audk/Omap35xxPkg/MMCHSDxe/MMCHS.c

1493 lines
40 KiB
C

/** @file
MMC/SD Card driver for OMAP 35xx (SDIO not supported)
This driver always produces a BlockIo protocol but it starts off with no Media
present. A TimerCallBack detects when media is inserted or removed and after
a media change event a call to BlockIo ReadBlocks/WriteBlocks will cause the
media to be detected (or removed) and the BlockIo Media structure will get
updated. No MMC/SD Card harward registers are updated until the first BlockIo
ReadBlocks/WriteBlocks after media has been insterted (booting with a card
plugged in counts as an insertion event).
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MMCHS.h"
EFI_BLOCK_IO_MEDIA gMMCHSMedia = {
SIGNATURE_32('s','d','i','o'), // MediaId
TRUE, // RemovableMedia
FALSE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching
512, // BlockSize
4, // IoAlign
0, // Pad
0 // LastBlock
};
typedef struct {
VENDOR_DEVICE_PATH Mmc;
EFI_DEVICE_PATH End;
} MMCHS_DEVICE_PATH;
MMCHS_DEVICE_PATH gMmcHsDevicePath = {
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)(sizeof(VENDOR_DEVICE_PATH)),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8),
},
},
{ 0xb615f1f5, 0x5088, 0x43cd, { 0x80, 0x9c, 0xa1, 0x6e, 0x52, 0x48, 0x7d, 0x00 } },
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
};
CARD_INFO gCardInfo;
EMBEDDED_EXTERNAL_DEVICE *gTPS65950;
EFI_EVENT gTimerEvent;
BOOLEAN gMediaChange = FALSE;
//
// Internal Functions
//
VOID
ParseCardCIDData (
UINT32 Response0,
UINT32 Response1,
UINT32 Response2,
UINT32 Response3
)
{
gCardInfo.CIDData.MDT = ((Response0 >> 8) & 0xFFF);
gCardInfo.CIDData.PSN = (((Response0 >> 24) & 0xFF) | ((Response1 & 0xFFFFFF) << 8));
gCardInfo.CIDData.PRV = ((Response1 >> 24) & 0xFF);
gCardInfo.CIDData.PNM[4] = ((Response2) & 0xFF);
gCardInfo.CIDData.PNM[3] = ((Response2 >> 8) & 0xFF);
gCardInfo.CIDData.PNM[2] = ((Response2 >> 16) & 0xFF);
gCardInfo.CIDData.PNM[1] = ((Response2 >> 24) & 0xFF);
gCardInfo.CIDData.PNM[0] = ((Response3) & 0xFF);
gCardInfo.CIDData.OID = ((Response3 >> 8) & 0xFFFF);
gCardInfo.CIDData.MID = ((Response3 >> 24) & 0xFF);
}
VOID
UpdateMMCHSClkFrequency (
UINTN NewCLKD
)
{
//Set Clock enable to 0x0 to not provide the clock to the card
MmioAnd32 (MMCHS_SYSCTL, ~CEN);
//Set new clock frequency.
MmioAndThenOr32 (MMCHS_SYSCTL, ~CLKD_MASK, NewCLKD << 6);
//Poll till Internal Clock Stable
while ((MmioRead32 (MMCHS_SYSCTL) & ICS_MASK) != ICS);
//Set Clock enable to 0x1 to provide the clock to the card
MmioOr32 (MMCHS_SYSCTL, CEN);
}
EFI_STATUS
SendCmd (
UINTN Cmd,
UINTN CmdInterruptEnableVal,
UINTN CmdArgument
)
{
UINTN MmcStatus;
UINTN RetryCount = 0;
//Check if command line is in use or not. Poll till command line is available.
while ((MmioRead32 (MMCHS_PSTATE) & DATI_MASK) == DATI_NOT_ALLOWED);
//Provide the block size.
MmioWrite32 (MMCHS_BLK, BLEN_512BYTES);
//Setting Data timeout counter value to max value.
MmioAndThenOr32 (MMCHS_SYSCTL, ~DTO_MASK, DTO_VAL);
//Clear Status register.
MmioWrite32 (MMCHS_STAT, 0xFFFFFFFF);
//Set command argument register
MmioWrite32 (MMCHS_ARG, CmdArgument);
//Enable interrupt enable events to occur
MmioWrite32 (MMCHS_IE, CmdInterruptEnableVal);
//Send a command
MmioWrite32 (MMCHS_CMD, Cmd);
//Check for the command status.
while (RetryCount < MAX_RETRY_COUNT) {
do {
MmcStatus = MmioRead32 (MMCHS_STAT);
} while (MmcStatus == 0);
//Read status of command response
if ((MmcStatus & ERRI) != 0) {
//Perform soft-reset for mmci_cmd line.
MmioOr32 (MMCHS_SYSCTL, SRC);
while ((MmioRead32 (MMCHS_SYSCTL) & SRC));
DEBUG ((EFI_D_INFO, "MmcStatus: %x\n", MmcStatus));
return EFI_DEVICE_ERROR;
}
//Check if command is completed.
if ((MmcStatus & CC) == CC) {
MmioWrite32 (MMCHS_STAT, CC);
break;
}
RetryCount++;
}
if (RetryCount == MAX_RETRY_COUNT) {
return EFI_TIMEOUT;
}
return EFI_SUCCESS;
}
VOID
GetBlockInformation (
UINTN *BlockSize,
UINTN *NumBlocks
)
{
CSD_SDV2 *CsdSDV2Data;
UINTN CardSize;
if (gCardInfo.CardType == SD_CARD_2_HIGH) {
CsdSDV2Data = (CSD_SDV2 *)&gCardInfo.CSDData;
//Populate BlockSize.
