node, "migrate", &Smc, sizeof (Smc));
}
}
}
DEBUG_CODE_BEGIN();
//DebugDumpFdt (fdt);
DEBUG_CODE_END();
// If we succeeded to generate the new Device Tree then free the old Device Tree
gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize));
*FdtBlobBase = NewFdtBlobBase;
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase));
return EFI_SUCCESS;
FAIL_COMPLETE_FDT:
gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize));
FAIL_RELOCATE_FDT:
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
// Return success even if we failed to update the FDT blob.
// The original one is still valid.
return EFI_SUCCESS;
}