mirror of https://github.com/acidanthera/audk.git
976 lines
29 KiB
C
976 lines
29 KiB
C
/*++
|
|
|
|
Copyright (c) 2006, Intel Corporation
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
|
|
DxeLoad.c
|
|
|
|
Abstract:
|
|
|
|
Last PEIM.
|
|
Responsibility of this module is to load the DXE Core from a Firmware Volume.
|
|
|
|
--*/
|
|
|
|
#include "DxeIpl.h"
|
|
|
|
// porting note remove later
|
|
#include "Common/DecompressLibraryHob.h"
|
|
#include "FrameworkPei.h"
|
|
// end of remove later
|
|
|
|
BOOLEAN gInMemory = FALSE;
|
|
|
|
//
|
|
// Module Globals used in the DXE to PEI handoff
|
|
// These must be module globals, so the stack can be switched
|
|
//
|
|
static EFI_DXE_IPL_PPI mDxeIplPpi = {
|
|
DxeLoadCore
|
|
};
|
|
|
|
static EFI_PEI_FV_FILE_LOADER_PPI mLoadFilePpi = {
|
|
DxeIplLoadFile
|
|
};
|
|
|
|
static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = {
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gEfiPeiFvFileLoaderPpiGuid,
|
|
&mLoadFilePpi
|
|
},
|
|
{
|
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
|
&gEfiDxeIplPpiGuid,
|
|
&mDxeIplPpi
|
|
}
|
|
};
|
|
|
|
static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = {
|
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
|
&gEfiEndOfPeiSignalPpiGuid,
|
|
NULL
|
|
};
|
|
|
|
GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gEfiDecompress = {
|
|
UefiDecompressGetInfo,
|
|
UefiDecompress
|
|
};
|
|
|
|
GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gCustomDecompress = {
|
|
CustomDecompressGetInfo,
|
|
CustomDecompress
|
|
};
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
PeimInitializeDxeIpl (
|
|
IN EFI_FFS_FILE_HEADER *FfsHeader,
|
|
IN EFI_PEI_SERVICES **PeiServices
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Initializes the Dxe Ipl PPI
|
|
|
|
Arguments:
|
|
|
|
FfsHeader - Pointer to FFS file header
|
|
PeiServices - General purpose services available to every PEIM.
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
|
|
EFI_BOOT_MODE BootMode;
|
|
|
|
Status = PeiServicesGetBootMode (&BootMode);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
if (!gInMemory && (BootMode != BOOT_ON_S3_RESUME)) {
|
|
//
|
|
// The DxeIpl has not yet been shadowed
|
|
//
|
|
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
|
|
|
|
//
|
|
// Shadow DxeIpl and then re-run its entry point
|
|
//
|
|
Status = ShadowDxeIpl (FfsHeader, PeiEfiPeiPeCoffLoader);
|
|
} else {
|
|
//
|
|
// Install FvFileLoader and DxeIpl PPIs.
|
|
//
|
|
Status = PeiServicesInstallPpi (mPpiList);
|
|
ASSERT_EFI_ERROR(Status);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeLoadCore (
|
|
IN EFI_DXE_IPL_PPI *This,
|
|
IN EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PEI_HOB_POINTERS HobList
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Main entry point to last PEIM
|
|
|
|
Arguments:
|
|
This - Entry point for DXE IPL PPI
|
|
PeiServices - General purpose services available to every PEIM.
|
|
HobList - Address to the Pei HOB list
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - DEX core was successfully loaded.
|
|
EFI_OUT_OF_RESOURCES - There are not enough resources to load DXE core.