*BlockSize = (0x1UL << CsdSDV2Data->READ_BL_LEN);
//Calculate Total number of blocks.
CardSize = CsdSDV2Data->C_SIZELow16 | (CsdSDV2Data->C_SIZEHigh6 << 2);
*NumBlocks = ((CardSize + 1) * 1024);
} else {
//Populate BlockSize.
*BlockSize = (0x1UL << gCardInfo.CSDData.READ_BL_LEN);
//Calculate Total number of blocks.
CardSize = gCardInfo.CSDData.C_SIZELow2 | (gCardInfo.CSDData.C_SIZEHigh10 << 2);
*NumBlocks = (CardSize + 1) * (1 << (gCardInfo.CSDData.C_SIZE_MULT + 2));
}
//For >=2G card, BlockSize may be 1K, but the transfer size is 512 bytes.
if (*BlockSize > 512) {
*NumBlocks = MultU64x32(*NumBlocks, *BlockSize/2);
*BlockSize = 512;
}
DEBUG ((EFI_D_INFO, "Card type: %x, BlockSize: %x, NumBlocks: %x\n", gCardInfo.CardType, *BlockSize, *NumBlocks));
}
VOID
CalculateCardCLKD (
UINTN *ClockFrequencySelect
)
{
UINT8 MaxDataTransferRate;
UINTN TransferRateValue = 0;
UINTN TimeValue = 0 ;
UINTN Frequency = 0;
MaxDataTransferRate = gCardInfo.CSDData.TRAN_SPEED;
// For SD Cards we would need to send CMD6 to set
// speeds abouve 25MHz. High Speed mode 50 MHz and up
//Calculate Transfer rate unit (Bits 2:0 of TRAN_SPEED)
switch (MaxDataTransferRate & 0x7) {
case 0:
TransferRateValue = 100 * 1000;
break;
case 1:
TransferRateValue = 1 * 1000 * 1000;
break;
case 2:
TransferRateValue = 10 * 1000 * 1000;
break;
case 3:
TransferRateValue = 100 * 1000 * 1000;
break;
default:
DEBUG((EFI_D_ERROR, "Invalid parameter.\n"));
ASSERT(FALSE);
}
//Calculate Time value (Bits 6:3 of TRAN_SPEED)
switch ((MaxDataTransferRate >> 3) & 0xF) {
case 1:
TimeValue = 10;
break;
case 2:
TimeValue = 12;
break;
case 3:
TimeValue = 13;
break;
case 4:
TimeValue = 15;
break;
case 5:
TimeValue = 20;
break;
case 6:
TimeValue = 25;
break;
case 7:
TimeValue = 30;
break;
case 8:
TimeValue = 35;
break;
case 9:
TimeValue = 40;
break;
case 10:
TimeValue = 45;
break;
case 11:
TimeValue = 50;
break;
case 12:
TimeValue = 55;
break;
case 13:
TimeValue = 60;
break;
case 14:
TimeValue = 70;
break;
case 15:
TimeValue = 80;
break;
default:
DEBUG((EFI_D_ERROR, "Invalid parameter.\n"));
ASSERT(FALSE);
}
Frequency = TransferRateValue * TimeValue/10;
//Calculate Clock divider value to program in MMCHS_SYSCTL[CLKD] field.
*ClockFrequencySelect = ((MMC_REFERENCE_CLK/Frequency) + 1);
DEBUG ((EFI_D_INFO, "MaxDataTransferRate: 0x%x, Frequency: %d KHz, ClockFrequencySelect: %x\n", MaxDataTransferRate, Frequency/1000, *ClockFrequencySelect));
}
VOID
GetCardConfigurationData (
VOID
)
{
UINTN BlockSize;
UINTN NumBlocks;
UINTN ClockFrequencySelect;
//Calculate BlockSize and Total number of blocks in the detected card.
GetBlockInformation(&BlockSize, &NumBlocks);
gCardInfo.BlockSize = BlockSize;
gCardInfo.NumBlocks = NumBlocks;
//Calculate Card clock divider value.
CalculateCardCLKD(&ClockFrequencySelect);
gCardInfo.ClockFrequencySelect = ClockFrequencySelect;
}
EFI_STATUS
InitializeMMCHS (
VOID
)
{
UINT8 Data = 0;
EFI_STATUS Status;
//Select Device group to belong to P1 device group in Power IC.
Data = DEV_GRP_P1;
Status = gTPS65950->Write (gTPS65950, EXTERNAL_DEVICE_REGISTER(I2C_ADDR_GRP_ID4, VMMC1_DEV_GRP), 1, &Data);
ASSERT_EFI_ERROR(Status);
//Configure voltage regulator for MMC1 in Power IC to output 3.0 voltage.
Data = VSEL_3_00V;
Status = gTPS65950->Write (gTPS65950, EXTERNAL_DEVICE_REGISTER(I2C_ADDR_GRP_ID4, VMMC1_DEDICATED_REG), 1, &Data);
ASSERT_EFI_ERROR(Status);
//After ramping up voltage, set VDDS stable bit to indicate that voltage level is stable.
