audk/OvmfPkg/Library/PlatformBootManagerLib/BdsPlatform.c

1609 lines
42 KiB
C

/** @file
Platform BDS customizations.
Copyright (c) 2004 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "BdsPlatform.h"
#include <Guid/XenInfo.h>
#include <Guid/RootBridgesConnectedEventGroup.h>
#include <Protocol/FirmwareVolume2.h>
//
// Global data
//
VOID *mEfiDevPathNotifyReg;
EFI_EVENT mEfiDevPathEvent;
VOID *mEmuVariableEventReg;
EFI_EVENT mEmuVariableEvent;
BOOLEAN mDetectVgaOnly;
UINT16 mHostBridgeDevId;
//
// Table of host IRQs matching PCI IRQs A-D
// (for configuring PCI Interrupt Line register)
//
CONST UINT8 PciHostIrqs[] = {
0x0a, 0x0a, 0x0b, 0x0b
};
//
// Array Size macro
//
#define ARRAY_SIZE(array) (sizeof (array) / sizeof (array[0]))
//
// Type definitions
//
typedef
EFI_STATUS
(EFIAPI *PROTOCOL_INSTANCE_CALLBACK)(
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
);
/**
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] Pci - PCI Header register block
**/
typedef
EFI_STATUS
(EFIAPI *VISIT_PCI_INSTANCE_CALLBACK)(
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *Pci
);
//
// Function prototypes
//
EFI_STATUS
VisitAllInstancesOfProtocol (
IN EFI_GUID *Id,
IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction,
IN VOID *Context
);
EFI_STATUS
VisitAllPciInstancesOfProtocol (
IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction
);
VOID
InstallDevicePathCallback (
VOID
);
VOID
PlatformRegisterFvBootOption (
EFI_GUID *FileGuid,
CHAR16 *Description,
UINT32 Attributes
)
{
EFI_STATUS Status;
INTN OptionIndex;
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
Status = gBS->HandleProtocol (
gImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **) &LoadedImage
);
ASSERT_EFI_ERROR (Status);
EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid);
DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle);
ASSERT (DevicePath != NULL);
DevicePath = AppendDevicePathNode (
DevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &FileNode
);
ASSERT (DevicePath != NULL);
Status = EfiBootManagerInitializeLoadOption (
&NewOption,
LoadOptionNumberUnassigned,
LoadOptionTypeBoot,
Attributes,
Description,
DevicePath,
NULL,
0
);
ASSERT_EFI_ERROR (Status);
FreePool (DevicePath);
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount, LoadOptionTypeBoot
);
OptionIndex = EfiBootManagerFindLoadOption (
&NewOption, BootOptions, BootOptionCount
);
if (OptionIndex == -1) {
Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
ASSERT_EFI_ERROR (Status);
}
EfiBootManagerFreeLoadOption (&NewOption);
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}
/**
Remove all MemoryMapped(...)/FvFile(...) and Fv(...)/FvFile(...) boot options
whose device paths do not resolve exactly to an FvFile in the system.
This removes any boot options that point to binaries built into the firmware
and have become stale due to any of the following:
- DXEFV's base address or size changed (historical),
- DXEFV's FvNameGuid changed,
- the FILE_GUID of the pointed-to binary changed,
- the referenced binary is no longer built into the firmware.
EfiBootManagerFindLoadOption() used in PlatformRegisterFvBootOption() only
avoids exact duplicates.
**/
VOID
RemoveStaleFvFileOptions (
VOID
)
{
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
UINTN Index;
BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount,
LoadOptionTypeBoot);
for (Index = 0; Index < BootOptionCount; ++Index) {
EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode;
EFI_STATUS Status;
EFI_HANDLE FvHandle;
//
// If the device path starts with neither MemoryMapped(...) nor Fv(...),
// then keep the boot option.
//
Node1 = BootOptions[Index].FilePath;
if (!(DevicePathType (Node1) == HARDWARE_DEVICE_PATH &&
DevicePathSubType (Node1) == HW_MEMMAP_DP) &&
!(DevicePathType (Node1) == MEDIA_DEVICE_PATH &&
DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP)) {
continue;
}
//
// If the second device path node is not FvFile(...), then keep the boot
// option.
