audk/IntelFrameworkModulePkg/Bus/Isa/IsaIoDxe/IsaIo.c

1805 lines
58 KiB
C

/** @file
The implementation for EFI_ISA_IO_PROTOCOL.
Copyright (c) 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "IsaIo.h"
//
// Module Variables
//
EFI_ISA_IO_PROTOCOL mIsaIoInterface = {
{
IsaIoMemRead,
IsaIoMemWrite
},
{
IsaIoIoRead,
IsaIoIoWrite
},
IsaIoCopyMem,
IsaIoMap,
IsaIoUnmap,
IsaIoAllocateBuffer,
IsaIoFreeBuffer,
IsaIoFlush,
NULL,
0,
NULL
};
EFI_ISA_DMA_REGISTERS mDmaRegisters[8] = {
{
0x00,
0x87,
0x01
},
{
0x02,
0x83,
0x03
},
{
0x04,
0x81,
0x05
},
{
0x06,
0x82,
0x07
},
{
0x00,
0x00,
0x00
}, // Channel 4 is invalid
{
0xC4,
0x8B,
0xC6
},
{
0xC8,
0x89,
0xCA
},
{
0xCC,
0x8A,
0xCE
},
};
/**
Verifies access to an ISA device
@param[in] IsaIoDevice The ISA device to be verified.
@param[in] Type The Access type. The input must be either IsaAccessTypeMem or IsaAccessTypeIo.
@param[in] Width The width of the memory operation.
@param[in] Count The number of memory operations to perform.
@param[in] Offset The offset in ISA memory space to start the memory operation.
@retval EFI_SUCCESS Verify success.
@retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.
@retval EFI_UNSUPPORTED The device ont support the access type.
**/
EFI_STATUS
IsaIoVerifyAccess (
IN ISA_IO_DEVICE *IsaIoDevice,
IN ISA_ACCESS_TYPE Type,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINTN Count,
IN UINT32 Offset
)
{
EFI_ISA_ACPI_RESOURCE *Item;
EFI_STATUS Status;
if (Width < EfiIsaIoWidthUint8 ||
Width >= EfiIsaIoWidthMaximum ||
Width == EfiIsaIoWidthReserved ||
Width == EfiIsaIoWidthFifoReserved ||
Width == EfiIsaIoWidthFillReserved
) {
return EFI_INVALID_PARAMETER;
}
//
// If Width is EfiIsaIoWidthFifoUintX then convert to EfiIsaIoWidthUintX
// If Width is EfiIsaIoWidthFillUintX then convert to EfiIsaIoWidthUintX
//
if (Width >= EfiIsaIoWidthFifoUint8 && Width < EfiIsaIoWidthFifoReserved) {
Count = 1;
}
Width = (EFI_ISA_IO_PROTOCOL_WIDTH) (Width & 0x03);
Status = EFI_UNSUPPORTED;
Item = IsaIoDevice->IsaIo.ResourceList->ResourceItem;
while (Item->Type != EfiIsaAcpiResourceEndOfList) {
if ((Type == IsaAccessTypeMem && Item->Type == EfiIsaAcpiResourceMemory) ||
(Type == IsaAccessTypeIo && Item->Type == EfiIsaAcpiResourceIo)) {
if (Offset >= Item->StartRange && (Offset + Count * (UINT32)(1 << Width)) - 1 <= Item->EndRange) {
return EFI_SUCCESS;
}
if (Offset >= Item->StartRange && Offset <= Item->EndRange) {
Status = EFI_INVALID_PARAMETER;
}
}
Item++;
}
return Status;
}
/**
Convert the IO Information in ACPI descriptor to IO ISA Attribute.
@param[in] Information The IO Information in ACPI descriptor
@return UINT32 The IO ISA Attribute
**/
UINT32
IsaIoAttribute (
IN UINT8 Information
)
{
UINT32 Attribute;
Attribute = 0;
switch (Information & EFI_ACPI_IO_DECODE_MASK) {
case EFI_ACPI_IO_DECODE_16_BIT:
Attribute |= EFI_ISA_ACPI_IO_DECODE_16_BITS;
break;
case EFI_ACPI_IO_DECODE_10_BIT:
Attribute |= EFI_ISA_ACPI_IO_DECODE_10_BITS;
break;
}
return Attribute;
}
/**
Convert the IRQ Information in ACPI descriptor to IRQ ISA Attribute.
@param[in] Information The IRQ Information in ACPI descriptor
@return UINT32 The IRQ ISA Attribute
**/
UINT32
IsaIrqAttribute (
IN UINT8 Information
)
{
UINT32 Attribute;
Attribute = 0;
if ((Information & EFI_ACPI_IRQ_POLARITY_MASK) == EFI_ACPI_IRQ_HIGH_TRUE) {
if ((Information & EFI_ACPI_IRQ_MODE) == EFI_ACPI_IRQ_LEVEL_TRIGGERED) {
Attribute = EFI_ISA_ACPI_IRQ_TYPE_HIGH_TRUE_LEVEL_SENSITIVE;
} else {
Attribute = EFI_ISA_ACPI_IRQ_TYPE_HIGH_TRUE_EDGE_SENSITIVE;
}
} else {
if ((Information & EFI_ACPI_IRQ_MODE) == EFI_ACPI_IRQ_LEVEL_TRIGGERED) {
Attribute = EFI_ISA_ACPI_IRQ_TYPE_LOW_TRUE_LEVEL_SENSITIVE;
} else {
Attribute = EFI_ISA_ACPI_IRQ_TYPE_LOW_TRUE_EDGE_SENSITIVE;
}
}
return Attribute;
}
/**
Convert the Memory Information in ACPI descriptor to Memory ISA Attribute.