MmioOr32 (CONTROL_PBIAS_LITE, (PBIASLITEVMODE0 | PBIASLITEPWRDNZ0 | PBIASSPEEDCTRL0 | PBIASLITEVMODE1 | PBIASLITEWRDNZ1));
// Enable WP GPIO
MmioAndThenOr32 (GPIO1_BASE + GPIO_OE, ~BIT23, BIT23);
// Enable Card Detect
Data = CARD_DETECT_ENABLE;
gTPS65950->Write (gTPS65950, EXTERNAL_DEVICE_REGISTER(I2C_ADDR_GRP_ID2, TPS65950_GPIO_CTRL), 1, &Data);
return Status;
}
EFI_STATUS
PerformCardIdenfication (
VOID
)
{
EFI_STATUS Status;
UINTN CmdArgument = 0;
UINTN Response = 0;
UINTN RetryCount = 0;
BOOLEAN SDCmd8Supported = FALSE;
//Enable interrupts.
MmioWrite32 (MMCHS_IE, (BADA_EN | CERR_EN | DEB_EN | DCRC_EN | DTO_EN | CIE_EN |
CEB_EN | CCRC_EN | CTO_EN | BRR_EN | BWR_EN | TC_EN | CC_EN));
//Controller INIT procedure start.
MmioOr32 (MMCHS_CON, INIT);
MmioWrite32 (MMCHS_CMD, 0x00000000);
while (!(MmioRead32 (MMCHS_STAT) & CC));
//Wait for 1 ms
gBS->Stall(1000);
//Set CC bit to 0x1 to clear the flag
MmioOr32 (MMCHS_STAT, CC);
//Retry INIT procedure.
MmioWrite32 (MMCHS_CMD, 0x00000000);
while (!(MmioRead32 (MMCHS_STAT) & CC));
//End initialization sequence
MmioAnd32 (MMCHS_CON, ~INIT);
MmioOr32 (MMCHS_HCTL, (SDVS_3_0_V | DTW_1_BIT | SDBP_ON));
//Change clock frequency to 400KHz to fit protocol
UpdateMMCHSClkFrequency(CLKD_400KHZ);
MmioOr32 (MMCHS_CON, OD);
//Send CMD0 command.
Status = SendCmd (CMD0, CMD0_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "Cmd0 fails.\n"));
return Status;
}
DEBUG ((EFI_D_INFO, "CMD0 response: %x\n", MmioRead32 (MMCHS_RSP10)));
//Send CMD5 command.
Status = SendCmd (CMD5, CMD5_INT_EN, CmdArgument);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_ERROR, "CMD5 Success. SDIO card. Follow SDIO card specification.\n"));
DEBUG ((EFI_D_INFO, "CMD5 response: %x\n", MmioRead32 (MMCHS_RSP10)));
//NOTE: Returning unsupported error for now. Need to implement SDIO specification.
return EFI_UNSUPPORTED;
} else {
DEBUG ((EFI_D_INFO, "CMD5 fails. Not an SDIO card.\n"));
}
MmioOr32 (MMCHS_SYSCTL, SRC);
gBS->Stall(1000);
while ((MmioRead32 (MMCHS_SYSCTL) & SRC));
//Send CMD8 command. (New v2.00 command for Voltage check)
//Only 2.7V - 3.6V is supported for SD2.0, only SD 2.0 card can pass.
//MMC & SD1.1 card will fail this command.
CmdArgument = CMD8_ARG;
Status = SendCmd (CMD8, CMD8_INT_EN, CmdArgument);
if (Status == EFI_SUCCESS) {
Response = MmioRead32 (MMCHS_RSP10);
DEBUG ((EFI_D_INFO, "CMD8 success. CMD8 response: %x\n", Response));
if (Response != CmdArgument) {
return EFI_DEVICE_ERROR;
}
DEBUG ((EFI_D_INFO, "Card is SD2.0\n"));
SDCmd8Supported = TRUE; //Supports high capacity.
} else {
DEBUG ((EFI_D_INFO, "CMD8 fails. Not an SD2.0 card.\n"));
}
MmioOr32 (MMCHS_SYSCTL, SRC);
gBS->Stall(1000);
while ((MmioRead32 (MMCHS_SYSCTL) & SRC));
//Poll till card is busy
while (RetryCount < MAX_RETRY_COUNT) {
//Send CMD55 command.
CmdArgument = 0;
Status = SendCmd (CMD55, CMD55_INT_EN, CmdArgument);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_INFO, "CMD55 success. CMD55 response: %x\n", MmioRead32 (MMCHS_RSP10)));
gCardInfo.CardType = SD_CARD;
} else {
DEBUG ((EFI_D_INFO, "CMD55 fails.\n"));
gCardInfo.CardType = MMC_CARD;
}
//Send appropriate command for the card type which got detected.
if (gCardInfo.CardType == SD_CARD) {
CmdArgument = ((UINTN *) &(gCardInfo.OCRData))[0];
//Set HCS bit.
if (SDCmd8Supported) {
CmdArgument |= HCS;
}
Status = SendCmd (ACMD41, ACMD41_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_INFO, "ACMD41 fails.\n"));
return Status;
}
((UINT32 *) &(gCardInfo.OCRData))[0] = MmioRead32 (MMCHS_RSP10);
DEBUG ((EFI_D_INFO, "SD card detected. ACMD41 OCR: %x\n", ((UINT32 *) &(gCardInfo.OCRData))[0]));
} else if (gCardInfo.CardType == MMC_CARD) {
CmdArgument = 0;
Status = SendCmd (CMD1, CMD1_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_INFO, "CMD1 fails.\n"));
return Status;
}
Response = MmioRead32 (MMCHS_RSP10);
DEBUG ((EFI_D_INFO, "MMC card detected.. CMD1 response: %x\n", Response));
//NOTE: For now, I am skipping this since I only have an SD card.