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_GUID DxeCoreFileName;
|
|
EFI_GUID FirmwareFileName;
|
|
VOID *Pe32Data;
|
|
VOID *FvImageData;
|
|
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
|
|
UINT64 DxeCoreSize;
|
|
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
|
|
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
|
|
EFI_BOOT_MODE BootMode;
|
|
EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
|
|
EFI_PEI_S3_RESUME_PPI *S3Resume;
|
|
|
|
// PERF_START (PeiServices, L"DxeIpl", NULL, 0);
|
|
|
|
//
|
|
// if in S3 Resume, restore configure
|
|
//
|
|
Status = PeiServicesGetBootMode (&BootMode);
|
|
ASSERT_EFI_ERROR(Status);
|
|
|
|
if (BootMode == BOOT_ON_S3_RESUME) {
|
|
Status = PeiServicesLocatePpi (
|
|
&gEfiPeiS3ResumePpiGuid,
|
|
0,
|
|
NULL,
|
|
(VOID **)&S3Resume
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = S3Resume->S3RestoreConfig (PeiServices);
|
|
ASSERT_EFI_ERROR (Status);
|
|
} else if (BootMode == BOOT_IN_RECOVERY_MODE) {
|
|
|
|
Status = PeiServicesLocatePpi (
|
|
&gEfiPeiRecoveryModulePpiGuid,
|
|
0,
|
|
NULL,
|
|
(VOID **)&PeiRecovery
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status));
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
//
|
|
// Now should have a HOB with the DXE core w/ the old HOB destroyed
|
|
//
|
|
}
|
|
|
|
//
|
|
// Install the PEI Protocols that are shared between PEI and DXE
|
|
//
|
|
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
|
|
ASSERT (PeiEfiPeiPeCoffLoader != NULL);
|
|
|
|
|
|
//
|
|
// Find the EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE type compressed Firmware Volume file
|
|
// The file found will be processed by PeiProcessFile: It will first be decompressed to
|
|
// a normal FV, then a corresponding FV type hob will be built.
|
|
//
|
|
Status = PeiFindFile (
|
|
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
|
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
|
&FirmwareFileName,
|
|
&FvImageData
|
|
);
|
|
|
|
//
|
|
// Find the DXE Core in a Firmware Volume
|
|
//
|
|
Status = PeiFindFile (
|
|
EFI_FV_FILETYPE_DXE_CORE,
|
|
EFI_SECTION_PE32,
|
|
&DxeCoreFileName,
|
|
&Pe32Data
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
//
|
|
// Load the DXE Core from a Firmware Volume
|
|
//
|
|
Status = PeiLoadFile (
|
|
PeiEfiPeiPeCoffLoader,
|
|
Pe32Data,
|
|
&DxeCoreAddress,
|
|
&DxeCoreSize,
|
|
&DxeCoreEntryPoint
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
//
|
|
// Add HOB for the DXE Core
|
|
//
|
|
BuildModuleHob (
|
|
&DxeCoreFileName,
|
|
DxeCoreAddress,
|
|
DxeCoreSize,
|
|
DxeCoreEntryPoint
|
|
);
|
|
|
|
//
|
|
// Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT
|
|
//
|
|
REPORT_STATUS_CODE (
|
|
EFI_PROGRESS_CODE,
|
|
EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT
|
|
);
|
|
|
|
if (FeaturePcdGet (PcdDxeIplBuildShareCodeHobs)) {
|
|
if (FeaturePcdGet (PcdDxeIplSupportEfiDecompress)) {
|
|
//
|
|
// Add HOB for the EFI Decompress Protocol
|
|
//
|
|
BuildGuidDataHob (
|
|
&gEfiDecompressProtocolGuid,
|
|
(VOID *)&gEfiDecompress,
|
|
sizeof (gEfiDecompress)
|
|
);
|
|
}
|
|
if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) {
|
|
//
|
|
// Add HOB for the user customized Decompress Protocol
|
|
//
|
|
BuildGuidDataHob (
|
|
&gEfiCustomizedDecompressProtocolGuid,
|
|
(VOID *)&gCustomDecompress,
|
|
sizeof (gCustomDecompress)
|
|
);
|
|
}
|
|
|
|
//
|
|
// Add HOB for the PE/COFF Loader Protocol
|
|
//
|
|
BuildGuidDataHob (
|
|
&gEfiPeiPeCoffLoaderGuid,
|
|
(VOID *)&PeiEfiPeiPeCoffLoader,
|
|
sizeof (VOID *)
|
|
);
|
|
}
|
|
|
|
//
|
|
// Transfer control to the DXE Core
|
|
// The handoff state is simply a pointer to the HOB list
|
|
//
|
|
|
|
DEBUG ((EFI_D_INFO, "DXE Core Entry Point 0x%08x\n", (UINTN) DxeCoreEntryPoint));
|
|
HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal);
|
|
//
|
|
// If we get here, then the DXE Core returned. This is an error
|
|
// Dxe Core should not return.