@param[in] Information The Memory Information in ACPI descriptor
@return UINT32 The Memory ISA Attribute
**/
UINT32
IsaMemoryAttribute (
IN UINT8 Information
)
{
UINT32 Attribute;
Attribute = 0;
switch (Information & EFI_ACPI_MEMORY_WRITE_STATUS_MASK) {
case EFI_ACPI_MEMORY_WRITABLE:
Attribute |= EFI_ISA_ACPI_MEMORY_WRITEABLE;
break;
}
return Attribute;
}
/**
Convert the DMA Information in ACPI descriptor to DMA ISA Attribute.
@param[in] Information The DMA Information in ACPI descriptor
@return UINT32 The DMA ISA Attribute
**/
UINT32
IsaDmaAttribute (
IN UINT8 Information
)
{
UINT32 Attribute;
Attribute = EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SINGLE_MODE;
switch (Information & EFI_ACPI_DMA_SPEED_TYPE_MASK) {
case EFI_ACPI_DMA_SPEED_TYPE_COMPATIBILITY:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_COMPATIBLE;
break;
case EFI_ACPI_DMA_SPEED_TYPE_A:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_A;
break;
case EFI_ACPI_DMA_SPEED_TYPE_B:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_B;
break;
case EFI_ACPI_DMA_SPEED_TYPE_F:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_C;
break;
}
switch (Information & EFI_ACPI_DMA_TRANSFER_TYPE_MASK) {
case EFI_ACPI_DMA_TRANSFER_TYPE_8_BIT:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_8;
break;
case EFI_ACPI_DMA_TRANSFER_TYPE_16_BIT:
Attribute |= EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_16;
break;
}
return Attribute;
}
/**
Convert the ACPI resource descriptor to ISA resource descriptor.
@param[in] AcpiResource Pointer to the ACPI resource descriptor
@param[out] IsaResource The optional pointer to the buffer to
store the converted ISA resource descriptor
@return UINTN Number of ISA resource descriptor needed
**/
UINTN
AcpiResourceToIsaResource (
IN ACPI_RESOURCE_HEADER_PTR AcpiResource,
OUT EFI_ISA_ACPI_RESOURCE *IsaResource OPTIONAL
)
{
UINT32 Index;
UINTN Count;
UINT32 LastIndex;
EFI_ACPI_IO_PORT_DESCRIPTOR *Io;
EFI_ACPI_FIXED_LOCATION_IO_PORT_DESCRIPTOR *FixedIo;
EFI_ACPI_IRQ_DESCRIPTOR *Irq;
EFI_ACPI_DMA_DESCRIPTOR *Dma;
EFI_ACPI_32_BIT_MEMORY_RANGE_DESCRIPTOR *Memory;
EFI_ACPI_32_BIT_FIXED_MEMORY_RANGE_DESCRIPTOR *FixedMemory;
Count = 0;
LastIndex = 0;
switch (AcpiResource.SmallHeader->Byte) {
case ACPI_DMA_DESCRIPTOR:
Dma = (EFI_ACPI_DMA_DESCRIPTOR *) AcpiResource.SmallHeader;
for (Index = 0; Index < sizeof (Dma->ChannelMask) * 8; Index++) {
if (Dma->ChannelMask & (1 << Index)) {
if ((Count > 0) && (LastIndex + 1 == Index)) {
if (IsaResource != NULL) {
IsaResource[Count - 1].EndRange ++;
}
} else {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceDma;
IsaResource[Count].Attribute = IsaDmaAttribute (Dma->Information);
IsaResource[Count].StartRange = Index;
IsaResource[Count].EndRange = Index;
}
Count ++;
}
LastIndex = Index;
}
}
break;
case ACPI_IO_PORT_DESCRIPTOR:
Io = (EFI_ACPI_IO_PORT_DESCRIPTOR *) AcpiResource.SmallHeader;
if (Io->Length != 0) {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceIo;
IsaResource[Count].Attribute = IsaIoAttribute (Io->Information);
IsaResource[Count].StartRange = Io->BaseAddressMin;
IsaResource[Count].EndRange = Io->BaseAddressMin + Io->Length - 1;
}
Count ++;
}
break;
case ACPI_FIXED_LOCATION_IO_PORT_DESCRIPTOR:
FixedIo = (EFI_ACPI_FIXED_LOCATION_IO_PORT_DESCRIPTOR *) AcpiResource.SmallHeader;
if (FixedIo->Length != 0) {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceIo;
IsaResource[Count].Attribute = EFI_ISA_ACPI_IO_DECODE_10_BITS;
IsaResource[Count].StartRange = FixedIo->BaseAddress;
IsaResource[Count].EndRange = FixedIo->BaseAddress + FixedIo->Length - 1;
}
Count ++;
}
break;
case ACPI_IRQ_DESCRIPTOR:
case ACPI_IRQ_NOFLAG_DESCRIPTOR:
Irq = (EFI_ACPI_IRQ_DESCRIPTOR *) AcpiResource.SmallHeader;
for (Index = 0; Index < sizeof (Irq->Mask) * 8; Index++) {
if (Irq->Mask & (1 << Index)) {
if ((Count > 0) && (LastIndex + 1 == Index)) {
if (IsaResource != NULL) {
IsaResource[Count - 1].EndRange ++;
}
} else {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceInterrupt;
if (AcpiResource.SmallHeader->Byte == ACPI_IRQ_DESCRIPTOR) {
IsaResource[Count].Attribute = IsaIrqAttribute (Irq->Information);
} else {
IsaResource[Count].Attribute = EFI_ISA_ACPI_IRQ_TYPE_HIGH_TRUE_EDGE_SENSITIVE;
}
IsaResource[Count].StartRange = Index;
IsaResource[Count].EndRange = Index;
}
Count++;
}
LastIndex = Index;
}
}
break;
case ACPI_32_BIT_MEMORY_RANGE_DESCRIPTOR:
Memory = (EFI_ACPI_32_BIT_MEMORY_RANGE_DESCRIPTOR *) AcpiResource.LargeHeader;
if (Memory->Length != 0) {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceMemory;
IsaResource[Count].Attribute = IsaMemoryAttribute (Memory->Information);
IsaResource[Count].StartRange = Memory->BaseAddressMin;
IsaResource[Count].EndRange = Memory->BaseAddressMin + Memory->Length - 1;
}
Count ++;
}
break;
case ACPI_32_BIT_FIXED_MEMORY_RANGE_DESCRIPTOR:
FixedMemory = (EFI_ACPI_32_BIT_FIXED_MEMORY_RANGE_DESCRIPTOR *) AcpiResource.LargeHeader;
if (FixedMemory->Length != 0) {
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceMemory;
IsaResource[Count].Attribute = IsaMemoryAttribute (FixedMemory->Information);
IsaResource[Count].StartRange = FixedMemory->BaseAddress;
IsaResource[Count].EndRange = FixedMemory->BaseAddress + FixedMemory->Length - 1;
}
Count ++;
}
break;
case ACPI_END_TAG_DESCRIPTOR:
if (IsaResource != NULL) {
IsaResource[Count].Type = EfiIsaAcpiResourceEndOfList;
IsaResource[Count].Attribute = 0;
IsaResource[Count].StartRange = 0;
IsaResource[Count].EndRange = 0;
}
Count ++;
break;
}
return Count;
}
/**
Initializes an ISA I/O Instance
@param[in] IsaIoDevice The isa device to be initialized.