//Compare card OCR and host OCR (Section 22.6.1.3.2.4)
return EFI_UNSUPPORTED; //For now, MMC is not supported.
}
//Poll the card until it is out of its power-up sequence.
if (gCardInfo.OCRData.Busy == 1) {
if (SDCmd8Supported) {
gCardInfo.CardType = SD_CARD_2;
}
//Card is ready. Check CCS (Card capacity status) bit (bit#30).
//SD 2.0 standard card will response with CCS 0, SD high capacity card will respond with CCS 1.
if (gCardInfo.OCRData.AccessMode & BIT1) {
gCardInfo.CardType = SD_CARD_2_HIGH;
DEBUG ((EFI_D_INFO, "High capacity card.\n"));
} else {
DEBUG ((EFI_D_INFO, "Standard capacity card.\n"));
}
break;
}
gBS->Stall(1000);
RetryCount++;
}
if (RetryCount == MAX_RETRY_COUNT) {
DEBUG ((EFI_D_ERROR, "Timeout error. RetryCount: %d\n", RetryCount));
return EFI_TIMEOUT;
}
//Read CID data.
CmdArgument = 0;
Status = SendCmd (CMD2, CMD2_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD2 fails. Status: %x\n", Status));
return Status;
}
DEBUG ((EFI_D_INFO, "CMD2 response: %x %x %x %x\n", MmioRead32 (MMCHS_RSP10), MmioRead32 (MMCHS_RSP32), MmioRead32 (MMCHS_RSP54), MmioRead32 (MMCHS_RSP76)));
//Parse CID register data.
ParseCardCIDData(MmioRead32 (MMCHS_RSP10), MmioRead32 (MMCHS_RSP32), MmioRead32 (MMCHS_RSP54), MmioRead32 (MMCHS_RSP76));
//Read RCA
CmdArgument = 0;
Status = SendCmd (CMD3, CMD3_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD3 fails. Status: %x\n", Status));
return Status;
}
//Set RCA for the detected card. RCA is CMD3 response.
gCardInfo.RCA = (MmioRead32 (MMCHS_RSP10) >> 16);
DEBUG ((EFI_D_INFO, "CMD3 response: RCA %x\n", gCardInfo.RCA));
//MMC Bus setting change after card identification.
MmioAnd32 (MMCHS_CON, ~OD);
MmioOr32 (MMCHS_HCTL, SDVS_3_0_V);
UpdateMMCHSClkFrequency(CLKD_400KHZ); //Set the clock frequency to 400KHz.
return EFI_SUCCESS;
}
EFI_STATUS
GetCardSpecificData (
VOID
)
{
EFI_STATUS Status;
UINTN CmdArgument;
//Send CMD9 to retrieve CSD.
CmdArgument = gCardInfo.RCA << 16;
Status = SendCmd (CMD9, CMD9_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD9 fails. Status: %x\n", Status));
return Status;
}
//Populate 128-bit CSD register data.
((UINT32 *)&(gCardInfo.CSDData))[0] = MmioRead32 (MMCHS_RSP10);
((UINT32 *)&(gCardInfo.CSDData))[1] = MmioRead32 (MMCHS_RSP32);
((UINT32 *)&(gCardInfo.CSDData))[2] = MmioRead32 (MMCHS_RSP54);
((UINT32 *)&(gCardInfo.CSDData))[3] = MmioRead32 (MMCHS_RSP76);
DEBUG ((EFI_D_INFO, "CMD9 response: %x %x %x %x\n", MmioRead32 (MMCHS_RSP10), MmioRead32 (MMCHS_RSP32), MmioRead32 (MMCHS_RSP54), MmioRead32 (MMCHS_RSP76)));
//Calculate total number of blocks and max. data transfer rate supported by the detected card.
GetCardConfigurationData();
return Status;
}
EFI_STATUS
PerformCardConfiguration (
VOID
)
{
UINTN CmdArgument = 0;
EFI_STATUS Status;
//Send CMD7
CmdArgument = gCardInfo.RCA << 16;
Status = SendCmd (CMD7, CMD7_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD7 fails. Status: %x\n", Status));
return Status;
}
if ((gCardInfo.CardType != UNKNOWN_CARD) && (gCardInfo.CardType != MMC_CARD)) {
// We could read SCR register, but SD Card Phys spec stats any SD Card shall
// set SCR.SD_BUS_WIDTHS to support 4-bit mode, so why bother?
// Send ACMD6 (application specific commands must be prefixed with CMD55)
Status = SendCmd (CMD55, CMD55_INT_EN, CmdArgument);
if (!EFI_ERROR (Status)) {
// set device into 4-bit data bus mode
Status = SendCmd (ACMD6, ACMD6_INT_EN, 0x2);
if (!EFI_ERROR (Status)) {
// Set host controler into 4-bit mode
MmioOr32 (MMCHS_HCTL, DTW_4_BIT);
DEBUG ((EFI_D_INFO, "SD Memory Card set to 4-bit mode\n"));
}
}
}
//Send CMD16 to set the block length
CmdArgument = gCardInfo.BlockSize;
Status = SendCmd (CMD16, CMD16_INT_EN, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD16 fails. Status: %x\n", Status));
return Status;
}
//Change MMCHS clock frequency to what detected card can support.