|
|
//
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
EFI_STATUS
|
|
PeiFindFile (
|
|
IN UINT8 Type,
|
|
IN UINT16 SectionType,
|
|
OUT EFI_GUID *FileName,
|
|
OUT VOID **Pe32Data
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Finds a PE/COFF of a specific Type and SectionType in the Firmware Volumes
|
|
described in the HOB list. Able to search in a compression set in a FFS file.
|
|
But only one level of compression is supported, that is, not able to search
|
|
in a compression set that is within another compression set.
|
|
|
|
Arguments:
|
|
|
|
Type - The Type of file to retrieve
|
|
|
|
SectionType - The type of section to retrieve from a file
|
|
|
|
FileName - The name of the file found in the Firmware Volume
|
|
|
|
Pe32Data - Pointer to the beginning of the PE/COFF file found in the Firmware Volume
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - The file was found, and the name is returned in FileName, and a pointer to
|
|
the PE/COFF image is returned in Pe32Data
|
|
|
|
EFI_NOT_FOUND - The file was not found in the Firmware Volumes present in the HOB List
|
|
|
|
--*/
|
|
{
|
|
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
|
|
EFI_FFS_FILE_HEADER *FfsFileHeader;
|
|
EFI_STATUS Status;
|
|
EFI_PEI_HOB_POINTERS Hob;
|
|
|
|
|
|
FwVolHeader = NULL;
|
|
FfsFileHeader = NULL;
|
|
Status = EFI_SUCCESS;
|
|
|
|
//
|
|
// For each Firmware Volume, look for a specified type
|
|
// of file and break out until no one is found
|
|
//
|
|
Hob.Raw = GetHobList ();
|
|
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) {
|
|
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) (Hob.FirmwareVolume->BaseAddress);
|
|
//
|
|
// Make sure the FV HOB does not get corrupted.
|
|
//
|
|
ASSERT (FwVolHeader->Signature == EFI_FVH_SIGNATURE);
|
|
|
|
Status = PeiServicesFfsFindNextFile (
|
|
Type,
|
|
FwVolHeader,
|
|
&FfsFileHeader
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = PeiProcessFile (
|
|
SectionType,
|
|
FfsFileHeader,
|
|
Pe32Data,
|
|
&Hob
|
|
);
|
|
CopyMem (FileName, &FfsFileHeader->Name, sizeof (EFI_GUID));
|
|
//
|
|
// Find all Fv type ffs to get all FvImage and add them into FvHob
|
|
//
|
|
if (!EFI_ERROR (Status) && (Type != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
Hob.Raw = GET_NEXT_HOB (Hob);
|
|
}
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EFI_STATUS
|
|
PeiLoadFile (
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader,
|
|
IN VOID *Pe32Data,
|
|
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
|
|
OUT UINT64 *ImageSize,
|
|
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Loads and relocates a PE/COFF image into memory.