@param[in] DevicePath The device path of the isa device.
@param[in] Resources The ACPI resource list.
**/
VOID
InitializeIsaIoInstance (
IN ISA_IO_DEVICE *IsaIoDevice,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN ACPI_RESOURCE_HEADER_PTR Resources
)
{
UINTN Index;
ACPI_HID_DEVICE_PATH *AcpiNode;
ACPI_RESOURCE_HEADER_PTR ResourcePtr;
//
// Use the ISA IO Protocol structure template to initialize the ISA IO instance
//
CopyMem (
&IsaIoDevice->IsaIo,
&mIsaIoInterface,
sizeof (EFI_ISA_IO_PROTOCOL)
);
//
// Count the resources including the ACPI End Tag
//
ResourcePtr = Resources;
Index = 0;
while (ResourcePtr.SmallHeader->Byte != ACPI_END_TAG_DESCRIPTOR) {
Index += AcpiResourceToIsaResource (ResourcePtr, NULL);
if (ResourcePtr.SmallHeader->Bits.Type == 0) {
ResourcePtr.SmallHeader = (ACPI_SMALL_RESOURCE_HEADER *) ((UINT8 *) ResourcePtr.SmallHeader
+ ResourcePtr.SmallHeader->Bits.Length
+ sizeof (*ResourcePtr.SmallHeader));
} else {
ResourcePtr.LargeHeader = (ACPI_LARGE_RESOURCE_HEADER *) ((UINT8 *) ResourcePtr.LargeHeader
+ ResourcePtr.LargeHeader->Length
+ sizeof (*ResourcePtr.LargeHeader));
}
}
//
// Get the Isa Resource count for ACPI End Tag
//
Index += AcpiResourceToIsaResource (ResourcePtr, NULL);
//
// Initialize the ResourceList
//
IsaIoDevice->IsaIo.ResourceList = AllocatePool (sizeof (EFI_ISA_ACPI_RESOURCE_LIST) + Index * sizeof (EFI_ISA_ACPI_RESOURCE));
ASSERT (IsaIoDevice->IsaIo.ResourceList != NULL);
IsaIoDevice->IsaIo.ResourceList->ResourceItem = (EFI_ISA_ACPI_RESOURCE *) (IsaIoDevice->IsaIo.ResourceList + 1);
AcpiNode = (ACPI_HID_DEVICE_PATH *) ((UINT8 *) DevicePath + GetDevicePathSize (DevicePath) - END_DEVICE_PATH_LENGTH - sizeof (ACPI_HID_DEVICE_PATH));
IsaIoDevice->IsaIo.ResourceList->Device.HID = AcpiNode->HID;
IsaIoDevice->IsaIo.ResourceList->Device.UID = AcpiNode->UID;
ResourcePtr = Resources;
Index = 0;
while (ResourcePtr.SmallHeader->Byte != ACPI_END_TAG_DESCRIPTOR) {
Index += AcpiResourceToIsaResource (ResourcePtr, &IsaIoDevice->IsaIo.ResourceList->ResourceItem[Index]);
if (ResourcePtr.SmallHeader->Bits.Type == 0) {
ResourcePtr.SmallHeader = (ACPI_SMALL_RESOURCE_HEADER *) ((UINT8 *) ResourcePtr.SmallHeader
+ ResourcePtr.SmallHeader->Bits.Length
+ sizeof (*ResourcePtr.SmallHeader));
} else {
ResourcePtr.LargeHeader = (ACPI_LARGE_RESOURCE_HEADER *) ((UINT8 *) ResourcePtr.LargeHeader
+ ResourcePtr.LargeHeader->Length
+ sizeof (*ResourcePtr.LargeHeader));
}
}
//
// Convert the ACPI End Tag
//
AcpiResourceToIsaResource (ResourcePtr, &IsaIoDevice->IsaIo.ResourceList->ResourceItem[Index]);
}
/**
Performs an ISA I/O Read Cycle
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Width Specifies the width of the I/O operation.
@param[in] Offset The offset in ISA I/O space to start the I/O operation.
@param[in] Count The number of I/O operations to perform.
@param[out] Buffer The destination buffer to store the results
@retval EFI_SUCCESS The data was read from the device sucessfully.
@retval EFI_UNSUPPORTED The Offset is not valid for this device.
@retval EFI_INVALID_PARAMETER Width or Count, or both, were invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
IsaIoIoRead (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
//
// Verify Isa IO Access
//
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeIo,
Width,
Count,
Offset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoDevice->PciIo->Io.Read (
IsaIoDevice->PciIo,
(EFI_PCI_IO_PROTOCOL_WIDTH) Width,
EFI_PCI_IO_PASS_THROUGH_BAR,
Offset,
Count,
Buffer
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Performs an ISA I/O Write Cycle
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Width Specifies the width of the I/O operation.
