mirror of https://github.com/acidanthera/audk.git
752 lines
23 KiB
C
752 lines
23 KiB
C
/** @file
|
|
* File managing the MMU for ARMv8 architecture
|
|
*
|
|
* Copyright (c) 2011-2020, ARM Limited. All rights reserved.
|
|
* Copyright (c) 2016, Linaro Limited. All rights reserved.
|
|
* Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
*
|
|
**/
|
|
|
|
#include <Uefi.h>
|
|
#include <Pi/PiMultiPhase.h>
|
|
#include <Chipset/AArch64.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/CacheMaintenanceLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/ArmLib.h>
|
|
#include <Library/ArmMmuLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/HobLib.h>
|
|
#include "ArmMmuLibInternal.h"
|
|
|
|
STATIC ARM_REPLACE_LIVE_TRANSLATION_ENTRY mReplaceLiveEntryFunc = ArmReplaceLiveTranslationEntry;
|
|
|
|
STATIC
|
|
UINT64
|
|
ArmMemoryAttributeToPageAttribute (
|
|
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
|
|
)
|
|
{
|
|
UINT64 Permissions;
|
|
|
|
switch (Attributes) {
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
|
|
Permissions = TT_AP_NO_RO;
|
|
break;
|
|
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
|
|
if (ArmReadCurrentEL () == AARCH64_EL2) {
|
|
Permissions = TT_XN_MASK;
|
|
} else {
|
|
Permissions = TT_UXN_MASK | TT_PXN_MASK;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
Permissions = 0;
|
|
break;
|
|
}
|
|
|
|
switch (Attributes) {
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
|
|
return TT_ATTR_INDX_MEMORY_WRITE_BACK;
|
|
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
|
|
return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE | Permissions;
|
|
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
|
|
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
|
|
|
|
// Uncached and device mappings are treated as outer shareable by default,
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
|
|
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
|
|
|
|
default:
|
|
ASSERT (0);
|
|
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
|
|
return TT_ATTR_INDX_DEVICE_MEMORY | Permissions;
|
|
}
|
|
}
|
|
|
|
#define MIN_T0SZ 16
|
|
#define BITS_PER_LEVEL 9
|
|
#define MAX_VA_BITS 48
|
|
|
|
STATIC
|
|
UINTN
|
|
GetRootTableEntryCount (
|
|
IN UINTN T0SZ
|
|
)
|
|
{
|
|
return TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
|
|
}
|
|
|
|
STATIC
|
|
UINTN
|
|
GetRootTableLevel (
|
|
IN UINTN T0SZ
|
|
)
|
|
{
|
|
return (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
ReplaceTableEntry (
|
|
IN UINT64 *Entry,
|
|
IN UINT64 Value,
|
|
IN UINT64 RegionStart,
|
|
IN UINT64 BlockMask,
|
|
IN BOOLEAN IsLiveBlockMapping
|
|
)
|
|
{
|
|
BOOLEAN DisableMmu;
|
|
|
|
//
|
|
// Replacing a live block entry with a table entry (or vice versa) requires a
|
|
// break-before-make sequence as per the architecture. This means the mapping
|
|
// must be made invalid and cleaned from the TLBs first, and this is a bit of
|
|
// a hassle if the mapping in question covers the code that is actually doing
|
|
// the mapping and the unmapping, and so we only bother with this if actually
|
|
// necessary.
|
|
//
|
|
|
|
if (!IsLiveBlockMapping || !ArmMmuEnabled ()) {
|
|
// If the mapping is not a live block mapping, or the MMU is not on yet, we
|
|
// can simply overwrite the entry.
|
|
*Entry = Value;
|
|
ArmUpdateTranslationTableEntry (Entry, (VOID *)(UINTN)RegionStart);
|
|
} else {
|
|
// If the mapping in question does not cover the code that updates the
|
|
// entry in memory, or the entry that we are intending to update, we can
|
|
// use an ordinary break before make. Otherwise, we will need to
|
|
// temporarily disable the MMU.