//
Node2 = NextDevicePathNode (Node1);
if (DevicePathType (Node2) != MEDIA_DEVICE_PATH ||
DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP) {
continue;
}
//
// Locate the Firmware Volume2 protocol instance that is denoted by the
// boot option. If this lookup fails (i.e., the boot option references a
// firmware volume that doesn't exist), then we'll proceed to delete the
// boot option.
//
SearchNode = Node1;
Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid,
&SearchNode, &FvHandle);
if (!EFI_ERROR (Status)) {
//
// The firmware volume was found; now let's see if it contains the FvFile
// identified by GUID.
//
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvProtocol;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode;
UINTN BufferSize;
EFI_FV_FILETYPE FoundType;
EFI_FV_FILE_ATTRIBUTES FileAttributes;
UINT32 AuthenticationStatus;
Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid,
(VOID **)&FvProtocol);
ASSERT_EFI_ERROR (Status);
FvFileNode = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)Node2;
//
// Buffer==NULL means we request metadata only: BufferSize, FoundType,
// FileAttributes.
//
Status = FvProtocol->ReadFile (
FvProtocol,
&FvFileNode->FvFileName, // NameGuid
NULL, // Buffer
&BufferSize,
&FoundType,
&FileAttributes,
&AuthenticationStatus
);
if (!EFI_ERROR (Status)) {
//
// The FvFile was found. Keep the boot option.
//
continue;
}
}
//
// Delete the boot option.
//
Status = EfiBootManagerDeleteLoadOptionVariable (
BootOptions[Index].OptionNumber, LoadOptionTypeBoot);
DEBUG_CODE (
CHAR16 *DevicePathString;
DevicePathString = ConvertDevicePathToText(BootOptions[Index].FilePath,
FALSE, FALSE);
DEBUG ((
EFI_ERROR (Status) ? EFI_D_WARN : EFI_D_VERBOSE,
"%a: removing stale Boot#%04x %s: %r\n",
__FUNCTION__,
(UINT32)BootOptions[Index].OptionNumber,
DevicePathString == NULL ? L"<unavailable>" : DevicePathString,
Status
));
if (DevicePathString != NULL) {
FreePool (DevicePathString);
}
);
}
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}
VOID
PlatformRegisterOptionsAndKeys (
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY Enter;
EFI_INPUT_KEY F2;
EFI_INPUT_KEY Esc;
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
//
// Register ENTER as CONTINUE key
//
Enter.ScanCode = SCAN_NULL;
Enter.UnicodeChar = CHAR_CARRIAGE_RETURN;
Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
ASSERT_EFI_ERROR (Status);
//
// Map F2 to Boot Manager Menu
//
F2.ScanCode = SCAN_F2;
F2.UnicodeChar = CHAR_NULL;
Esc.ScanCode = SCAN_ESC;
Esc.UnicodeChar = CHAR_NULL;
Status = EfiBootManagerGetBootManagerMenu (&BootOption);
ASSERT_EFI_ERROR (Status);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &F2, NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &Esc, NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}
EFI_STATUS
EFIAPI
ConnectRootBridge (
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Instance,
IN VOID *Context
);
STATIC
VOID
SaveS3BootScript (
VOID
);
//
// BDS Platform Functions
//
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
VOID
)
/*++
Routine Description:
Platform Bds init. Include the platform firmware vendor, revision
and so crc check.
Arguments:
Returns:
None.
--*/
{
EFI_HANDLE Handle;
EFI_STATUS Status;
RETURN_STATUS PcdStatus;
DEBUG ((EFI_D_INFO, "PlatformBootManagerBeforeConsole\n"));
InstallDevicePathCallback ();
VisitAllInstancesOfProtocol (&gEfiPciRootBridgeIoProtocolGuid,
ConnectRootBridge, NULL);
//
// Signal the ACPI platform driver that it can download QEMU ACPI tables.
//
EfiEventGroupSignal (&gRootBridgesConnectedEventGroupGuid);
//
// We can't signal End-of-Dxe earlier than this. Namely, End-of-Dxe triggers
// the preparation of S3 system information. That logic has a hard dependency
// on the presence of the FACS ACPI table. Since our ACPI tables are only
// installed after PCI enumeration completes, we must not trigger the S3 save
// earlier, hence we can't signal End-of-Dxe earlier.
//
EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid);
if (QemuFwCfgS3Enabled ()) {
//
// Save the boot script too. Note that this will require us to emit the
// DxeSmmReadyToLock event just below, which in turn locks down SMM.
//
SaveS3BootScript ();
}
//
// Prevent further changes to LockBoxes or SMRAM.
