audk/UefiCpuPkg/CpuMpPei/CpuMpPei.h

456 lines
21 KiB
C

/** @file
Definitions to install Multiple Processor PPI.
Copyright (c) 2015 - 2023, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _CPU_MP_PEI_H_
#define _CPU_MP_PEI_H_
#include <PiPei.h>
#include <Ppi/MpServices.h>
#include <Ppi/SecPlatformInformation.h>
#include <Ppi/SecPlatformInformation2.h>
#include <Ppi/EndOfPeiPhase.h>
#include <Ppi/MpServices2.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/LocalApicLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/PeiServicesLib.h>
#include <Library/ReportStatusCodeLib.h>
#include <Library/CpuExceptionHandlerLib.h>
#include <Library/MpInitLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/CpuPageTableLib.h>
#include <Guid/MpInformation2.h>
#include <Register/Cpuid.h>
extern EFI_PEI_PPI_DESCRIPTOR mPeiCpuMpPpiDesc;
/**
This service retrieves the number of logical processor in the platform
and the number of those logical processors that are enabled on this boot.
This service may only be called from the BSP.
This function is used to retrieve the following information:
- The number of logical processors that are present in the system.
- The number of enabled logical processors in the system at the instant
this call is made.
Because MP Service Ppi provides services to enable and disable processors
dynamically, the number of enabled logical processors may vary during the
course of a boot session.
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
is returned in NumberOfProcessors, the number of currently enabled processor
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This Pointer to this instance of the PPI.
@param[out] NumberOfProcessors Pointer to the total number of logical processors in
the system, including the BSP and disabled APs.
@param[out] NumberOfEnabledProcessors
Number of processors in the system that are enabled.
@retval EFI_SUCCESS The number of logical processors and enabled
logical processors was retrieved.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
NumberOfEnabledProcessors is NULL.
**/
EFI_STATUS
EFIAPI
PeiGetNumberOfProcessors (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
OUT UINTN *NumberOfProcessors,
OUT UINTN *NumberOfEnabledProcessors
);
/**
Gets detailed MP-related information on the requested processor at the
instant this call is made. This service may only be called from the BSP.
This service retrieves detailed MP-related information about any processor
on the platform. Note the following:
- The processor information may change during the course of a boot session.
- The information presented here is entirely MP related.
Information regarding the number of caches and their sizes, frequency of operation,
slot numbers is all considered platform-related information and is not provided
by this service.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This Pointer to this instance of the PPI.
@param[in] ProcessorNumber Pointer to the total number of logical processors in
the system, including the BSP and disabled APs.
@param[out] ProcessorInfoBuffer Number of processors in the system that are enabled.
@retval EFI_SUCCESS Processor information was returned.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist in the platform.
**/
EFI_STATUS
EFIAPI
PeiGetProcessorInfo (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
);
/**
This service executes a caller provided function on all enabled APs. APs can
run either simultaneously or one at a time in sequence. This service supports
both blocking requests only. This service may only
be called from the BSP.
This function is used to dispatch all the enabled APs to the function specified
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
immediately and Procedure is not started on any AP.
If SingleThread is TRUE, all the enabled APs execute the function specified by
Procedure one by one, in ascending order of processor handle number. Otherwise,
all the enabled APs execute the function specified by Procedure simultaneously.
If the timeout specified by TimeoutInMicroSeconds expires before all APs return
from Procedure, then Procedure on the failed APs is terminated. All enabled APs
are always available for further calls to EFI_PEI_MP_SERVICES_PPI.StartupAllAPs()
and EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If FailedCpuList is not NULL, its
content points to the list of processor handle numbers in which Procedure was
terminated.
Note: It is the responsibility of the consumer of the EFI_PEI_MP_SERVICES_PPI.StartupAllAPs()
to make sure that the nature of the code that is executed on the BSP and the
dispatched APs is well controlled. The MP Services Ppi does not guarantee
that the Procedure function is MP-safe. Hence, the tasks that can be run in
parallel are limited to certain independent tasks and well-controlled exclusive
code. PEI services and Ppis may not be called by APs unless otherwise
specified.