|
|
DisableMmu = FALSE;
|
|
if ((((RegionStart ^ (UINTN)mReplaceLiveEntryFunc) & ~BlockMask) == 0) ||
|
|
(((RegionStart ^ (UINTN)Entry) & ~BlockMask) == 0))
|
|
{
|
|
DisableMmu = TRUE;
|
|
DEBUG ((DEBUG_WARN, "%a: splitting block entry with MMU disabled\n", __func__));
|
|
}
|
|
|
|
mReplaceLiveEntryFunc (Entry, Value, RegionStart, DisableMmu);
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
FreePageTablesRecursive (
|
|
IN UINT64 *TranslationTable,
|
|
IN UINTN Level
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
ASSERT (Level <= 3);
|
|
|
|
if (Level < 3) {
|
|
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
|
|
if ((TranslationTable[Index] & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
|
|
FreePageTablesRecursive (
|
|
(VOID *)(UINTN)(TranslationTable[Index] &
|
|
TT_ADDRESS_MASK_BLOCK_ENTRY),
|
|
Level + 1
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
FreePages (TranslationTable, 1);
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsBlockEntry (
|
|
IN UINT64 Entry,
|
|
IN UINTN Level
|
|
)
|
|
{
|
|
if (Level == 3) {
|
|
return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3;
|
|
}
|
|
|
|
return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY;
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsTableEntry (
|
|
IN UINT64 Entry,
|
|
IN UINTN Level
|
|
)
|
|
{
|
|
if (Level == 3) {
|
|
//
|
|
// TT_TYPE_TABLE_ENTRY aliases TT_TYPE_BLOCK_ENTRY_LEVEL3
|
|
// so we need to take the level into account as well.
|
|
//
|
|
return FALSE;
|
|
}
|
|
|
|
return (Entry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY;
|
|
}
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
UpdateRegionMappingRecursive (
|
|
IN UINT64 RegionStart,
|
|
IN UINT64 RegionEnd,
|
|
IN UINT64 AttributeSetMask,
|
|
IN UINT64 AttributeClearMask,
|
|
IN UINT64 *PageTable,
|
|
IN UINTN Level,
|
|
IN BOOLEAN TableIsLive
|
|
)
|
|
{
|
|
UINTN BlockShift;
|
|
UINT64 BlockMask;
|
|
UINT64 BlockEnd;
|
|
UINT64 *Entry;
|
|
UINT64 EntryValue;
|
|
VOID *TranslationTable;
|
|
EFI_STATUS Status;
|
|
BOOLEAN NextTableIsLive;
|
|
|
|
ASSERT (((RegionStart | RegionEnd) & EFI_PAGE_MASK) == 0);
|
|
|
|
BlockShift = (Level + 1) * BITS_PER_LEVEL + MIN_T0SZ;
|
|
BlockMask = MAX_UINT64 >> BlockShift;
|
|
|
|
DEBUG ((
|
|
DEBUG_VERBOSE,
|
|
"%a(%d): %llx - %llx set %lx clr %lx\n",
|
|
__func__,
|
|
Level,
|
|
RegionStart,
|
|
RegionEnd,
|
|
AttributeSetMask,
|
|
AttributeClearMask
|
|
));
|
|
|
|
for ( ; RegionStart < RegionEnd; RegionStart = BlockEnd) {
|
|
BlockEnd = MIN (RegionEnd, (RegionStart | BlockMask) + 1);
|
|
Entry = &PageTable[(RegionStart >> (64 - BlockShift)) & (TT_ENTRY_COUNT - 1)];
|
|
|
|
//
|
|
// If RegionStart or BlockEnd is not aligned to the block size at this
|
|
// level, we will have to create a table mapping in order to map less
|
|
// than a block, and recurse to create the block or page entries at
|
|
// the next level. No block mappings are allowed at all at level 0,
|
|
// so in that case, we have to recurse unconditionally.
|
|
//
|
|
// One special case to take into account is any region that covers the page
|
|
// table itself: if we'd cover such a region with block mappings, we are
|
|
// more likely to end up in the situation later where we need to disable
|
|
// the MMU in order to update page table entries safely, so prefer page
|
|
// mappings in that particular case.
|
|
//
|
|
if ((Level == 0) || (((RegionStart | BlockEnd) & BlockMask) != 0) ||
|
|
((Level < 3) && (((UINT64)PageTable & ~BlockMask) == RegionStart)) ||
|
|
IsTableEntry (*Entry, Level))
|
|
{
|
|
ASSERT (Level < 3);
|
|
|
|
if (!IsTableEntry (*Entry, Level)) {
|
|
//
|
|
// If the region we are trying to map is already covered by a block
|
|
// entry with the right attributes, don't bother splitting it up.