//
Handle = NULL;
Status = gBS->InstallProtocolInterface (&Handle,
&gEfiDxeSmmReadyToLockProtocolGuid, EFI_NATIVE_INTERFACE,
NULL);
ASSERT_EFI_ERROR (Status);
PlatformInitializeConsole (gPlatformConsole);
PcdStatus = PcdSet16S (PcdPlatformBootTimeOut,
GetFrontPageTimeoutFromQemu ());
ASSERT_RETURN_ERROR (PcdStatus);
PlatformRegisterOptionsAndKeys ();
}
EFI_STATUS
EFIAPI
ConnectRootBridge (
IN EFI_HANDLE RootBridgeHandle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
//
// Make the PCI bus driver connect the root bridge, non-recursively. This
// will produce a number of child handles with PciIo on them.
//
Status = gBS->ConnectController (
RootBridgeHandle, // ControllerHandle
NULL, // DriverImageHandle
NULL, // RemainingDevicePath -- produce all
// children
FALSE // Recursive
);
return Status;
}
EFI_STATUS
PrepareLpcBridgeDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add IsaKeyboard to ConIn,
add IsaSerial to ConOut, ConIn, ErrOut.
LPC Bridge: 06 01 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - LPC bridge is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No LPC bridge is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
CHAR16 *DevPathStr;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
TempDevicePath = DevicePath;
//
// Register Keyboard
//
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnpPs2KeyboardDeviceNode);
EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL);
//
// Register COM1
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 0;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
//
// Print Device Path
//
DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"BdsPlatform.c+%d: COM%d DevPath: %s\n",
__LINE__,
gPnp16550ComPortDeviceNode.UID + 1,
DevPathStr
));
FreePool(DevPathStr);
}
EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
//
// Register COM2
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 1;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
//
// Print Device Path
//
DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"BdsPlatform.c+%d: COM%d DevPath: %s\n",
__LINE__,
gPnp16550ComPortDeviceNode.UID + 1,
DevPathStr
));
FreePool(DevPathStr);
}
EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
GetGopDevicePath (
IN EFI_DEVICE_PATH_PROTOCOL *PciDevicePath,
OUT EFI_DEVICE_PATH_PROTOCOL **GopDevicePath
)
{
UINTN Index;
EFI_STATUS Status;
EFI_HANDLE PciDeviceHandle;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempPciDevicePath;
UINTN GopHandleCount;
EFI_HANDLE *GopHandleBuffer;
if (PciDevicePath == NULL || GopDevicePath == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the GopDevicePath to be PciDevicePath
//
*GopDevicePath = PciDevicePath;
TempPciDevicePath = PciDevicePath;
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&TempPciDevicePath,
&PciDeviceHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Try to connect this handle, so that GOP driver could start on this
// device and create child handles with GraphicsOutput Protocol installed
// on them, then we get device paths of these child handles and select
// them as possible console device.
//
gBS->ConnectController (PciDeviceHandle, NULL, NULL, FALSE);
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiGraphicsOutputProtocolGuid,
NULL,
&GopHandleCount,
&GopHandleBuffer
);
if (!EFI_ERROR (Status)) {
//
// Add all the child handles as possible Console Device
//
for (Index = 0; Index < GopHandleCount; Index++) {
Status = gBS->HandleProtocol (GopHandleBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID*)&TempDevicePath);
if (EFI_ERROR (Status)) {
continue;
}
if (CompareMem (
PciDevicePath,
TempDevicePath,
GetDevicePathSize (PciDevicePath) - END_DEVICE_PATH_LENGTH
) == 0) {
//
// In current implementation, we only enable one of the child handles
// as console device, i.e. sotre one of the child handle's device
// path to variable "ConOut"
// In future, we could select all child handles to be console device
//
*GopDevicePath = TempDevicePath;
//
// Delete the PCI device's path that added by GetPlugInPciVgaDevicePath()
// Add the integrity GOP device path.
//
EfiBootManagerUpdateConsoleVariable (ConOutDev, NULL, PciDevicePath);
EfiBootManagerUpdateConsoleVariable (ConOutDev, TempDevicePath, NULL);
}
}
gBS->FreePool (GopHandleBuffer);
}
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciDisplayDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI VGA to ConOut.
PCI VGA: 03 00 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI VGA is added to ConOut.