|
|
|
|
Arguments:
|
|
|
|
PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
|
|
|
|
Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
|
|
|
|
ImageAddress - The base address of the relocated PE/COFF image
|
|
|
|
ImageSize - The size of the relocated PE/COFF image
|
|
|
|
EntryPoint - The entry point of the relocated PE/COFF image
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - The file was loaded and relocated
|
|
|
|
EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = Pe32Data;
|
|
Status = GetImageReadFunction (&ImageContext);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = PeiEfiPeiPeCoffLoader->GetImageInfo (PeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Allocate Memory for the image
|
|
//
|
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize));
|
|
ASSERT (ImageContext.ImageAddress != 0);
|
|
|
|
//
|
|
// Load the image to our new buffer
|
|
//
|
|
Status = PeiEfiPeiPeCoffLoader->LoadImage (PeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Relocate the image in our new buffer
|
|
//
|
|
Status = PeiEfiPeiPeCoffLoader->RelocateImage (PeiEfiPeiPeCoffLoader, &ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Flush the instruction cache so the image data is written before we execute it
|
|
//
|
|
InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
|
|
|
|
*ImageAddress = ImageContext.ImageAddress;
|
|
*ImageSize = ImageContext.ImageSize;
|
|
*EntryPoint = ImageContext.EntryPoint;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
ShadowDxeIpl (
|
|
IN EFI_FFS_FILE_HEADER *DxeIplFileHeader,
|
|
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Shadow the DXE IPL to a different memory location. This occurs after permanent
|
|
memory has been discovered.
|
|
|
|
Arguments:
|
|
|
|
DxeIplFileHeader - Pointer to the FFS file header of the DXE IPL driver
|
|
|
|
PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - DXE IPL was successfully shadowed to a different memory location.
|
|
|
|
EFI_ ERROR - The shadow was unsuccessful.
|
|
|
|
|
|
--*/
|
|
{
|
|
UINTN SectionLength;
|
|
UINTN OccupiedSectionLength;
|
|
EFI_PHYSICAL_ADDRESS DxeIplAddress;
|
|
UINT64 DxeIplSize;
|
|
EFI_PHYSICAL_ADDRESS DxeIplEntryPoint;
|
|
EFI_STATUS Status;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
|
|
Section = (EFI_COMMON_SECTION_HEADER *) (DxeIplFileHeader + 1);
|
|
|
|
while ((Section->Type != EFI_SECTION_PE32) && (Section->Type != EFI_SECTION_TE)) {
|
|
SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
|
|
OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4);
|
|
Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
|
|
}
|
|
//
|
|
// Relocate DxeIpl into memory by using loadfile service
|
|
//
|
|
Status = PeiLoadFile (
|
|
PeiEfiPeiPeCoffLoader,
|
|
(VOID *) (Section + 1),
|
|
&DxeIplAddress,
|
|
&DxeIplSize,
|
|
&DxeIplEntryPoint
|
|
);
|
|
|
|
if (Status == EFI_SUCCESS) {
|
|
//
|
|
// Set gInMemory global variable to TRUE to indicate the dxeipl is shadowed.
|
|
//
|
|
*(BOOLEAN *) ((UINTN) &gInMemory + (UINTN) DxeIplEntryPoint - (UINTN) _ModuleEntryPoint) = TRUE;
|
|
Status = ((EFI_PEIM_ENTRY_POINT) (UINTN) DxeIplEntryPoint) ((EFI_PEI_FILE_HANDLE *) DxeIplFileHeader, GetPeiServicesTablePointer());
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeIplLoadFile (
|
|
IN EFI_PEI_FV_FILE_LOADER_PPI *This,
|
|
IN EFI_FFS_FILE_HEADER *FfsHeader,
|
|
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
|
|
OUT UINT64 *ImageSize,
|
|
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Given a pointer to an FFS file containing a PE32 image, get the
|
|
information on the PE32 image, and then "load" it so that it
|
|
can be executed.
|
|
|
|
Arguments:
|
|
|
|
This - pointer to our file loader protocol
|
|
|
|
FfsHeader - pointer to the FFS file header of the FFS file that
|
|
contains the PE32 image we want to load
|
|
|
|
ImageAddress - returned address where the PE32 image is loaded
|
|
|
|
ImageSize - returned size of the loaded PE32 image
|
|
|
|
EntryPoint - entry point to the loaded PE32 image
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - The FFS file was successfully loaded.