|
|
//
|
|
if (IsBlockEntry (*Entry, Level) &&
|
|
((*Entry & TT_ATTRIBUTES_MASK & ~AttributeClearMask) == AttributeSetMask))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// No table entry exists yet, so we need to allocate a page table
|
|
// for the next level.
|
|
//
|
|
TranslationTable = AllocatePages (1);
|
|
if (TranslationTable == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (!ArmMmuEnabled ()) {
|
|
//
|
|
// Make sure we are not inadvertently hitting in the caches
|
|
// when populating the page tables.
|
|
//
|
|
InvalidateDataCacheRange (TranslationTable, EFI_PAGE_SIZE);
|
|
}
|
|
|
|
ZeroMem (TranslationTable, EFI_PAGE_SIZE);
|
|
|
|
if (IsBlockEntry (*Entry, Level)) {
|
|
//
|
|
// We are splitting an existing block entry, so we have to populate
|
|
// the new table with the attributes of the block entry it replaces.
|
|
//
|
|
Status = UpdateRegionMappingRecursive (
|
|
RegionStart & ~BlockMask,
|
|
(RegionStart | BlockMask) + 1,
|
|
*Entry & TT_ATTRIBUTES_MASK,
|
|
0,
|
|
TranslationTable,
|
|
Level + 1,
|
|
FALSE
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// The range we passed to UpdateRegionMappingRecursive () is block
|
|
// aligned, so it is guaranteed that no further pages were allocated
|
|
// by it, and so we only have to free the page we allocated here.
|
|
//
|
|
FreePages (TranslationTable, 1);
|
|
return Status;
|
|
}
|
|
}
|
|
|
|
NextTableIsLive = FALSE;
|
|
} else {
|
|
TranslationTable = (VOID *)(UINTN)(*Entry & TT_ADDRESS_MASK_BLOCK_ENTRY);
|
|
NextTableIsLive = TableIsLive;
|
|
}
|
|
|
|
//
|
|
// Recurse to the next level
|
|
//
|
|
Status = UpdateRegionMappingRecursive (
|
|
RegionStart,
|
|
BlockEnd,
|
|
AttributeSetMask,
|
|
AttributeClearMask,
|
|
TranslationTable,
|
|
Level + 1,
|
|
NextTableIsLive
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
if (!IsTableEntry (*Entry, Level)) {
|
|
//
|
|
// We are creating a new table entry, so on failure, we can free all
|
|
// allocations we made recursively, given that the whole subhierarchy
|
|
// has not been wired into the live page tables yet. (This is not
|
|
// possible for existing table entries, since we cannot revert the
|
|
// modifications we made to the subhierarchy it represents.)
|
|
//
|
|
FreePageTablesRecursive (TranslationTable, Level + 1);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
if (!IsTableEntry (*Entry, Level)) {
|
|
EntryValue = (UINTN)TranslationTable | TT_TYPE_TABLE_ENTRY;
|
|
ReplaceTableEntry (
|
|
Entry,
|
|
EntryValue,
|
|
RegionStart,
|
|
BlockMask,
|
|
TableIsLive && IsBlockEntry (*Entry, Level)
|
|
);
|
|
}
|
|
} else {
|
|
EntryValue = (*Entry & AttributeClearMask) | AttributeSetMask;
|
|
EntryValue |= RegionStart;
|
|
EntryValue |= (Level == 3) ? TT_TYPE_BLOCK_ENTRY_LEVEL3
|
|
: TT_TYPE_BLOCK_ENTRY;
|
|
|
|
ReplaceTableEntry (Entry, EntryValue, RegionStart, BlockMask, FALSE);
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
UpdateRegionMapping (
|
|
IN UINT64 RegionStart,
|
|
IN UINT64 RegionLength,
|
|
IN UINT64 AttributeSetMask,
|
|
IN UINT64 AttributeClearMask,
|
|
IN UINT64 *RootTable,
|
|
IN BOOLEAN TableIsLive
|
|
)
|
|
{
|
|
UINTN T0SZ;
|
|
|
|
if (((RegionStart | RegionLength) & EFI_PAGE_MASK) != 0) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
|
|
|
|
return UpdateRegionMappingRecursive (
|
|
RegionStart,
|
|
RegionStart + RegionLength,
|
|
AttributeSetMask,
|
|
AttributeClearMask,
|
|
RootTable,
|
|
GetRootTableLevel (T0SZ),
|
|
TableIsLive
|
|
);
|
|
}
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
FillTranslationTable (
|
|
IN UINT64 *RootTable,
|
|