UpdateMMCHSClkFrequency(gCardInfo.ClockFrequencySelect);
return EFI_SUCCESS;
}
EFI_STATUS
ReadBlockData (
IN EFI_BLOCK_IO_PROTOCOL *This,
OUT VOID *Buffer
)
{
UINTN MmcStatus;
UINTN *DataBuffer = Buffer;
UINTN DataSize = This->Media->BlockSize/4;
UINTN Count;
UINTN RetryCount = 0;
//Check controller status to make sure there is no error.
while (RetryCount < MAX_RETRY_COUNT) {
do {
//Read Status.
MmcStatus = MmioRead32 (MMCHS_STAT);
} while(MmcStatus == 0);
//Check if Buffer read ready (BRR) bit is set?
if (MmcStatus & BRR) {
//Clear BRR bit
MmioOr32 (MMCHS_STAT, BRR);
//Read block worth of data.
for (Count = 0; Count < DataSize; Count++) {
*DataBuffer++ = MmioRead32 (MMCHS_DATA);
}
break;
}
RetryCount++;
}
if (RetryCount == MAX_RETRY_COUNT) {
return EFI_TIMEOUT;
}
return EFI_SUCCESS;
}
EFI_STATUS
WriteBlockData (
IN EFI_BLOCK_IO_PROTOCOL *This,
OUT VOID *Buffer
)
{
UINTN MmcStatus;
UINTN *DataBuffer = Buffer;
UINTN DataSize = This->Media->BlockSize/4;
UINTN Count;
UINTN RetryCount = 0;
//Check controller status to make sure there is no error.
while (RetryCount < MAX_RETRY_COUNT) {
do {
//Read Status.
MmcStatus = MmioRead32 (MMCHS_STAT);
} while(MmcStatus == 0);
//Check if Buffer write ready (BWR) bit is set?
if (MmcStatus & BWR) {
//Clear BWR bit
MmioOr32 (MMCHS_STAT, BWR);
//Write block worth of data.
for (Count = 0; Count < DataSize; Count++) {
MmioWrite32 (MMCHS_DATA, *DataBuffer++);
}
break;
}
RetryCount++;
}
if (RetryCount == MAX_RETRY_COUNT) {
return EFI_TIMEOUT;
}
return EFI_SUCCESS;
}
EFI_STATUS
DmaBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINTN Lba,
IN OUT VOID *Buffer,
IN UINTN BlockCount,
IN OPERATION_TYPE OperationType
)
{
EFI_STATUS Status;
UINTN DmaSize = 0;
UINTN Cmd = 0;
UINTN CmdInterruptEnable;
UINTN CmdArgument;
VOID *BufferMap;
EFI_PHYSICAL_ADDRESS BufferAddress;
OMAP_DMA4 Dma4;
DMA_MAP_OPERATION DmaOperation;
EFI_STATUS MmcStatus;
UINTN RetryCount = 0;
CpuDeadLoop ();
// Map passed in buffer for DMA xfer
DmaSize = BlockCount * This->Media->BlockSize;
Status = DmaMap (DmaOperation, Buffer, &DmaSize, &BufferAddress, &BufferMap);
if (EFI_ERROR (Status)) {
return Status;
}
ZeroMem (&DmaOperation, sizeof (DMA_MAP_OPERATION));
Dma4.DataType = 2; // DMA4_CSDPi[1:0] 32-bit elements from MMCHS_DATA
Dma4.SourceEndiansim = 0; // DMA4_CSDPi[21]
Dma4.DestinationEndianism = 0; // DMA4_CSDPi[19]
Dma4.SourcePacked = 0; // DMA4_CSDPi[6]
Dma4.DestinationPacked = 0; // DMA4_CSDPi[13]
Dma4.NumberOfElementPerFrame = This->Media->BlockSize/4; // DMA4_CENi (TRM 4K is optimum value)
Dma4.NumberOfFramePerTransferBlock = BlockCount; // DMA4_CFNi
Dma4.ReadPriority = 0; // DMA4_CCRi[6] Low priority read
Dma4.WritePriority = 0; // DMA4_CCRi[23] Prefetech disabled
//Populate the command information based on the operation type.
if (OperationType == READ) {
Cmd = CMD18; //Multiple block read
CmdInterruptEnable = CMD18_INT_EN;
DmaOperation = MapOperationBusMasterCommonBuffer;
Dma4.ReadPortAccessType =0 ; // DMA4_CSDPi[8:7] Can not burst MMCHS_DATA reg
Dma4.WritePortAccessType = 3; // DMA4_CSDPi[15:14] Memory burst 16x32
Dma4.WriteMode = 1; // DMA4_CSDPi[17:16] Write posted
Dma4.SourceStartAddress = MMCHS_DATA; // DMA4_CSSAi
Dma4.DestinationStartAddress = (UINT32)BufferAddress; // DMA4_CDSAi
Dma4.SourceElementIndex = 1; // DMA4_CSEi
Dma4.SourceFrameIndex = 0x200; // DMA4_CSFi
Dma4.DestinationElementIndex = 1; // DMA4_CDEi
Dma4.DestinationFrameIndex = 0; // DMA4_CDFi
Dma4.ReadPortAccessMode = 0; // DMA4_CCRi[13:12] Always read MMCHS_DATA
Dma4.WritePortAccessMode = 1; // DMA4_CCRi[15:14] Post increment memory address
Dma4.ReadRequestNumber = 0x1e; // DMA4_CCRi[4:0] Syncro with MMCA_DMA_RX (61)
Dma4.WriteRequestNumber = 1; // DMA4_CCRi[20:19] Syncro upper 0x3e == 62 (one based)
} else if (OperationType == WRITE) {
Cmd = CMD25; //Multiple block write
CmdInterruptEnable = CMD25_INT_EN;
DmaOperation = MapOperationBusMasterRead;
Dma4.ReadPortAccessType = 3; // DMA4_CSDPi[8:7] Memory burst 16x32
Dma4.WritePortAccessType = 0; // DMA4_CSDPi[15:14] Can not burst MMCHS_DATA reg
Dma4.WriteMode = 1; // DMA4_CSDPi[17:16] Write posted ???