|
|
|
|
EFI_ERROR - Unable to load the FFS file.
|
|
|
|
--*/
|
|
{
|
|
EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
|
|
EFI_STATUS Status;
|
|
VOID *Pe32Data;
|
|
|
|
Pe32Data = NULL;
|
|
PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
|
|
|
|
//
|
|
// Preprocess the FFS file to get a pointer to the PE32 information
|
|
// in the enclosed PE32 image.
|
|
//
|
|
Status = PeiProcessFile (
|
|
EFI_SECTION_PE32,
|
|
FfsHeader,
|
|
&Pe32Data,
|
|
NULL
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Load the PE image from the FFS file
|
|
//
|
|
Status = PeiLoadFile (
|
|
PeiEfiPeiPeCoffLoader,
|
|
Pe32Data,
|
|
ImageAddress,
|
|
ImageSize,
|
|
EntryPoint
|
|
);
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
PeiProcessFile (
|
|
IN UINT16 SectionType,
|
|
IN EFI_FFS_FILE_HEADER *FfsFileHeader,
|
|
OUT VOID **Pe32Data,
|
|
IN EFI_PEI_HOB_POINTERS *OrigHob
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Arguments:
|
|
|
|
SectionType - The type of section in the FFS file to process.
|
|
|
|
FfsFileHeader - Pointer to the FFS file to process, looking for the
|
|
specified SectionType
|
|
|
|
Pe32Data - returned pointer to the start of the PE32 image found
|
|
in the FFS file.
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - found the PE32 section in the FFS file
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
VOID *SectionData;
|
|
DECOMPRESS_LIBRARY *DecompressLibrary;
|
|
UINT8 *DstBuffer;
|
|
UINT8 *ScratchBuffer;
|
|
UINT32 DstBufferSize;
|
|
UINT32 ScratchBufferSize;
|
|
EFI_COMMON_SECTION_HEADER *CmpSection;
|
|
UINTN CmpSectionLength;
|
|
UINTN OccupiedCmpSectionLength;
|
|
VOID *CmpFileData;
|
|
UINTN CmpFileSize;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
UINTN SectionLength;
|
|
UINTN OccupiedSectionLength;
|
|
UINT64 FileSize;
|
|
UINT32 AuthenticationStatus;
|
|
EFI_PEI_SECTION_EXTRACTION_PPI *SectionExtract;
|
|
UINT32 BufferSize;
|
|
UINT8 *Buffer;
|
|
EFI_PEI_SECURITY_PPI *Security;
|
|
BOOLEAN StartCrisisRecovery;
|
|
EFI_GUID TempGuid;
|
|
EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
|
|
EFI_COMPRESSION_SECTION *CompressionSection;
|
|
|
|
//
|
|
// Initialize local variables.
|
|
//
|
|
DecompressLibrary = NULL;
|
|
DstBuffer = NULL;
|
|
DstBufferSize = 0;
|
|
|
|
Status = PeiServicesFfsFindSectionData (
|
|
EFI_SECTION_COMPRESSION,
|
|
FfsFileHeader,
|
|
&SectionData
|
|
);
|
|
|
|
//
|
|
// First process the compression section
|
|
//
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Yes, there is a compression section, so extract the contents
|
|
// Decompress the image here
|
|
//
|
|
Section = (EFI_COMMON_SECTION_HEADER *) (UINTN) (VOID *) ((UINT8 *) (FfsFileHeader) + (UINTN) sizeof (EFI_FFS_FILE_HEADER));
|
|
|
|
do {
|
|
SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
|
|
OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4);
|
|
|
|
//
|
|
// Was the DXE Core file encapsulated in a GUID'd section?
|
|
//
|
|
if (Section->Type == EFI_SECTION_GUID_DEFINED) {
|
|
|
|
//
|
|
// This following code constitutes the addition of the security model
|
|
// to the DXE IPL.