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
|
|
)
|
|
{
|
|
return UpdateRegionMapping (
|
|
MemoryRegion->VirtualBase,
|
|
MemoryRegion->Length,
|
|
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
|
|
0,
|
|
RootTable,
|
|
FALSE
|
|
);
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
GcdAttributeToPageAttribute (
|
|
IN UINT64 GcdAttributes
|
|
)
|
|
{
|
|
UINT64 PageAttributes;
|
|
|
|
switch (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) {
|
|
case EFI_MEMORY_UC:
|
|
PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
|
|
break;
|
|
case EFI_MEMORY_WC:
|
|
PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
|
|
break;
|
|
case EFI_MEMORY_WT:
|
|
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
|
|
break;
|
|
case EFI_MEMORY_WB:
|
|
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
|
|
break;
|
|
default:
|
|
PageAttributes = TT_ATTR_INDX_MASK;
|
|
break;
|
|
}
|
|
|
|
if (((GcdAttributes & EFI_MEMORY_XP) != 0) ||
|
|
((GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC))
|
|
{
|
|
if (ArmReadCurrentEL () == AARCH64_EL2) {
|
|
PageAttributes |= TT_XN_MASK;
|
|
} else {
|
|
PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
|
|
}
|
|
}
|
|
|
|
if ((GcdAttributes & EFI_MEMORY_RO) != 0) {
|
|
PageAttributes |= TT_AP_NO_RO;
|
|
}
|
|
|
|
if ((GcdAttributes & EFI_MEMORY_RP) == 0) {
|
|
PageAttributes |= TT_AF;
|
|
}
|
|
|
|
return PageAttributes;
|
|
}
|
|
|
|
/**
|
|
Set the requested memory permission attributes on a region of memory.
|
|
|
|
BaseAddress and Length must be aligned to EFI_PAGE_SIZE.
|
|
|
|
If Attributes contains a memory type attribute (EFI_MEMORY_UC/WC/WT/WB), the
|
|
region is mapped according to this memory type, and additional memory
|
|
permission attributes (EFI_MEMORY_RP/RO/XP) are taken into account as well,
|
|
discarding any permission attributes that are currently set for the region.
|
|
AttributeMask is ignored in this case, and must be set to 0x0.
|
|
|
|
If Attributes contains only a combination of memory permission attributes
|
|
(EFI_MEMORY_RP/RO/XP), each page in the region will retain its existing
|
|
memory type, even if it is not uniformly set across the region. In this case,
|
|
AttributesMask may be set to a mask of permission attributes, and memory
|
|
permissions omitted from this mask will not be updated for any page in the
|
|
region. All attributes appearing in Attributes must appear in AttributeMask
|
|
as well. (Attributes & ~AttributeMask must produce 0x0)
|
|
|
|
@param[in] BaseAddress The physical address that is the start address of
|
|
a memory region.
|
|
@param[in] Length The size in bytes of the memory region.
|
|
@param[in] Attributes Mask of memory attributes to set.
|
|
@param[in] AttributeMask Mask of memory attributes to take into account.
|
|
|
|
@retval EFI_SUCCESS The attributes were set for the memory region.
|
|
@retval EFI_INVALID_PARAMETER BaseAddress or Length is not suitably aligned.
|
|
Invalid combination of Attributes and
|
|
AttributeMask.
|
|
@retval EFI_OUT_OF_RESOURCES Requested attributes cannot be applied due to
|
|
lack of system resources.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ArmSetMemoryAttributes (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN UINT64 AttributeMask
|
|
)
|
|
{
|
|
UINT64 PageAttributes;
|
|
UINT64 PageAttributeMask;
|
|
|
|
PageAttributes = GcdAttributeToPageAttribute (Attributes);
|
|
PageAttributeMask = 0;
|
|
|
|
if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
|
|
//
|
|
// No memory type was set in Attributes, so we are going to update the
|
|
// permissions only.