Dma4.SourceStartAddress = (UINT32)BufferAddress; // DMA4_CSSAi
Dma4.DestinationStartAddress = MMCHS_DATA; // DMA4_CDSAi
Dma4.SourceElementIndex = 1; // DMA4_CSEi
Dma4.SourceFrameIndex = 0x200; // DMA4_CSFi
Dma4.DestinationElementIndex = 1; // DMA4_CDEi
Dma4.DestinationFrameIndex = 0; // DMA4_CDFi
Dma4.ReadPortAccessMode = 1; // DMA4_CCRi[13:12] Post increment memory address
Dma4.WritePortAccessMode = 0; // DMA4_CCRi[15:14] Always write MMCHS_DATA
Dma4.ReadRequestNumber = 0x1d; // DMA4_CCRi[4:0] Syncro with MMCA_DMA_TX (60)
Dma4.WriteRequestNumber = 1; // DMA4_CCRi[20:19] Syncro upper 0x3d == 61 (one based)
} else {
return EFI_INVALID_PARAMETER;
}
EnableDmaChannel (2, &Dma4);
//Set command argument based on the card access mode (Byte mode or Block mode)
if (gCardInfo.OCRData.AccessMode & BIT1) {
CmdArgument = Lba;
} else {
CmdArgument = Lba * This->Media->BlockSize;
}
//Send Command.
Status = SendCmd (Cmd, CmdInterruptEnable, CmdArgument);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "CMD fails. Status: %x\n", Status));
return Status;
}
//Check for the Transfer completion.
while (RetryCount < MAX_RETRY_COUNT) {
//Read Status
do {
MmcStatus = MmioRead32 (MMCHS_STAT);
} while (MmcStatus == 0);
//Check if Transfer complete (TC) bit is set?
if (MmcStatus & TC) {
break;
} else {
DEBUG ((EFI_D_ERROR, "MmcStatus for TC: %x\n", MmcStatus));
//Check if DEB, DCRC or DTO interrupt occured.
if ((MmcStatus & DEB) | (MmcStatus & DCRC) | (MmcStatus & DTO)) {
//There was an error during the data transfer.
//Set SRD bit to 1 and wait until it return to 0x0.
MmioOr32 (MMCHS_SYSCTL, SRD);
while((MmioRead32 (MMCHS_SYSCTL) & SRD) != 0x0);
DisableDmaChannel (2, DMA4_CSR_BLOCK, DMA4_CSR_ERR);
DmaUnmap (BufferMap);
return EFI_DEVICE_ERROR;
}
}
RetryCount++;
}
DisableDmaChannel (2, DMA4_CSR_BLOCK, DMA4_CSR_ERR);
Status = DmaUnmap (BufferMap);
if (RetryCount == MAX_RETRY_COUNT) {
DEBUG ((EFI_D_ERROR, "TransferBlockData timed out.\n"));
return EFI_TIMEOUT;
}
return Status;
}
EFI_STATUS
TransferBlock (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINTN Lba,
IN OUT VOID *Buffer,
IN OPERATION_TYPE OperationType
)
{
EFI_STATUS Status;
UINTN MmcStatus;
UINTN RetryCount = 0;
UINTN Cmd = 0;
UINTN CmdInterruptEnable = 0;
UINTN CmdArgument = 0;
//Populate the command information based on the operation type.
if (OperationType == READ) {
Cmd = CMD17; //Single block read
CmdInterruptEnable = CMD18_INT_EN;
} else if (OperationType == WRITE) {
Cmd = CMD24; //Single block write
CmdInterruptEnable = CMD24_INT_EN;
}
//Set command argument based on the card access mode (Byte mode or Block mode)
if (gCardInfo.OCRData.AccessMode & BIT1) {
CmdArgument = Lba;
} else {
CmdArgument = Lba * This->Media->BlockSize;
}
//Send Command.
Status = SendCmd (Cmd, CmdInterruptEnable, CmdArgument);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "CMD fails. Status: %x\n", Status));
return Status;
}
//Read or Write data.
if (OperationType == READ) {
Status = ReadBlockData (This, Buffer);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "ReadBlockData fails.\n"));
return Status;
}
} else if (OperationType == WRITE) {
Status = WriteBlockData (This, Buffer);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "WriteBlockData fails.\n"));
return Status;
}
}
//Check for the Transfer completion.
while (RetryCount < MAX_RETRY_COUNT) {
//Read Status
do {
MmcStatus = MmioRead32 (MMCHS_STAT);
} while (MmcStatus == 0);
//Check if Transfer complete (TC) bit is set?
if (MmcStatus & TC) {
break;
} else {
DEBUG ((EFI_D_ERROR, "MmcStatus for TC: %x\n", MmcStatus));
//Check if DEB, DCRC or DTO interrupt occured.
if ((MmcStatus & DEB) | (MmcStatus & DCRC) | (MmcStatus & DTO)) {
//There was an error during the data transfer.