|
|
//
|
|
//
|
|
// Set a default authenticatino state
|
|
//
|
|
AuthenticationStatus = 0;
|
|
|
|
Status = PeiServicesLocatePpi (
|
|
&gEfiPeiSectionExtractionPpiGuid,
|
|
0,
|
|
NULL,
|
|
(VOID **)&SectionExtract
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Verify Authentication State
|
|
//
|
|
CopyMem (&TempGuid, Section + 1, sizeof (EFI_GUID));
|
|
|
|
Status = SectionExtract->PeiGetSection (
|
|
GetPeiServicesTablePointer(),
|
|
SectionExtract,
|
|
(EFI_SECTION_TYPE *) &SectionType,
|
|
&TempGuid,
|
|
0,
|
|
(VOID **) &Buffer,
|
|
&BufferSize,
|
|
&AuthenticationStatus
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// If not ask the Security PPI, if exists, for disposition
|
|
//
|
|
//
|
|
Status = PeiServicesLocatePpi (
|
|
&gEfiPeiSecurityPpiGuid,
|
|
0,
|
|
NULL,
|
|
(VOID **)&Security
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
Status = Security->AuthenticationState (
|
|
GetPeiServicesTablePointer(),
|
|
(struct _EFI_PEI_SECURITY_PPI *) Security,
|
|
AuthenticationStatus,
|
|
FfsFileHeader,
|
|
&StartCrisisRecovery
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// If there is a security violation, report to caller and have
|
|
// the upper-level logic possible engender a crisis recovery
|
|
//
|
|
if (StartCrisisRecovery) {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
}
|
|
|
|
if (Section->Type == EFI_SECTION_PE32) {
|
|
//
|
|
// This is what we want
|
|
//
|
|
*Pe32Data = (VOID *) (Section + 1);
|
|
return EFI_SUCCESS;
|
|
} else if (Section->Type == EFI_SECTION_COMPRESSION) {
|
|
//
|
|
// This is a compression set, expand it
|
|
//
|
|
CompressionSection = (EFI_COMPRESSION_SECTION *) Section;
|
|
|
|
switch (CompressionSection->CompressionType) {
|
|
case EFI_STANDARD_COMPRESSION:
|
|
//
|
|
// Load EFI standard compression.
|
|
//
|
|
if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) {
|
|
DecompressLibrary = &gEfiDecompress;
|
|
} else {
|
|
ASSERT (FALSE);
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
break;
|
|
|
|
// porting note the original branch for customized compress is removed, it should be change to use GUID compress
|
|
|
|
case EFI_NOT_COMPRESSED:
|
|
//
|
|
// Allocate destination buffer
|
|
//
|
|
DstBufferSize = CompressionSection->UncompressedLength;
|
|
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
|
|
if (DstBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// stream is not actually compressed, just encapsulated. So just copy it.
|
|
//
|
|
CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize);
|
|
break;
|
|
|
|
default:
|
|
//
|
|
// Don't support other unknown compression type.
|
|
//
|
|
ASSERT_EFI_ERROR (Status);
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if (CompressionSection->CompressionType != EFI_NOT_COMPRESSED) {
|
|
//
|
|
// For compressed data, decompress them to dstbuffer.
|
|
//
|
|
Status = DecompressLibrary->GetInfo (
|
|
(UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
|
|
(UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION),
|
|
&DstBufferSize,
|
|
&ScratchBufferSize
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// GetInfo failed
|
|
//
|
|
DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Allocate scratch buffer
|
|
//
|
|
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
|
|
if (ScratchBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Allocate destination buffer
|
|
//
|
|
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
|
|
if (DstBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Call decompress function
|
|
//
|
|
Status = DecompressLibrary->Decompress (
|
|
(CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
|
|
DstBuffer,
|
|
ScratchBuffer
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// Decompress failed
|
|
//
|
|
DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Decompress successfully.
|
|
// Loop the decompressed data searching for expected section.