EFI_STATUS - No PCI VGA device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *GopDevicePath;
DevicePath = NULL;
GopDevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
GetGopDevicePath (DevicePath, &GopDevicePath);
DevicePath = GopDevicePath;
EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciSerialDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI Serial to ConOut, ConIn, ErrOut.
PCI Serial: 07 00 02
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI Serial is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No PCI Serial device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
VisitAllInstancesOfProtocol (
IN EFI_GUID *Id,
IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction,
IN VOID *Context
)
{
EFI_STATUS Status;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN Index;
VOID *Instance;
//
// Start to check all the PciIo to find all possible device
//
HandleCount = 0;
HandleBuffer = NULL;
Status = gBS->LocateHandleBuffer (
ByProtocol,
Id,
NULL,
&HandleCount,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
for (Index = 0; Index < HandleCount; Index++) {
Status = gBS->HandleProtocol (HandleBuffer[Index], Id, &Instance);
if (EFI_ERROR (Status)) {
continue;
}
Status = (*CallBackFunction) (
HandleBuffer[Index],
Instance,
Context
);
}
gBS->FreePool (HandleBuffer);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
VisitingAPciInstance (
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
PciIo = (EFI_PCI_IO_PROTOCOL*) Instance;
//
// Check for all PCI device
//
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
0,
sizeof (Pci) / sizeof (UINT32),
&Pci
);
if (EFI_ERROR (Status)) {
return Status;
}
return (*(VISIT_PCI_INSTANCE_CALLBACK)(UINTN) Context) (
Handle,
PciIo,
&Pci
);
}
EFI_STATUS
VisitAllPciInstances (
IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction
)
{
return VisitAllInstancesOfProtocol (
&gEfiPciIoProtocolGuid,
VisitingAPciInstance,
(VOID*)(UINTN) CallBackFunction
);
}
/**
Do platform specific PCI Device check and add them to
ConOut, ConIn, ErrOut.
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] Pci - PCI Header register block
@retval EFI_SUCCESS - PCI Device check and Console variable update successfully.
@retval EFI_STATUS - PCI Device check or Console variable update fail.
**/
EFI_STATUS
EFIAPI
DetectAndPreparePlatformPciDevicePath (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *Pci
)
{
EFI_STATUS Status;
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationEnable,
EFI_PCI_DEVICE_ENABLE,
NULL
);
ASSERT_EFI_ERROR (Status);
if (!mDetectVgaOnly) {
//
// Here we decide whether it is LPC Bridge
//
if ((IS_PCI_LPC (Pci)) ||
((IS_PCI_ISA_PDECODE (Pci)) &&
(Pci->Hdr.VendorId == 0x8086) &&
(Pci->Hdr.DeviceId == 0x7000)
)
) {
//
// Add IsaKeyboard to ConIn,
// add IsaSerial to ConOut, ConIn, ErrOut
//
DEBUG ((EFI_D_INFO, "Found LPC Bridge device\n"));
PrepareLpcBridgeDevicePath (Handle);
return EFI_SUCCESS;
}
//
// Here we decide which Serial device to enable in PCI bus
//
if (IS_PCI_16550SERIAL (Pci)) {
//
// Add them to ConOut, ConIn, ErrOut.
//
DEBUG ((EFI_D_INFO, "Found PCI 16550 SERIAL device\n"));
PreparePciSerialDevicePath (Handle);
return EFI_SUCCESS;
}
}
//
// Here we decide which display device to enable in PCI bus
//
if (IS_PCI_DISPLAY (Pci)) {
//
// Add them to ConOut.
//
DEBUG ((EFI_D_INFO, "Found PCI display device\n"));
PreparePciDisplayDevicePath (Handle);
return EFI_SUCCESS;
}
return Status;
}
/**
Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
@param[in] DetectVgaOnly - Only detect VGA device if it's TRUE.
@retval EFI_SUCCESS - PCI Device check and Console variable update successfully.
@retval EFI_STATUS - PCI Device check or Console variable update fail.
**/
EFI_STATUS
DetectAndPreparePlatformPciDevicePaths (
BOOLEAN DetectVgaOnly
)
{
mDetectVgaOnly = DetectVgaOnly;
return VisitAllPciInstances (DetectAndPreparePlatformPciDevicePath);
}
VOID
PlatformInitializeConsole (
IN PLATFORM_CONSOLE_CONNECT_ENTRY *PlatformConsole
)
/*++
Routine Description:
Connect the predefined platform default console device. Always try to find
and enable the vga device if have.