//Set SRD bit to 1 and wait until it return to 0x0.
MmioOr32 (MMCHS_SYSCTL, SRD);
while((MmioRead32 (MMCHS_SYSCTL) & SRD) != 0x0);
return EFI_DEVICE_ERROR;
}
}
RetryCount++;
}
if (RetryCount == MAX_RETRY_COUNT) {
DEBUG ((EFI_D_ERROR, "TransferBlockData timed out.\n"));
return EFI_TIMEOUT;
}
return EFI_SUCCESS;
}
BOOLEAN
CardPresent (
VOID
)
{
EFI_STATUS Status;
UINT8 Data;
//
// Card detect is a GPIO0 on the TPS65950
//
Status = gTPS65950->Read (gTPS65950, EXTERNAL_DEVICE_REGISTER(I2C_ADDR_GRP_ID2, GPIODATAIN1), 1, &Data);
if (EFI_ERROR (Status)) {
return FALSE;
}
if ((Data & CARD_DETECT_BIT) == CARD_DETECT_BIT) {
// No Card present
return FALSE;
} else {
return TRUE;
}
}
EFI_STATUS
DetectCard (
VOID
)
{
EFI_STATUS Status;
if (!CardPresent ()) {
return EFI_NO_MEDIA;
}
//Initialize MMC host controller clocks.
Status = InitializeMMCHS ();
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "Initialize MMC host controller fails. Status: %x\n", Status));
return Status;
}
//Software reset of the MMCHS host controller.
MmioWrite32 (MMCHS_SYSCONFIG, SOFTRESET);
gBS->Stall(1000);
while ((MmioRead32 (MMCHS_SYSSTATUS) & RESETDONE_MASK) != RESETDONE);
//Soft reset for all.
MmioWrite32 (MMCHS_SYSCTL, SRA);
gBS->Stall(1000);
while ((MmioRead32 (MMCHS_SYSCTL) & SRA) != 0x0);
//Voltage capabilities initialization. Activate VS18 and VS30.
MmioOr32 (MMCHS_CAPA, (VS30 | VS18));
//Wakeup configuration
MmioOr32 (MMCHS_SYSCONFIG, ENAWAKEUP);
MmioOr32 (MMCHS_HCTL, IWE);
//MMCHS Controller default initialization
MmioOr32 (MMCHS_CON, (OD | DW8_1_4_BIT | CEATA_OFF));
MmioWrite32 (MMCHS_HCTL, (SDVS_3_0_V | DTW_1_BIT | SDBP_OFF));
//Enable internal clock
MmioOr32 (MMCHS_SYSCTL, ICE);
//Set the clock frequency to 80KHz.
UpdateMMCHSClkFrequency (CLKD_80KHZ);
//Enable SD bus power.
MmioOr32 (MMCHS_HCTL, (SDBP_ON));
//Poll till SD bus power bit is set.
while ((MmioRead32 (MMCHS_HCTL) & SDBP_MASK) != SDBP_ON);
//Card idenfication
Status = PerformCardIdenfication ();
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "No MMC/SD card detected.\n"));
return Status;
}
//Get CSD (Card specific data) for the detected card.
Status = GetCardSpecificData();
if (EFI_ERROR(Status)) {
return Status;
}
//Configure the card in data transfer mode.
Status = PerformCardConfiguration();
if (EFI_ERROR(Status)) {
return Status;
}
//Patch the Media structure.
gMMCHSMedia.LastBlock = (gCardInfo.NumBlocks - 1);
gMMCHSMedia.BlockSize = gCardInfo.BlockSize;
gMMCHSMedia.ReadOnly = (MmioRead32 (GPIO1_BASE + GPIO_DATAIN) & BIT23) == BIT23;
gMMCHSMedia.MediaPresent = TRUE;
gMMCHSMedia.MediaId++;
DEBUG ((EFI_D_INFO, "SD Card Media Change on Handle 0x%08x\n", gImageHandle));
return Status;
}
#define MAX_MMCHS_TRANSFER_SIZE 0x4000
EFI_STATUS
SdReadWrite (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINTN Lba,
OUT VOID *Buffer,
IN UINTN BufferSize,
IN OPERATION_TYPE OperationType
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINTN RetryCount = 0;
UINTN BlockCount;
UINTN BytesToBeTranferedThisPass = 0;
UINTN BytesRemainingToBeTransfered;
EFI_TPL OldTpl;
BOOLEAN Update;
Update = FALSE;
if (gMediaChange) {
Update = TRUE;
Status = DetectCard ();
if (EFI_ERROR (Status)) {
// We detected a removal
gMMCHSMedia.MediaPresent = FALSE;
gMMCHSMedia.LastBlock = 0;
gMMCHSMedia.BlockSize = 512; // Should be zero but there is a bug in DiskIo
gMMCHSMedia.ReadOnly = FALSE;
}
gMediaChange = FALSE;
} else if (!gMMCHSMedia.MediaPresent) {
Status = EFI_NO_MEDIA;
goto Done;
}
if (Update) {
DEBUG ((EFI_D_INFO, "SD Card ReinstallProtocolInterface ()\n"));
gBS->ReinstallProtocolInterface (
gImageHandle,
&gEfiBlockIoProtocolGuid,
&gBlockIo,
&gBlockIo
);
return EFI_MEDIA_CHANGED;
}
if (EFI_ERROR (Status)) {
goto Done;
}
if (Buffer == NULL) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
if (Lba > This->Media->LastBlock) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
if ((BufferSize % This->Media->BlockSize) != 0) {
Status = EFI_BAD_BUFFER_SIZE;
goto Done;
}
//Check if the data lines are not in use.