@param[in] Offset The offset in ISA I/O space to start the I/O operation.
@param[in] Count The number of I/O operations to perform.
@param[in] Buffer The source buffer to write data from
@retval EFI_SUCCESS The data was writen to the device sucessfully.
@retval EFI_UNSUPPORTED The Offset is not valid for this device.
@retval EFI_INVALID_PARAMETER Width or Count, or both, were invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
IsaIoIoWrite (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
IN VOID *Buffer
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
//
// Verify Isa IO Access
//
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeIo,
Width,
Count,
Offset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoDevice->PciIo->Io.Write (
IsaIoDevice->PciIo,
(EFI_PCI_IO_PROTOCOL_WIDTH) Width,
EFI_PCI_IO_PASS_THROUGH_BAR,
Offset,
Count,
Buffer
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Writes an 8-bit I/O Port
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Offset The offset in ISA IO space to start the IO operation.
@param[in] Value The data to write port.
@retval EFI_SUCCESS Success.
@retval EFI_INVALID_PARAMETER Parameter is invalid.
@retval EFI_UNSUPPORTED The address range specified by Offset is not valid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
WritePort (
IN EFI_ISA_IO_PROTOCOL *This,
IN UINT32 Offset,
IN UINT8 Value
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
Status = IsaIoDevice->PciIo->Io.Write (
IsaIoDevice->PciIo,
EfiPciIoWidthUint8,
EFI_PCI_IO_PASS_THROUGH_BAR,
Offset,
1,
&Value
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
return Status;
}
//
// Wait for 50 microseconds to take affect.
//
gBS->Stall (50);
return EFI_SUCCESS;
}
/**
Writes I/O operation base address and count number to a 8 bit I/O Port.
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] AddrOffset The address' offset.
@param[in] PageOffset The page's offest.
@param[in] CountOffset The count's offset.
@param[in] BaseAddress The base address.
@param[in] Count The number of I/O operations to perform.
@retval EFI_SUCCESS Success.
@retval EFI_INVALID_PARAMETER Parameter is invalid.
@retval EFI_UNSUPPORTED The address range specified by these Offsets and Count is not valid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
WriteDmaPort (
IN EFI_ISA_IO_PROTOCOL *This,
IN UINT32 AddrOffset,
IN UINT32 PageOffset,
IN UINT32 CountOffset,
IN UINT32 BaseAddress,
IN UINT16 Count
)
{
EFI_STATUS Status;
Status = WritePort (This, AddrOffset, (UINT8) (BaseAddress & 0xff));
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, AddrOffset, (UINT8) ((BaseAddress >> 8) & 0xff));
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, PageOffset, (UINT8) ((BaseAddress >> 16) & 0xff));
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, CountOffset, (UINT8) (Count & 0xff));
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, CountOffset, (UINT8) ((Count >> 8) & 0xff));
return Status;
}
/**
Unmaps a memory region for DMA
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Mapping The mapping value returned from EFI_ISA_IO.Map().
@retval EFI_SUCCESS The range was unmapped.
@retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
**/
EFI_STATUS
EFIAPI
IsaIoUnmap (
IN EFI_ISA_IO_PROTOCOL *This,
IN VOID *Mapping
)
{
ISA_MAP_INFO *IsaMapInfo;
//
// Check if DMA is supported.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_DMA) == 0) {
return EFI_UNSUPPORTED;
}
//
// See if the Map() operation associated with this Unmap() required a mapping
// buffer.If a mapping buffer was not required, then this function simply
// returns EFI_SUCCESS.
//
if (Mapping != NULL) {
//
// Get the MAP_INFO structure from Mapping
//
IsaMapInfo = (ISA_MAP_INFO *) Mapping;
//
// If this is a write operation from the Agent's point of view,
// then copy the contents of the mapped buffer into the real buffer
// so the processor can read the contents of the real buffer.
//
if (IsaMapInfo->Operation == EfiIsaIoOperationBusMasterWrite) {
CopyMem (
(VOID *) (UINTN) IsaMapInfo->HostAddress,
(VOID *) (UINTN) IsaMapInfo->MappedHostAddress,
IsaMapInfo->NumberOfBytes
);
}
//
// Free the mapped buffer and the MAP_INFO structure.
//
gBS->FreePages (IsaMapInfo->MappedHostAddress, IsaMapInfo->NumberOfPages);
FreePool (IsaMapInfo);
}
return EFI_SUCCESS;
}
/**
Flushes any posted write data to the system memory.
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@retval EFI_SUCCESS The buffers were flushed.
@retval EFI_DEVICE_ERROR The buffers were not flushed due to a hardware error.
**/
EFI_STATUS
EFIAPI
IsaIoFlush (
IN EFI_ISA_IO_PROTOCOL *This
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
Status = IsaIoDevice->PciIo->Flush (IsaIoDevice->PciIo);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Performs an ISA Memory Read Cycle
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Width Specifies the width of the memory operation.
@param[in] Offset The offset in ISA memory space to start the memory operation.
@param[in] Count The number of memory operations to perform.
@param[out] Buffer The destination buffer to store the results
@retval EFI_SUCCESS The data was read from the device successfully.
@retval EFI_UNSUPPORTED The Offset is not valid for this device.
@retval EFI_INVALID_PARAMETER Width or Count, or both, were invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
IsaIoMemRead (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
//
// Check if ISA memory is supported.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_ISA_MEMORY) == 0) {
return EFI_UNSUPPORTED;
}
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
//
// Verify the Isa Io Access
//
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeMem,
Width,
Count,
Offset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoDevice->PciIo->Mem.Read (
IsaIoDevice->PciIo,
(EFI_PCI_IO_PROTOCOL_WIDTH) Width,
EFI_PCI_IO_PASS_THROUGH_BAR,
Offset,
Count,
Buffer
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Performs an ISA Memory Write Cycle
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Width Specifies the width of the memory operation.