In blocking execution mode, BSP waits until all APs finish or
TimeoutInMicroSeconds expires.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance.
@param[in] Procedure A pointer to the function to be run on enabled APs of
the system.
@param[in] SingleThread If TRUE, then all the enabled APs execute the function
specified by Procedure one by one, in ascending order
of processor handle number. If FALSE, then all the
enabled APs execute the function specified by Procedure
simultaneously.
@param[in] TimeoutInMicroSeconds
Indicates the time limit in microseconds for APs to
return from Procedure, for blocking mode only. Zero
means infinity. If the timeout expires before all APs
return from Procedure, then Procedure on the failed APs
is terminated. All enabled APs are available for next
function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs()
or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the
timeout expires in blocking mode, BSP returns
EFI_TIMEOUT.
@param[in] ProcedureArgument The parameter passed into Procedure for all APs.
@retval EFI_SUCCESS In blocking mode, all APs have finished before the
timeout expired.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_STARTED No enabled APs exist in the system.
@retval EFI_NOT_READY Any enabled APs are busy.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before all
enabled APs have finished.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
PeiStartupAllAPs (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
IN EFI_AP_PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN UINTN TimeoutInMicroSeconds,
IN VOID *ProcedureArgument OPTIONAL
);
/**
This service lets the caller get one enabled AP to execute a caller-provided
function. The caller can request the BSP to wait for the completion
of the AP. This service may only be called from the BSP.
This function is used to dispatch one enabled AP to the function specified by
Procedure passing in the argument specified by ProcedureArgument.
The execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires.
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
from Procedure, then execution of Procedure by the AP is terminated. The AP is
available for subsequent calls to EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() and
EFI_PEI_MP_SERVICES_PPI.StartupThisAP().
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance.
@param[in] Procedure A pointer to the function to be run on enabled APs of
the system.
@param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the
total number of logical processors minus 1. The total
number of logical processors can be retrieved by
EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors().
@param[in] TimeoutInMicroseconds
Indicates the time limit in microseconds for APs to
return from Procedure, for blocking mode only. Zero
means infinity. If the timeout expires before all APs
return from Procedure, then Procedure on the failed APs
is terminated. All enabled APs are available for next
function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs()
or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the
timeout expires in blocking mode, BSP returns
EFI_TIMEOUT.
@param[in] ProcedureArgument The parameter passed into Procedure for all APs.
@retval EFI_SUCCESS In blocking mode, specified AP finished before the
timeout expires.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before the
specified AP has finished.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
PeiStartupThisAP (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
IN EFI_AP_PROCEDURE Procedure,
IN UINTN ProcessorNumber,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL
);
/**
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. This call can only be performed
by the current BSP.
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. The new BSP can take over the
execution of the old BSP and continue seamlessly from where the old one left
off.
If the BSP cannot be switched prior to the return from this service, then
EFI_UNSUPPORTED must be returned.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance.
@param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the
total number of logical processors minus 1. The total
number of logical processors can be retrieved by
EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors().
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled
AP. Otherwise, it will be disabled.
@retval EFI_SUCCESS BSP successfully switched.
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this
service returning.
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled
AP.
@retval EFI_NOT_READY The specified AP is busy.
**/
EFI_STATUS
EFIAPI
PeiSwitchBSP (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableOldBSP
);
/**
This service lets the caller enable or disable an AP from this point onward.
This service may only be called from the BSP.
This service allows the caller enable or disable an AP from this point onward.
The caller can optionally specify the health status of the AP by Health. If
an AP is being disabled, then the state of the disabled AP is implementation
dependent. If an AP is enabled, then the implementation must guarantee that a
complete initialization sequence is performed on the AP, so the AP is in a state
that is compatible with an MP operating system.