while ((RetryCount++ < MAX_RETRY_COUNT) && ((MmioRead32 (MMCHS_PSTATE) & DATI_MASK) != DATI_ALLOWED));
if (RetryCount == MAX_RETRY_COUNT) {
Status = EFI_TIMEOUT;
goto Done;
}
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
BytesRemainingToBeTransfered = BufferSize;
while (BytesRemainingToBeTransfered > 0) {
if (gMediaChange) {
Status = EFI_NO_MEDIA;
DEBUG ((EFI_D_INFO, "SdReadWrite() EFI_NO_MEDIA due to gMediaChange\n"));
goto DoneRestoreTPL;
}
// Turn OFF DMA path until it is debugged
// BytesToBeTranferedThisPass = (BytesToBeTranferedThisPass >= MAX_MMCHS_TRANSFER_SIZE) ? MAX_MMCHS_TRANSFER_SIZE : BytesRemainingToBeTransfered;
BytesToBeTranferedThisPass = This->Media->BlockSize;
BlockCount = BytesToBeTranferedThisPass/This->Media->BlockSize;
if (BlockCount > 1) {
Status = DmaBlocks (This, Lba, Buffer, BlockCount, OperationType);
} else {
//Transfer a block worth of data.
Status = TransferBlock (This, Lba, Buffer, OperationType);
}
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_ERROR, "TransferBlockData fails. %x\n", Status));
goto DoneRestoreTPL;
}
BytesRemainingToBeTransfered -= BytesToBeTranferedThisPass;
Lba += BlockCount;
Buffer = (UINT8 *)Buffer + This->Media->BlockSize;
}
DoneRestoreTPL:
gBS->RestoreTPL (OldTpl);
Done:
return Status;
}
/**
Reset the Block Device.
@param This Indicates a pointer to the calling context.
@param ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
**/
EFI_STATUS
EFIAPI
MMCHSReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
return EFI_SUCCESS;
}
/**
Read BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId Id of the media, changes every time the media is replaced.
@param Lba The starting Logical Block Address to read from
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the buffer.
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid,
or the buffer is not on proper alignment.
EFI_STATUS
**/
EFI_STATUS
EFIAPI
MMCHSReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
//Perform Read operation.
Status = SdReadWrite (This, (UINTN)Lba, Buffer, BufferSize, READ);
return Status;
}
/**
Write BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId The media ID that the write request is for.
@param Lba The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations.
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the source buffer for the data.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
MMCHSWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
EFI_STATUS Status;
//Perform write operation.
Status = SdReadWrite (This, (UINTN)Lba, Buffer, BufferSize, WRITE);
return Status;
}
/**
Flush the Block Device.
@param This Indicates a pointer to the calling context.
@retval EFI_SUCCESS All outstanding data was written to the device
@retval EFI_DEVICE_ERROR The device reported an error while writting back the data
@retval EFI_NO_MEDIA There is no media in the device.
**/
EFI_STATUS
EFIAPI
MMCHSFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
)
{
return EFI_SUCCESS;
}
EFI_BLOCK_IO_PROTOCOL gBlockIo = {
EFI_BLOCK_IO_INTERFACE_REVISION, // Revision
&gMMCHSMedia, // *Media
MMCHSReset, // Reset
MMCHSReadBlocks, // ReadBlocks
MMCHSWriteBlocks, // WriteBlocks
MMCHSFlushBlocks // FlushBlocks
};
/**
Timer callback to convert card present hardware into a boolean that indicates
a media change event has happened. If you just check the GPIO you could see
card 1 and then check again after card 1 was removed and card 2 was inserted
and you would still see media present. Thus you need the timer tick to catch
the toggle event.
@param Event Event whose notification function is being invoked.
@param Context The pointer to the notification function's context,
which is implementation-dependent. Not used.
**/
VOID
EFIAPI
TimerCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
BOOLEAN Present;
Present = CardPresent ();
if (gMMCHSMedia.MediaPresent) {
if (!Present && !gMediaChange) {
gMediaChange = TRUE;
}
} else {
if (Present && !gMediaChange) {
gMediaChange = TRUE;
}
}
}
EFI_STATUS
EFIAPI
MMCHSInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
Status = gBS->LocateProtocol (&gEmbeddedExternalDeviceProtocolGuid, NULL, (VOID **)&gTPS65950);
ASSERT_EFI_ERROR(Status);
ZeroMem (&gCardInfo, sizeof (CARD_INFO));
Status = gBS->CreateEvent (EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, TimerCallback, NULL, &gTimerEvent);
ASSERT_EFI_ERROR (Status);
Status = gBS->SetTimer (gTimerEvent, TimerPeriodic, FixedPcdGet32 (PcdMmchsTimerFreq100NanoSeconds));
ASSERT_EFI_ERROR (Status);
//Publish BlockIO.
Status = gBS->InstallMultipleProtocolInterfaces (
&ImageHandle,
&gEfiBlockIoProtocolGuid, &gBlockIo,
&gEfiDevicePathProtocolGuid, &gMmcHsDevicePath,
NULL
);
return Status;
}