@param[in] Offset The offset in ISA memory space to start the memory operation.
@param[in] Count The number of memory operations to perform.
@param[in] Buffer The source buffer to write data from
@retval EFI_SUCCESS The data was written to the device sucessfully.
@retval EFI_UNSUPPORTED The Offset is not valid for this device.
@retval EFI_INVALID_PARAMETER Width or Count, or both, were invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
IsaIoMemWrite (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
IN VOID *Buffer
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
//
// Check if ISA memory is supported.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_ISA_MEMORY) == 0) {
return EFI_UNSUPPORTED;
}
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
//
// Verify Isa IO Access
//
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeMem,
Width,
Count,
Offset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoDevice->PciIo->Mem.Write (
IsaIoDevice->PciIo,
(EFI_PCI_IO_PROTOCOL_WIDTH) Width,
EFI_PCI_IO_PASS_THROUGH_BAR,
Offset,
Count,
Buffer
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Copy one region of ISA memory space to another region of ISA memory space on the ISA controller.
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Width Specifies the width of the memory copy operation.
@param[in] DestOffset The offset of the destination
@param[in] SrcOffset The offset of the source
@param[in] Count The number of memory copy operations to perform
@retval EFI_SUCCESS The data was copied sucessfully.
@retval EFI_UNSUPPORTED The DestOffset or SrcOffset is not valid for this device.
@retval EFI_INVALID_PARAMETER Width or Count, or both, were invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
**/
EFI_STATUS
EFIAPI
IsaIoCopyMem (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_WIDTH Width,
IN UINT32 DestOffset,
IN UINT32 SrcOffset,
IN UINTN Count
)
{
EFI_STATUS Status;
ISA_IO_DEVICE *IsaIoDevice;
//
// Check if ISA memory is supported.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_ISA_MEMORY) == 0) {
return EFI_UNSUPPORTED;
}
IsaIoDevice = ISA_IO_DEVICE_FROM_ISA_IO_THIS (This);
//
// Verify Isa IO Access for destination and source
//
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeMem,
Width,
Count,
DestOffset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoVerifyAccess (
IsaIoDevice,
IsaAccessTypeMem,
Width,
Count,
SrcOffset
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = IsaIoDevice->PciIo->CopyMem (
IsaIoDevice->PciIo,
(EFI_PCI_IO_PROTOCOL_WIDTH) Width,
EFI_PCI_IO_PASS_THROUGH_BAR,
DestOffset,
EFI_PCI_IO_PASS_THROUGH_BAR,
SrcOffset,
Count
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}
/**
Maps a memory region for DMA, note this implementation
only supports slave read/write operation to save code size.
@param This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param Operation Indicates the type of DMA (slave or bus master), and if
the DMA operation is going to read or write to system memory.
@param ChannelNumber The slave channel number to use for this DMA operation.
If Operation and ChannelAttributes shows that this device
performs bus mastering DMA, then this field is ignored.
The legal range for this field is 0..7.
@param ChannelAttributes The attributes of the DMA channel to use for this DMA operation
@param HostAddress The system memory address to map to the device.
@param NumberOfBytes On input the number of bytes to map. On output the number
of bytes that were mapped.
@param DeviceAddress The resulting map address for the bus master device to use
to access the hosts HostAddress.
@param Mapping A resulting value to pass to EFI_ISA_IO.Unmap().
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
@retval EFI_INVALID_PARAMETER The Operation or HostAddress is undefined.
@retval EFI_UNSUPPORTED The HostAddress can not be mapped as a common buffer.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
IsaIoMapOnlySupportSlaveReadWrite (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_OPERATION Operation,
IN UINT8 ChannelNumber OPTIONAL,
IN UINT32 ChannelAttributes,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
ISA_MAP_INFO *IsaMapInfo;
UINT8 DmaMode;
UINTN MaxNumberOfBytes;
UINT32 BaseAddress;
UINT16 Count;
UINT8 DmaMask;
UINT8 DmaClear;
UINT8 DmaChannelMode;
if ((NULL == This) ||
(NULL == HostAddress) ||
(NULL == NumberOfBytes) ||
(NULL == DeviceAddress) ||
(NULL == Mapping)
) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the return values to their defaults
//
*Mapping = NULL;
//
// Make sure the Operation parameter is valid.
// Light IsaIo only supports two operations.
//
if (!(Operation == EfiIsaIoOperationSlaveRead ||
Operation == EfiIsaIoOperationSlaveWrite)) {
return EFI_INVALID_PARAMETER;
}
if (ChannelNumber >= 4) {
//
// The Light IsaIo doesn't support channelNumber larger than 4.
//
return EFI_INVALID_PARAMETER;
}
//
// Map the HostAddress to a DeviceAddress.
//
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
if ((PhysicalAddress + *NumberOfBytes) > BASE_16MB) {
//
// Common Buffer operations can not be remapped. If the common buffer
// is above 16MB, then it is not possible to generate a mapping, so return
// an error.
//
if (Operation == EfiIsaIoOperationBusMasterCommonBuffer) {
return EFI_UNSUPPORTED;
}
//
// Allocate an ISA_MAP_INFO structure to remember the mapping when Unmap()
// is called later.
//
IsaMapInfo = AllocatePool (sizeof (ISA_MAP_INFO));
if (IsaMapInfo == NULL) {
*NumberOfBytes = 0;
return EFI_OUT_OF_RESOURCES;
}
//
// Return a pointer to the MAP_INFO structure in Mapping
//
*Mapping = IsaMapInfo;
//
// Initialize the MAP_INFO structure
//
IsaMapInfo->Operation = Operation;
IsaMapInfo->NumberOfBytes = *NumberOfBytes;
IsaMapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (*NumberOfBytes);
IsaMapInfo->HostAddress = PhysicalAddress;
IsaMapInfo->MappedHostAddress = BASE_16MB - 1;
//
// Allocate a buffer below 16MB to map the transfer to.