If the enable or disable AP operation cannot be completed prior to the return
from this service, then EFI_UNSUPPORTED must be returned.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance.
@param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the
total number of logical processors minus 1. The total
number of logical processors can be retrieved by
EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors().
@param[in] EnableAP Specifies the new state for the processor for enabled,
FALSE for disabled.
@param[in] HealthFlag If not NULL, a pointer to a value that specifies the
new health status of the AP. This flag corresponds to
StatusFlag defined in EFI_PEI_MP_SERVICES_PPI.GetProcessorInfo().
Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other
bits are ignored. If it is NULL, this parameter is
ignored.
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior
to this service returning.
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
**/
EFI_STATUS
EFIAPI
PeiEnableDisableAP (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
);
/**
This return the handle number for the calling processor. This service may be
called from the BSP and APs.
This service returns the processor handle number for the calling processor.
The returned value is in the range from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved
with EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). This service may be
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
is returned. Otherwise, the current processors handle number is returned in
ProcessorNumber, and EFI_SUCCESS is returned.
@param[in] PeiServices An indirect pointer to the PEI Services Table
published by the PEI Foundation.
@param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance.
@param[out] ProcessorNumber The handle number of the AP. The range is from 0 to the
total number of logical processors minus 1. The total
number of logical processors can be retrieved by
EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors().
@retval EFI_SUCCESS The current processor handle number was returned in
ProcessorNumber.
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
**/
EFI_STATUS
EFIAPI
PeiWhoAmI (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_MP_SERVICES_PPI *This,
OUT UINTN *ProcessorNumber
);
/**
Collects BIST data from PPI.
This function collects BIST data from Sec Platform Information2 PPI
or SEC Platform Information PPI.
@param PeiServices Pointer to PEI Services Table
**/
VOID
CollectBistDataFromPpi (
IN CONST EFI_PEI_SERVICES **PeiServices
);
/**
Implementation of the PlatformInformation2 service in EFI_SEC_PLATFORM_INFORMATION2_PPI.
@param PeiServices The pointer to the PEI Services Table.
@param StructureSize The pointer to the variable describing size of the input buffer.
@param PlatformInformationRecord2 The pointer to the EFI_SEC_PLATFORM_INFORMATION_RECORD2.
@retval EFI_SUCCESS The data was successfully returned.
@retval EFI_BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to
hold the record is returned in StructureSize.
**/
EFI_STATUS
EFIAPI
SecPlatformInformation2 (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN OUT UINT64 *StructureSize,
OUT EFI_SEC_PLATFORM_INFORMATION_RECORD2 *PlatformInformationRecord2
);
/**
Migrates the Global Descriptor Table (GDT) to permanent memory.
@retval EFI_SUCCESS The GDT was migrated successfully.
@retval EFI_OUT_OF_RESOURCES The GDT could not be migrated due to lack of available memory.
**/
EFI_STATUS
MigrateGdt (
VOID
);
/**
Initializes MP and exceptions handlers.
@param PeiServices The pointer to the PEI Services Table.
@retval EFI_SUCCESS MP was successfully initialized.
@retval others Error occurred in MP initialization.
**/
EFI_STATUS
InitializeCpuMpWorker (
IN CONST EFI_PEI_SERVICES **PeiServices
);
/**
Enable/setup stack guard for each processor if PcdCpuStackGuard is set to TRUE.
Doing this in the memory-discovered callback is to make sure the Stack Guard
feature to cover as most PEI code as possible.
@param[in] PeiServices General purpose services available to every PEIM.
@param[in] NotifyDescriptor The notification structure this PEIM registered on install.
@param[in] Ppi The memory discovered PPI. Not used.
@retval EFI_SUCCESS The function completed successfully.
@retval others There's error in MP initialization.
**/
EFI_STATUS
EFIAPI
MemoryDiscoveredPpiNotifyCallback (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
IN VOID *Ppi
);
extern EFI_PEI_NOTIFY_DESCRIPTOR mPostMemNotifyList[];
#endif