|
|
//
|
|
PageAttributes &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK | TT_AF;
|
|
PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
|
|
TT_PXN_MASK | TT_XN_MASK | TT_AF);
|
|
if (AttributeMask != 0) {
|
|
if (((AttributeMask & ~(UINT64)(EFI_MEMORY_RP|EFI_MEMORY_RO|EFI_MEMORY_XP)) != 0) ||
|
|
((Attributes & ~AttributeMask) != 0))
|
|
{
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Add attributes omitted from AttributeMask to the set of attributes to preserve
|
|
PageAttributeMask |= GcdAttributeToPageAttribute (~AttributeMask) &
|
|
(TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK | TT_AF);
|
|
}
|
|
} else {
|
|
ASSERT (AttributeMask == 0);
|
|
if (AttributeMask != 0) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
return UpdateRegionMapping (
|
|
BaseAddress,
|
|
Length,
|
|
PageAttributes,
|
|
PageAttributeMask,
|
|
ArmGetTTBR0BaseAddress (),
|
|
TRUE
|
|
);
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
ArmConfigureMmu (
|
|
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
|
|
OUT VOID **TranslationTableBase OPTIONAL,
|
|
OUT UINTN *TranslationTableSize OPTIONAL
|
|
)
|
|
{
|
|
VOID *TranslationTable;
|
|
UINTN MaxAddressBits;
|
|
UINT64 MaxAddress;
|
|
UINTN T0SZ;
|
|
UINTN RootTableEntryCount;
|
|
UINT64 TCR;
|
|
EFI_STATUS Status;
|
|
|
|
if (MemoryTable == NULL) {
|
|
ASSERT (MemoryTable != NULL);
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Limit the virtual address space to what we can actually use: UEFI
|
|
// mandates a 1:1 mapping, so no point in making the virtual address
|
|
// space larger than the physical address space. We also have to take
|
|
// into account the architectural limitations that result from UEFI's
|
|
// use of 4 KB pages.
|
|
//
|
|
MaxAddressBits = MIN (ArmGetPhysicalAddressBits (), MAX_VA_BITS);
|
|
MaxAddress = LShiftU64 (1ULL, MaxAddressBits) - 1;
|
|
|
|
T0SZ = 64 - MaxAddressBits;
|
|
RootTableEntryCount = GetRootTableEntryCount (T0SZ);
|
|
|
|
//
|
|
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
|
|
//
|
|
// Ideally we will be running at EL2, but should support EL1 as well.
|
|
// UEFI should not run at EL3.
|
|
if (ArmReadCurrentEL () == AARCH64_EL2) {
|
|
// Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
|
|
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
|
|
|
|
// Set the Physical Address Size using MaxAddress
|
|
if (MaxAddress < SIZE_4GB) {
|
|
TCR |= TCR_PS_4GB;
|
|
} else if (MaxAddress < SIZE_64GB) {
|
|
TCR |= TCR_PS_64GB;
|
|
} else if (MaxAddress < SIZE_1TB) {
|
|
TCR |= TCR_PS_1TB;
|
|
} else if (MaxAddress < SIZE_4TB) {
|
|
TCR |= TCR_PS_4TB;
|
|
} else if (MaxAddress < SIZE_16TB) {
|
|
TCR |= TCR_PS_16TB;
|
|
} else if (MaxAddress < SIZE_256TB) {
|
|
TCR |= TCR_PS_256TB;
|
|
} else {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
|
|
MaxAddress
|
|
));
|
|
ASSERT (0); // Bigger than 48-bit memory space are not supported
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
|
|
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
|
|
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
|
|
|
|
// Set the Physical Address Size using MaxAddress
|
|
if (MaxAddress < SIZE_4GB) {
|
|
TCR |= TCR_IPS_4GB;
|
|
} else if (MaxAddress < SIZE_64GB) {
|
|
TCR |= TCR_IPS_64GB;
|
|
} else if (MaxAddress < SIZE_1TB) {
|
|
TCR |= TCR_IPS_1TB;
|
|
} else if (MaxAddress < SIZE_4TB) {
|
|
TCR |= TCR_IPS_4TB;
|
|
} else if (MaxAddress < SIZE_16TB) {
|
|
TCR |= TCR_IPS_16TB;
|
|
} else if (MaxAddress < SIZE_256TB) {
|
|
TCR |= TCR_IPS_256TB;
|
|
} else {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
|
|
MaxAddress
|
|
));
|
|
ASSERT (0); // Bigger than 48-bit memory space are not supported
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
} else {
|
|
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// Translation table walks are always cache coherent on ARMv8-A, so cache
|
|
// maintenance on page tables is never needed. Since there is a risk of
|
|
// loss of coherency when using mismatched attributes, and given that memory
|
|
// is mapped cacheable except for extraordinary cases (such as non-coherent
|
|
// DMA), have the page table walker perform cached accesses as well, and
|
|
// assert below that matches the attributes we use for CPU accesses to
|
|
// the region.