//
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesData,
IsaMapInfo->NumberOfPages,
&IsaMapInfo->MappedHostAddress
);
if (EFI_ERROR (Status)) {
FreePool (IsaMapInfo);
*NumberOfBytes = 0;
*Mapping = NULL;
return Status;
}
//
// If this is a read operation from the DMA agents's point of view,
// then copy the contents of the real buffer into the mapped buffer
// so the DMA agent can read the contents of the real buffer.
//
if (Operation == EfiIsaIoOperationSlaveRead) {
CopyMem (
(VOID *) (UINTN) IsaMapInfo->MappedHostAddress,
(VOID *) (UINTN) IsaMapInfo->HostAddress,
IsaMapInfo->NumberOfBytes
);
}
//
// The DeviceAddress is the address of the maped buffer below 16 MB
//
*DeviceAddress = IsaMapInfo->MappedHostAddress;
} else {
//
// The transfer is below 16 MB, so the DeviceAddress is simply the
// HostAddress
//
*DeviceAddress = PhysicalAddress;
}
//
// Figure out what to program into the DMA Channel Mode Register
//
DmaMode = (UINT8) (B_8237_DMA_CHMODE_INCREMENT | (ChannelNumber & 0x03));
if (Operation == EfiIsaIoOperationSlaveRead) {
DmaMode |= V_8237_DMA_CHMODE_MEM2IO;
} else {
DmaMode |= V_8237_DMA_CHMODE_IO2MEM;
}
//
// We only support EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SINGLE_MODE in simplified IsaIo
//
DmaMode |= V_8237_DMA_CHMODE_SINGLE;
//
// A Slave DMA transfer can not cross a 64K boundary.
// Compute *NumberOfBytes based on this restriction.
//
MaxNumberOfBytes = 0x10000 - ((UINT32) (*DeviceAddress) & 0xffff);
if (*NumberOfBytes > MaxNumberOfBytes) {
*NumberOfBytes = MaxNumberOfBytes;
}
//
// Compute the values to program into the BaseAddress and Count registers
// of the Slave DMA controller
//
BaseAddress = (UINT32) (*DeviceAddress);
Count = (UINT16) (*NumberOfBytes - 1);
//
// Program the DMA Write Single Mask Register for ChannelNumber
// Clear the DMA Byte Pointer Register
//
DmaMask = R_8237_DMA_WRSMSK_CH0_3;
DmaClear = R_8237_DMA_CBPR_CH0_3;
DmaChannelMode = R_8237_DMA_CHMODE_CH0_3;
Status = WritePort (
This,
DmaMask,
(UINT8) (B_8237_DMA_WRSMSK_CMS | (ChannelNumber & 0x03))
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (
This,
DmaClear,
(UINT8) (B_8237_DMA_WRSMSK_CMS | (ChannelNumber & 0x03))
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, DmaChannelMode, DmaMode);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WriteDmaPort (
This,
mDmaRegisters[ChannelNumber].Address,
mDmaRegisters[ChannelNumber].Page,
mDmaRegisters[ChannelNumber].Count,
BaseAddress,
Count
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (
This,
DmaMask,
(UINT8) (ChannelNumber & 0x03)
);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
/**
Maps a memory region for DMA. This implementation implement the
the full mapping support.
@param This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param Operation Indicates the type of DMA (slave or bus master), and if
the DMA operation is going to read or write to system memory.
@param ChannelNumber The slave channel number to use for this DMA operation.
If Operation and ChannelAttributes shows that this device
performs bus mastering DMA, then this field is ignored.
The legal range for this field is 0..7.
@param ChannelAttributes The attributes of the DMA channel to use for this DMA operation
@param HostAddress The system memory address to map to the device.
@param NumberOfBytes On input the number of bytes to map. On output the number
of bytes that were mapped.
@param DeviceAddress The resulting map address for the bus master device to use
to access the hosts HostAddress.
@param Mapping A resulting value to pass to EFI_ISA_IO.Unmap().
@retval EFI_SUCCESS - The range was mapped for the returned NumberOfBytes.
@retval EFI_INVALID_PARAMETER - The Operation or HostAddress is undefined.
@retval EFI_UNSUPPORTED - The HostAddress can not be mapped as a common buffer.
@retval EFI_DEVICE_ERROR - The system hardware could not map the requested address.
@retval EFI_OUT_OF_RESOURCES - The memory pages could not be allocated.
**/
EFI_STATUS
IsaIoMapFullSupport (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_OPERATION Operation,
IN UINT8 ChannelNumber OPTIONAL,
IN UINT32 ChannelAttributes,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
BOOLEAN Master;
BOOLEAN Read;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
ISA_MAP_INFO *IsaMapInfo;
UINT8 DmaMode;
UINTN MaxNumberOfBytes;
UINT32 BaseAddress;
UINT16 Count;
UINT8 DmaMask;
UINT8 DmaClear;
UINT8 DmaChannelMode;
if ((NULL == This) ||
(NULL == HostAddress) ||
(NULL == NumberOfBytes) ||
(NULL == DeviceAddress) ||
(NULL == Mapping)
) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the return values to their defaults
//
*Mapping = NULL;
//
// Make sure the Operation parameter is valid
//
if (Operation < 0 || Operation >= EfiIsaIoOperationMaximum) {
return EFI_INVALID_PARAMETER;
}
if (ChannelNumber >= 8) {
return EFI_INVALID_PARAMETER;
}
//
// See if this is a Slave DMA Operation
//
Master = TRUE;
Read = FALSE;
if (Operation == EfiIsaIoOperationSlaveRead) {
Operation = EfiIsaIoOperationBusMasterRead;
Master = FALSE;
Read = TRUE;
}
if (Operation == EfiIsaIoOperationSlaveWrite) {
Operation = EfiIsaIoOperationBusMasterWrite;
Master = FALSE;
Read = FALSE;
}
if (!Master) {
//
// Make sure that ChannelNumber is a valid channel number
// Channel 4 is used to cascade, so it is illegal.