|
|
//
|
|
CmpSection = (EFI_COMMON_SECTION_HEADER *) DstBuffer;
|
|
CmpFileData = (VOID *) DstBuffer;
|
|
CmpFileSize = DstBufferSize;
|
|
do {
|
|
CmpSectionLength = *(UINT32 *) (CmpSection->Size) & 0x00ffffff;
|
|
if (CmpSection->Type == SectionType) {
|
|
//
|
|
// This is what we want
|
|
//
|
|
if (SectionType == EFI_SECTION_PE32) {
|
|
*Pe32Data = (VOID *) (CmpSection + 1);
|
|
return EFI_SUCCESS;
|
|
} else if (SectionType == EFI_SECTION_FIRMWARE_VOLUME_IMAGE) {
|
|
//
|
|
// Firmware Volume Image in this Section
|
|
// Skip the section header to get FvHeader
|
|
//
|
|
FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (CmpSection + 1);
|
|
|
|
if (FvHeader->Signature == EFI_FVH_SIGNATURE) {
|
|
//
|
|
// Because FvLength in FvHeader is UINT64 type,
|
|
// so FvHeader must meed at least 8 bytes alignment.
|
|
// If current FvImage base address doesn't meet its alignment,
|
|
// we need to reload this FvImage to another correct memory address.
|
|
//
|
|
if (((UINTN) FvHeader % sizeof (UINT64)) != 0) {
|
|
DstBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINTN) CmpSectionLength - sizeof (EFI_COMMON_SECTION_HEADER)), sizeof (UINT64));
|
|
if (DstBuffer == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
CopyMem (DstBuffer, FvHeader, (UINTN) CmpSectionLength - sizeof (EFI_COMMON_SECTION_HEADER));
|
|
FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) DstBuffer;
|
|
}
|
|
|
|
//
|
|
// Build new FvHob for new decompressed Fv image.
|
|
//
|
|
BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength);
|
|
|
|
//
|
|
// Set the original FvHob to unused.
|
|
//
|
|
if (OrigHob != NULL) {
|
|
OrigHob->Header->HobType = EFI_HOB_TYPE_UNUSED;
|
|
}
|
|
|
|
//
|
|
// return found FvImage data.
|
|
//
|
|
*Pe32Data = (VOID *) FvHeader;
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
OccupiedCmpSectionLength = GET_OCCUPIED_SIZE (CmpSectionLength, 4);
|
|
CmpSection = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) CmpSection + OccupiedCmpSectionLength);
|
|
} while (CmpSection->Type != 0 && (UINTN) ((UINT8 *) CmpSection - (UINT8 *) CmpFileData) < CmpFileSize);
|
|
}
|
|
//
|
|
// End of the decompression activity
|
|
//
|
|
|
|
Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
|
|
FileSize = FfsFileHeader->Size[0] & 0xFF;
|
|
FileSize += (FfsFileHeader->Size[1] << 8) & 0xFF00;
|
|
FileSize += (FfsFileHeader->Size[2] << 16) & 0xFF0000;
|
|
FileSize &= 0x00FFFFFF;
|
|
} while (Section->Type != 0 && (UINTN) ((UINT8 *) Section - (UINT8 *) FfsFileHeader) < FileSize);
|
|
|
|
//
|
|
// search all sections (compression and non compression) in this FFS, don't
|
|
// find expected section.
|
|
//
|
|
return EFI_NOT_FOUND;
|
|
} else {
|
|
//
|
|
// For those FFS that doesn't contain compression section, directly search
|
|
// PE or TE section in this FFS.
|
|
//
|
|
|
|
Status = PeiServicesFfsFindSectionData (
|
|
EFI_SECTION_PE32,
|
|
FfsFileHeader,
|
|
&SectionData
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
Status = PeiServicesFfsFindSectionData (
|
|
EFI_SECTION_TE,
|
|
FfsFileHeader,
|
|
&SectionData
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
}
|
|
}
|
|
|
|
*Pe32Data = SectionData;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|