Arguments:
PlatformConsole - Predefined platform default console device array.
--*/
{
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *VarConout;
EFI_DEVICE_PATH_PROTOCOL *VarConin;
//
// Connect RootBridge
//
GetEfiGlobalVariable2 (EFI_CON_OUT_VARIABLE_NAME, (VOID **) &VarConout, NULL);
GetEfiGlobalVariable2 (EFI_CON_IN_VARIABLE_NAME, (VOID **) &VarConin, NULL);
if (VarConout == NULL || VarConin == NULL) {
//
// Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
//
DetectAndPreparePlatformPciDevicePaths (FALSE);
//
// Have chance to connect the platform default console,
// the platform default console is the minimum device group
// the platform should support
//
for (Index = 0; PlatformConsole[Index].DevicePath != NULL; ++Index) {
//
// Update the console variable with the connect type
//
if ((PlatformConsole[Index].ConnectType & CONSOLE_IN) == CONSOLE_IN) {
EfiBootManagerUpdateConsoleVariable (ConIn, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & CONSOLE_OUT) == CONSOLE_OUT) {
EfiBootManagerUpdateConsoleVariable (ConOut, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & STD_ERROR) == STD_ERROR) {
EfiBootManagerUpdateConsoleVariable (ErrOut, PlatformConsole[Index].DevicePath, NULL);
}
}
} else {
//
// Only detect VGA device and add them to ConOut
//
DetectAndPreparePlatformPciDevicePaths (TRUE);
}
}
/**
Configure PCI Interrupt Line register for applicable devices
Ported from SeaBIOS, src/fw/pciinit.c, *_pci_slot_get_irq()
@param[in] Handle - Handle of PCI device instance
@param[in] PciIo - PCI IO protocol instance
@param[in] PciHdr - PCI Header register block
@retval EFI_SUCCESS - PCI Interrupt Line register configured successfully.
**/
EFI_STATUS
EFIAPI
SetPciIntLine (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN PCI_TYPE00 *PciHdr
)
{
EFI_DEVICE_PATH_PROTOCOL *DevPathNode;
EFI_DEVICE_PATH_PROTOCOL *DevPath;
UINTN RootSlot;
UINTN Idx;
UINT8 IrqLine;
EFI_STATUS Status;
UINT32 RootBusNumber;
Status = EFI_SUCCESS;
if (PciHdr->Device.InterruptPin != 0) {
DevPathNode = DevicePathFromHandle (Handle);
ASSERT (DevPathNode != NULL);
DevPath = DevPathNode;
RootBusNumber = 0;
if (DevicePathType (DevPathNode) == ACPI_DEVICE_PATH &&
DevicePathSubType (DevPathNode) == ACPI_DP &&
((ACPI_HID_DEVICE_PATH *)DevPathNode)->HID == EISA_PNP_ID(0x0A03)) {
RootBusNumber = ((ACPI_HID_DEVICE_PATH *)DevPathNode)->UID;
}
//
// Compute index into PciHostIrqs[] table by walking
// the device path and adding up all device numbers
//
Status = EFI_NOT_FOUND;
RootSlot = 0;
Idx = PciHdr->Device.InterruptPin - 1;
while (!IsDevicePathEnd (DevPathNode)) {
if (DevicePathType (DevPathNode) == HARDWARE_DEVICE_PATH &&
DevicePathSubType (DevPathNode) == HW_PCI_DP) {
Idx += ((PCI_DEVICE_PATH *)DevPathNode)->Device;
//
// Unlike SeaBIOS, which starts climbing from the leaf device
// up toward the root, we traverse the device path starting at
// the root moving toward the leaf node.
// The slot number of the top-level parent bridge is needed for
// Q35 cases with more than 24 slots on the root bus.
//
if (Status != EFI_SUCCESS) {
Status = EFI_SUCCESS;
RootSlot = ((PCI_DEVICE_PATH *)DevPathNode)->Device;
}
}
DevPathNode = NextDevicePathNode (DevPathNode);
}
if (EFI_ERROR (Status)) {
return Status;
}
if (RootBusNumber == 0 && RootSlot == 0) {
DEBUG((
EFI_D_ERROR,
"%a: PCI host bridge (00:00.0) should have no interrupts!\n",
__FUNCTION__
));
ASSERT (FALSE);
}
//
// Final PciHostIrqs[] index calculation depends on the platform
// and should match SeaBIOS src/fw/pciinit.c *_pci_slot_get_irq()
//
switch (mHostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
Idx -= 1;
break;
case INTEL_Q35_MCH_DEVICE_ID:
//
// SeaBIOS contains the following comment:
// "Slots 0-24 rotate slot:pin mapping similar to piix above, but
// with a different starting index - see q35-acpi-dsdt.dsl.