//
if (ChannelNumber == 4 || ChannelNumber > 7) {
return EFI_INVALID_PARAMETER;
}
//
// This implementation only support COMPATIBLE DMA Transfers
//
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_COMPATIBLE) == 0) {
return EFI_INVALID_PARAMETER;
}
if ((ChannelAttributes &
(EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_A |
EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_B |
EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SPEED_C)) != 0) {
return EFI_INVALID_PARAMETER;
}
if (ChannelNumber < 4) {
//
// If this is Channel 0..3, then the width must be 8 bit
//
if (((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_8) == 0) ||
((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_16) != 0)
) {
return EFI_INVALID_PARAMETER;
}
} else {
//
// If this is Channel 4..7, then the width must be 16 bit
//
if (((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_8) != 0) ||
((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_WIDTH_16) == 0)) {
return EFI_INVALID_PARAMETER;
}
}
//
// Either Demand Mode or Single Mode must be selected, but not both
//
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SINGLE_MODE) != 0) {
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_DEMAND_MODE) != 0) {
return EFI_INVALID_PARAMETER;
}
} else {
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_DEMAND_MODE) == 0) {
return EFI_INVALID_PARAMETER;
}
}
}
//
// Map the HostAddress to a DeviceAddress.
//
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
if ((PhysicalAddress +*NumberOfBytes) > BASE_16MB) {
//
// Common Buffer operations can not be remapped. If the common buffer
// is above 16MB, then it is not possible to generate a mapping, so return
// an error.
//
if (Operation == EfiIsaIoOperationBusMasterCommonBuffer) {
return EFI_UNSUPPORTED;
}
//
// Allocate an ISA_MAP_INFO structure to remember the mapping when Unmap()
// is called later.
//
IsaMapInfo = AllocatePool (sizeof (ISA_MAP_INFO));
if (IsaMapInfo == NULL) {
*NumberOfBytes = 0;
return EFI_OUT_OF_RESOURCES;
}
//
// Return a pointer to the MAP_INFO structure in Mapping
//
*Mapping = IsaMapInfo;
//
// Initialize the MAP_INFO structure
//
IsaMapInfo->Operation = Operation;
IsaMapInfo->NumberOfBytes = *NumberOfBytes;
IsaMapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (*NumberOfBytes);
IsaMapInfo->HostAddress = PhysicalAddress;
IsaMapInfo->MappedHostAddress = BASE_16MB - 1;
//
// Allocate a buffer below 16MB to map the transfer to.
//
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesData,
IsaMapInfo->NumberOfPages,
&IsaMapInfo->MappedHostAddress
);
if (EFI_ERROR (Status)) {
FreePool (IsaMapInfo);
*NumberOfBytes = 0;
*Mapping = NULL;
return Status;
}
//
// If this is a read operation from the DMA agents's point of view,
// then copy the contents of the real buffer into the mapped buffer
// so the DMA agent can read the contents of the real buffer.
//
if (Operation == EfiIsaIoOperationBusMasterRead) {
CopyMem (
(VOID *) (UINTN) IsaMapInfo->MappedHostAddress,
(VOID *) (UINTN) IsaMapInfo->HostAddress,
IsaMapInfo->NumberOfBytes
);
}
//
// The DeviceAddress is the address of the maped buffer below 16 MB
//
*DeviceAddress = IsaMapInfo->MappedHostAddress;
} else {
//
// The transfer is below 16 MB, so the DeviceAddress is simply the
// HostAddress
//
*DeviceAddress = PhysicalAddress;
}
//
// If this is a Bus Master operation then return
//
if (Master) {
return EFI_SUCCESS;
}
//
// Figure out what to program into the DMA Channel Mode Register
//
DmaMode = (UINT8) (B_8237_DMA_CHMODE_INCREMENT | (ChannelNumber & 0x03));
if (Read) {
DmaMode |= V_8237_DMA_CHMODE_MEM2IO;
} else {
DmaMode |= V_8237_DMA_CHMODE_IO2MEM;
}
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_AUTO_INITIALIZE) != 0) {
DmaMode |= B_8237_DMA_CHMODE_AE;
}
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_DEMAND_MODE) != 0) {
DmaMode |= V_8237_DMA_CHMODE_DEMAND;
}
if ((ChannelAttributes & EFI_ISA_IO_SLAVE_DMA_ATTRIBUTE_SINGLE_MODE) != 0) {
DmaMode |= V_8237_DMA_CHMODE_SINGLE;
}
//
// A Slave DMA transfer can not cross a 64K boundary.
// Compute *NumberOfBytes based on this restriction.
//
MaxNumberOfBytes = 0x10000 - ((UINT32) (*DeviceAddress) & 0xffff);
if (*NumberOfBytes > MaxNumberOfBytes) {
*NumberOfBytes = MaxNumberOfBytes;
}
//
// Compute the values to program into the BaseAddress and Count registers
// of the Slave DMA controller
//
if (ChannelNumber < 4) {
BaseAddress = (UINT32) (*DeviceAddress);
Count = (UINT16) (*NumberOfBytes - 1);
} else {
BaseAddress = (UINT32) (((UINT32) (*DeviceAddress) & 0xff0000) | (((UINT32) (*DeviceAddress) & 0xffff) >> 1));
Count = (UINT16) ((*NumberOfBytes - 1) >> 1);
}
//
// Program the DMA Write Single Mask Register for ChannelNumber
// Clear the DMA Byte Pointer Register
//
if (ChannelNumber < 4) {
DmaMask = R_8237_DMA_WRSMSK_CH0_3;
DmaClear = R_8237_DMA_CBPR_CH0_3;
DmaChannelMode = R_8237_DMA_CHMODE_CH0_3;
} else {
DmaMask = R_8237_DMA_WRSMSK_CH4_7;
DmaClear = R_8237_DMA_CBPR_CH4_7;
DmaChannelMode = R_8237_DMA_CHMODE_CH4_7;
}
Status = WritePort (
This,
DmaMask,
(UINT8) (B_8237_DMA_WRSMSK_CMS | (ChannelNumber & 0x03))
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (
This,
DmaClear,
(UINT8) (B_8237_DMA_WRSMSK_CMS | (ChannelNumber & 0x03))
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (This, DmaChannelMode, DmaMode);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WriteDmaPort (
This,
mDmaRegisters[ChannelNumber].Address,
mDmaRegisters[ChannelNumber].Page,
mDmaRegisters[ChannelNumber].Count,
BaseAddress,
Count
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = WritePort (
This,
DmaMask,
(UINT8) (ChannelNumber & 0x03)
);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
/**
Maps a memory region for DMA
@param This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param Operation Indicates the type of DMA (slave or bus master), and if
the DMA operation is going to read or write to system memory.