|
|
//
|
|
TCR |= TCR_SH_INNER_SHAREABLE |
|
|
TCR_RGN_OUTER_WRITE_BACK_ALLOC |
|
|
TCR_RGN_INNER_WRITE_BACK_ALLOC;
|
|
|
|
// Set TCR
|
|
ArmSetTCR (TCR);
|
|
|
|
// Allocate pages for translation table
|
|
TranslationTable = AllocatePages (1);
|
|
if (TranslationTable == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (TranslationTableBase != NULL) {
|
|
*TranslationTableBase = TranslationTable;
|
|
}
|
|
|
|
if (TranslationTableSize != NULL) {
|
|
*TranslationTableSize = RootTableEntryCount * sizeof (UINT64);
|
|
}
|
|
|
|
if (!ArmMmuEnabled ()) {
|
|
//
|
|
// Make sure we are not inadvertently hitting in the caches
|
|
// when populating the page tables.
|
|
//
|
|
InvalidateDataCacheRange (
|
|
TranslationTable,
|
|
RootTableEntryCount * sizeof (UINT64)
|
|
);
|
|
}
|
|
|
|
ZeroMem (TranslationTable, RootTableEntryCount * sizeof (UINT64));
|
|
|
|
while (MemoryTable->Length != 0) {
|
|
Status = FillTranslationTable (TranslationTable, MemoryTable);
|
|
if (EFI_ERROR (Status)) {
|
|
goto FreeTranslationTable;
|
|
}
|
|
|
|
MemoryTable++;
|
|
}
|
|
|
|
//
|
|
// EFI_MEMORY_UC ==> MAIR_ATTR_DEVICE_MEMORY
|
|
// EFI_MEMORY_WC ==> MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE
|
|
// EFI_MEMORY_WT ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH
|
|
// EFI_MEMORY_WB ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK
|
|
//
|
|
ArmSetMAIR (
|
|
MAIR_ATTR (TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) |
|
|
MAIR_ATTR (TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) |
|
|
MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) |
|
|
MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)
|
|
);
|
|
|
|
ArmSetTTBR0 (TranslationTable);
|
|
|
|
if (!ArmMmuEnabled ()) {
|
|
ArmDisableAlignmentCheck ();
|
|
ArmEnableStackAlignmentCheck ();
|
|
ArmEnableInstructionCache ();
|
|
ArmEnableDataCache ();
|
|
|
|
ArmEnableMmu ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
FreeTranslationTable:
|
|
FreePages (TranslationTable, 1);
|
|
return Status;
|
|
}
|
|
|
|
RETURN_STATUS
|
|
EFIAPI
|
|
ArmMmuBaseLibConstructor (
|
|
VOID
|
|
)
|
|
{
|
|
extern UINT32 ArmReplaceLiveTranslationEntrySize;
|
|
VOID *Hob;
|
|
|
|
Hob = GetFirstGuidHob (&gArmMmuReplaceLiveTranslationEntryFuncGuid);
|
|
if (Hob != NULL) {
|
|
mReplaceLiveEntryFunc = *(ARM_REPLACE_LIVE_TRANSLATION_ENTRY *)GET_GUID_HOB_DATA (Hob);
|
|
} else {
|
|
//
|
|
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
|
|
// with the MMU off so we have to ensure that it gets cleaned to the PoC
|
|
//
|
|
WriteBackDataCacheRange (
|
|
(VOID *)(UINTN)ArmReplaceLiveTranslationEntry,
|
|
ArmReplaceLiveTranslationEntrySize
|
|
);
|
|
}
|
|
|
|
return RETURN_SUCCESS;
|
|
}
|