//
// Slots 25-31 all use LNKA mapping (or LNKE, but A:D = E:H)"
//
if (RootSlot > 24) {
//
// in this case, subtract back out RootSlot from Idx
// (SeaBIOS never adds it to begin with, but that would make our
// device path traversal loop above too awkward)
//
Idx -= RootSlot;
}
break;
default:
ASSERT (FALSE); // should never get here
}
Idx %= ARRAY_SIZE (PciHostIrqs);
IrqLine = PciHostIrqs[Idx];
DEBUG_CODE_BEGIN ();
{
CHAR16 *DevPathString;
STATIC CHAR16 Fallback[] = L"<failed to convert>";
UINTN Segment, Bus, Device, Function;
DevPathString = ConvertDevicePathToText (DevPath, FALSE, FALSE);
if (DevPathString == NULL) {
DevPathString = Fallback;
}
Status = PciIo->GetLocation (PciIo, &Segment, &Bus, &Device, &Function);
ASSERT_EFI_ERROR (Status);
DEBUG ((EFI_D_VERBOSE, "%a: [%02x:%02x.%x] %s -> 0x%02x\n", __FUNCTION__,
(UINT32)Bus, (UINT32)Device, (UINT32)Function, DevPathString,
IrqLine));
if (DevPathString != Fallback) {
FreePool (DevPathString);
}
}
DEBUG_CODE_END ();
//
// Set PCI Interrupt Line register for this device to PciHostIrqs[Idx]
//
Status = PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint8,
PCI_INT_LINE_OFFSET,
1,
&IrqLine
);
}
return Status;
}
VOID
PciAcpiInitialization (
)
{
UINTN Pmba;
//
// Query Host Bridge DID to determine platform type
//
mHostBridgeDevId = PcdGet16 (PcdOvmfHostBridgePciDevId);
switch (mHostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
//
// 00:01.0 ISA Bridge (PIIX4) LNK routing targets
//
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x60), 0x0b); // A
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x61), 0x0b); // B
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x62), 0x0a); // C
PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x63), 0x0a); // D
break;
case INTEL_Q35_MCH_DEVICE_ID:
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
//
// 00:1f.0 LPC Bridge (Q35) LNK routing targets
//
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x60), 0x0a); // A
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x61), 0x0a); // B
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x62), 0x0b); // C
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x63), 0x0b); // D
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x68), 0x0a); // E
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x69), 0x0a); // F
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6a), 0x0b); // G
PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6b), 0x0b); // H
break;
default:
DEBUG ((EFI_D_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n",
__FUNCTION__, mHostBridgeDevId));
ASSERT (FALSE);
return;
}
//
// Initialize PCI_INTERRUPT_LINE for applicable present PCI devices
//
VisitAllPciInstances (SetPciIntLine);
//
// Set ACPI SCI_EN bit in PMCNTRL
//
IoOr16 ((PciRead32 (Pmba) & ~BIT0) + 4, BIT0);
}
/**
This function detects if OVMF is running on Xen.
**/
STATIC
BOOLEAN
XenDetected (
VOID
)
{
EFI_HOB_GUID_TYPE *GuidHob;
STATIC INTN FoundHob = -1;
if (FoundHob == 0) {
return FALSE;
} else if (FoundHob == 1) {
return TRUE;
}
//
// See if a XenInfo HOB is available
//
GuidHob = GetFirstGuidHob (&gEfiXenInfoGuid);
if (GuidHob == NULL) {
FoundHob = 0;
return FALSE;
}
FoundHob = 1;
return TRUE;
}
EFI_STATUS
EFIAPI
ConnectRecursivelyIfPciMassStorage (
IN EFI_HANDLE Handle,
IN EFI_PCI_IO_PROTOCOL *Instance,
IN PCI_TYPE00 *PciHeader
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
CHAR16 *DevPathStr;
//
// Recognize PCI Mass Storage, and Xen PCI devices
//
if (IS_CLASS1 (PciHeader, PCI_CLASS_MASS_STORAGE) ||
(XenDetected() && IS_CLASS2 (PciHeader, 0xFF, 0x80))) {
DevicePath = NULL;
Status = gBS->HandleProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Print Device Path
//
DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE);
if (DevPathStr != NULL) {
DEBUG((
EFI_D_INFO,
"Found %s device: %s\n",
IS_CLASS1 (PciHeader, PCI_CLASS_MASS_STORAGE) ? L"Mass Storage" : L"Xen",
DevPathStr
));
FreePool(DevPathStr);
}
Status = gBS->ConnectController (Handle, NULL, NULL, TRUE);
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
This notification function is invoked when the
EMU Variable FVB has been changed.