@param ChannelNumber The slave channel number to use for this DMA operation.
If Operation and ChannelAttributes shows that this device
performs bus mastering DMA, then this field is ignored.
The legal range for this field is 0..7.
@param ChannelAttributes The attributes of the DMA channel to use for this DMA operation
@param HostAddress The system memory address to map to the device.
@param NumberOfBytes On input the number of bytes to map. On output the number
of bytes that were mapped.
@param DeviceAddress The resulting map address for the bus master device to use
to access the hosts HostAddress.
@param Mapping A resulting value to pass to EFI_ISA_IO.Unmap().
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
@retval EFI_INVALID_PARAMETER The Operation or HostAddress is undefined.
@retval EFI_UNSUPPORTED The HostAddress can not be mapped as a common buffer.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
EFIAPI
IsaIoMap (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ISA_IO_PROTOCOL_OPERATION Operation,
IN UINT8 ChannelNumber OPTIONAL,
IN UINT32 ChannelAttributes,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
//
// Check if DMA is supported.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_DMA) == 0) {
return EFI_UNSUPPORTED;
}
//
// Set Feature Flag PcdIsaBusSupportBusMaster to FALSE to disable support for
// ISA Bus Master.
//
// So we just return EFI_UNSUPPORTED for these functions.
//
if ((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_ONLY_SUPPORT_SLAVE_DMA) != 0) {
return IsaIoMapOnlySupportSlaveReadWrite (
This,
Operation,
ChannelNumber,
ChannelAttributes,
HostAddress,
NumberOfBytes,
DeviceAddress,
Mapping
);
} else {
return IsaIoMapFullSupport (
This,
Operation,
ChannelNumber,
ChannelAttributes,
HostAddress,
NumberOfBytes,
DeviceAddress,
Mapping
);
}
}
/**
Allocates pages that are suitable for an EfiIsaIoOperationBusMasterCommonBuffer mapping.
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Type The type allocation to perform.
@param[in] MemoryType The type of memory to allocate.
@param[in] Pages The number of pages to allocate.
@param[out] HostAddress A pointer to store the base address of the allocated range.
@param[in] Attributes The requested bit mask of attributes for the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_INVALID_PARAMETER Type is invalid or MemoryType is invalid or HostAddress is NULL
@retval EFI_UNSUPPORTED Attributes is unsupported or the memory range specified
by HostAddress, Pages, and Type is not available for common buffer use.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
EFIAPI
IsaIoAllocateBuffer (
IN EFI_ISA_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
//
// Set Feature Flag PcdIsaBusOnlySupportSlaveDma to FALSE to disable support for
// ISA Bus Master.
// Or unset Feature Flag PcdIsaBusSupportDma to disable support for ISA DMA.
//
if (((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_DMA) == 0) ||
((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_ONLY_SUPPORT_SLAVE_DMA) != 0)) {
return EFI_UNSUPPORTED;
}
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Type < AllocateAnyPages || Type >= MaxAllocateType) {
return EFI_INVALID_PARAMETER;
}
//
// The only valid memory types are EfiBootServicesData and EfiRuntimeServicesData
//
if (MemoryType != EfiBootServicesData && MemoryType != EfiRuntimeServicesData) {
return EFI_INVALID_PARAMETER;
}
if ((Attributes & ~(EFI_ISA_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE | EFI_ISA_IO_ATTRIBUTE_MEMORY_CACHED)) != 0) {
return EFI_UNSUPPORTED;
}
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) (BASE_16MB - 1);
if (Type == AllocateAddress) {
if ((UINTN) (*HostAddress) >= BASE_16MB) {
return EFI_UNSUPPORTED;
} else {
PhysicalAddress = (UINTN) (*HostAddress);
}
}
if (Type == AllocateAnyPages) {
Type = AllocateMaxAddress;
}
Status = gBS->AllocatePages (Type, MemoryType, Pages, &PhysicalAddress);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
return Status;
}
*HostAddress = (VOID *) (UINTN) PhysicalAddress;
return Status;
}
/**
Frees memory that was allocated with EFI_ISA_IO.AllocateBuffer().
@param[in] This A pointer to the EFI_ISA_IO_PROTOCOL instance.
@param[in] Pages The number of pages to free.
@param[in] HostAddress The base address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were freed.
@retval EFI_INVALID_PARAMETER The memory was not allocated with EFI_ISA_IO.AllocateBufer().
**/
EFI_STATUS
EFIAPI
IsaIoFreeBuffer (
IN EFI_ISA_IO_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
)
{
EFI_STATUS Status;
//
// Set Feature Flag PcdIsaBusOnlySupportSlaveDma to FALSE to disable support for
// ISA Bus Master.
// Or unset Feature Flag PcdIsaBusSupportDma to disable support for ISA DMA.
//
if (((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_SUPPORT_DMA) == 0) ||
((PcdGet8 (PcdIsaBusSupportedFeatures) & PCD_ISA_BUS_ONLY_SUPPORT_SLAVE_DMA) != 0)) {
return EFI_UNSUPPORTED;
}
Status = gBS->FreePages (
(EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress,
Pages
);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
EFI_IO_BUS_LPC | EFI_IOB_EC_CONTROLLER_ERROR
);
}
return Status;
}