@param Event The event that occurred
@param Context For EFI compatibility. Not used.
**/
VOID
EFIAPI
EmuVariablesUpdatedCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
DEBUG ((EFI_D_INFO, "EmuVariablesUpdatedCallback\n"));
UpdateNvVarsOnFileSystem ();
}
EFI_STATUS
EFIAPI
VisitingFileSystemInstance (
IN EFI_HANDLE Handle,
IN VOID *Instance,
IN VOID *Context
)
{
EFI_STATUS Status;
STATIC BOOLEAN ConnectedToFileSystem = FALSE;
RETURN_STATUS PcdStatus;
if (ConnectedToFileSystem) {
return EFI_ALREADY_STARTED;
}
Status = ConnectNvVarsToFileSystem (Handle);
if (EFI_ERROR (Status)) {
return Status;
}
ConnectedToFileSystem = TRUE;
mEmuVariableEvent =
EfiCreateProtocolNotifyEvent (
&gEfiDevicePathProtocolGuid,
TPL_CALLBACK,
EmuVariablesUpdatedCallback,
NULL,
&mEmuVariableEventReg
);
PcdStatus = PcdSet64S (PcdEmuVariableEvent,
(UINT64)(UINTN) mEmuVariableEvent);
ASSERT_RETURN_ERROR (PcdStatus);
return EFI_SUCCESS;
}
VOID
PlatformBdsRestoreNvVarsFromHardDisk (
)
{
VisitAllPciInstances (ConnectRecursivelyIfPciMassStorage);
VisitAllInstancesOfProtocol (
&gEfiSimpleFileSystemProtocolGuid,
VisitingFileSystemInstance,
NULL
);
}
VOID
PlatformBdsConnectSequence (
VOID
)
/*++
Routine Description:
Connect with predefined platform connect sequence,
the OEM/IBV can customize with their own connect sequence.
Arguments:
None.
Returns:
None.
--*/
{
UINTN Index;
DEBUG ((EFI_D_INFO, "PlatformBdsConnectSequence\n"));
Index = 0;
//
// Here we can get the customized platform connect sequence
// Notes: we can connect with new variable which record the
// last time boots connect device path sequence
//
while (gPlatformConnectSequence[Index] != NULL) {
//
// Build the platform boot option
//
EfiBootManagerConnectDevicePath (gPlatformConnectSequence[Index], NULL);
Index++;
}
//
// Just use the simple policy to connect all devices
//
DEBUG ((EFI_D_INFO, "EfiBootManagerConnectAll\n"));
EfiBootManagerConnectAll ();
PciAcpiInitialization ();
}
/**
Save the S3 boot script.
Note that DxeSmmReadyToLock must be signaled after this function returns;
otherwise the script wouldn't be saved actually.
**/
STATIC
VOID
SaveS3BootScript (
VOID
)
{
EFI_STATUS Status;
EFI_S3_SAVE_STATE_PROTOCOL *BootScript;
STATIC CONST UINT8 Info[] = { 0xDE, 0xAD, 0xBE, 0xEF };
Status = gBS->LocateProtocol (&gEfiS3SaveStateProtocolGuid, NULL,
(VOID **) &BootScript);
ASSERT_EFI_ERROR (Status);
//
// Despite the opcode documentation in the PI spec, the protocol
// implementation embeds a deep copy of the info in the boot script, rather
// than storing just a pointer to runtime or NVS storage.
//
Status = BootScript->Write(BootScript, EFI_BOOT_SCRIPT_INFORMATION_OPCODE,
(UINT32) sizeof Info,
(EFI_PHYSICAL_ADDRESS)(UINTN) &Info);
ASSERT_EFI_ERROR (Status);
}
VOID
EFIAPI
PlatformBootManagerAfterConsole (
VOID
)
/*++
Routine Description:
The function will execute with as the platform policy, current policy
is driven by boot mode. IBV/OEM can customize this code for their specific
policy action.
--*/
{
EFI_BOOT_MODE BootMode;
DEBUG ((EFI_D_INFO, "PlatformBootManagerAfterConsole\n"));
if (PcdGetBool (PcdOvmfFlashVariablesEnable)) {
DEBUG ((EFI_D_INFO, "PlatformBdsPolicyBehavior: not restoring NvVars "
"from disk since flash variables appear to be supported.\n"));
} else {
//
// Try to restore variables from the hard disk early so
// they can be used for the other BDS connect operations.
//
PlatformBdsRestoreNvVarsFromHardDisk ();
}
//
// Get current Boot Mode
//
BootMode = GetBootModeHob ();
DEBUG ((EFI_D_ERROR, "Boot Mode:%x\n", BootMode));
//
// Go the different platform policy with different boot mode
// Notes: this part code can be change with the table policy
//
ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION);
//
// Logo show
//
BootLogoEnableLogo ();
//
// Perform some platform specific connect sequence
//
PlatformBdsConnectSequence ();
//
// Process QEMU's -kernel command line option
//
TryRunningQemuKernel ();
EfiBootManagerRefreshAllBootOption ();
//
// Register UEFI Shell
//
PlatformRegisterFvBootOption (
PcdGetPtr (PcdShellFile), L"EFI Internal Shell", LOAD_OPTION_ACTIVE
);
RemoveStaleFvFileOptions ();
SetBootOrderFromQemu ();
}
/**
This notification function is invoked when an instance of the
EFI_DEVICE_PATH_PROTOCOL is produced.
@param Event The event that occurred
@param Context For EFI compatibility. Not used.
**/
VOID
EFIAPI
NotifyDevPath (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_HANDLE Handle;
EFI_STATUS Status;
UINTN BufferSize;
EFI_DEVICE_PATH_PROTOCOL *DevPathNode;
ATAPI_DEVICE_PATH *Atapi;
//
// Examine all new handles
//
for (;;) {
//
// Get the next handle
//
BufferSize = sizeof (Handle);
Status = gBS->LocateHandle (
ByRegisterNotify,
NULL,
mEfiDevPathNotifyReg,
&BufferSize,
&Handle
);
//
// If not found, we're done
//
if (EFI_NOT_FOUND == Status) {
break;
}
if (EFI_ERROR (Status)) {
continue;
}
//
// Get the DevicePath protocol on that handle
//
Status = gBS->HandleProtocol (Handle, &gEfiDevicePathProtocolGuid, (VOID **)&DevPathNode);
ASSERT_EFI_ERROR (Status);
while (!IsDevicePathEnd (DevPathNode)) {
//
// Find the handler to dump this device path node
//
if (
(DevicePathType(DevPathNode) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType(DevPathNode) == MSG_ATAPI_DP)
) {
Atapi = (ATAPI_DEVICE_PATH*) DevPathNode;
PciOr16 (
PCI_LIB_ADDRESS (
0,
1,
1,
(Atapi->PrimarySecondary == 1) ? 0x42: 0x40
),
BIT15
);
}
//
// Next device path node
//
DevPathNode = NextDevicePathNode (DevPathNode);
}
}
return;
}
VOID
InstallDevicePathCallback (
VOID
)
{
DEBUG ((EFI_D_INFO, "Registered NotifyDevPath Event\n"));
mEfiDevPathEvent = EfiCreateProtocolNotifyEvent (
&gEfiDevicePathProtocolGuid,
TPL_CALLBACK,
NotifyDevPath,
NULL,
&mEfiDevPathNotifyReg
);
}
/**
This function is called each second during the boot manager waits the timeout.
@param TimeoutRemain The remaining timeout.
**/
VOID
EFIAPI
PlatformBootManagerWaitCallback (
UINT16 TimeoutRemain
)
{
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
UINT16 Timeout;
Timeout = PcdGet16 (PcdPlatformBootTimeOut);
Black.Raw = 0x00000000;
White.Raw = 0x00FFFFFF;
BootLogoUpdateProgress (
White.Pixel,
Black.Pixel,
L"Start boot option",
White.Pixel,
(Timeout - TimeoutRemain) * 100 / Timeout,
0
);
}