mirror of https://github.com/acidanthera/audk.git
963 lines
32 KiB
C
963 lines
32 KiB
C
/** @file
|
|
Helper Routines that use a PXE-enabled NIC option ROM.
|
|
|
|
Copyright (c) 1999 - 2017, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions
|
|
of the BSD License which accompanies this distribution. The
|
|
full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "BiosSnp16.h"
|
|
|
|
#define TO_SEGMENT(x) ((UINT16) (RShiftU64 ((UINT32)(UINTN) (x), 4) & 0xF000))
|
|
#define TO_OFFSET(x) ((UINT16) ((UINT32)(UINTN) (x) & 0xFFFF))
|
|
#define PARAGRAPH_SIZE 0x10
|
|
#define IVT_BASE 0x00000000
|
|
|
|
#pragma pack(1)
|
|
typedef struct {
|
|
UINT16 Signature; ///< 0xaa55
|
|
UINT8 ROMlength; ///< size of this ROM in 512 byte blocks
|
|
UINT8 InitEntryPoint[4]; ///< a jump to the initialization routine
|
|
UINT8 Reserved[0xf]; ///< various
|
|
UINT16 PxeRomIdOffset; ///< offset of UNDI, $BC$, or BUSD ROM ID structure
|
|
UINT16 PcirHeaderOffset; ///< offset of PCI Expansion Header
|
|
UINT16 PnpHeaderOffset; ///< offset of Plug and Play Expansion Header
|
|
} OPTION_ROM_HEADER;
|
|
#pragma pack()
|
|
|
|
UINT32 CachedVectorAddress[0x100];
|
|
|
|
/**
|
|
Cache Interrupt verctor address converted from IVT number.
|
|
|
|
@param VectorNumber IVT number
|
|
|
|
@retval EFI_SUCCESS Success to operation.
|
|
**/
|
|
EFI_STATUS
|
|
CacheVectorAddress (
|
|
UINT8 VectorNumber
|
|
)
|
|
{
|
|
UINT32 *Address;
|
|
|
|
Address = (UINT32 *) ((UINTN) IVT_BASE + VectorNumber * 4);
|
|
CachedVectorAddress[VectorNumber] = *Address;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Get interrupt vector address according to IVT number.
|
|
|
|
@param VectorNumber Given IVT number
|
|
|
|
@return cached interrupt vector address.
|
|
**/
|
|
EFI_STATUS
|
|
RestoreCachedVectorAddress (
|
|
UINT8 VectorNumber
|
|
)
|
|
{
|
|
UINT32 *Address;
|
|
|
|
Address = (UINT32 *) ((UINTN) IVT_BASE + VectorNumber * 4);
|
|
*Address = CachedVectorAddress[VectorNumber];
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Print Undi loader table.
|
|
|
|
@param UndiLoaderStructure Point to Undi Loader table structure.
|
|
|
|
**/
|
|
VOID
|
|
Print_Undi_Loader_Table (
|
|
VOID *UndiLoaderStructure
|
|
)
|
|
{
|
|
UNDI_LOADER_T *DisplayPointer;
|
|
|
|
DisplayPointer = (UNDI_LOADER_T *) UndiLoaderStructure;
|
|
|
|
DEBUG ((DEBUG_NET, "Before Parsing the table contents, the table itself lives\n"));
|
|
DEBUG ((DEBUG_NET, "\tat the address 0x%X\n\r", (UINT32)(UINTN) UndiLoaderStructure));
|
|
|
|
DEBUG ((DEBUG_NET, "\n\rStatus = 0x%X\n\r", DisplayPointer->Status));
|
|
DEBUG ((DEBUG_NET, "\t_AX_= 0x%X\n\r", DisplayPointer->Ax));
|
|
DEBUG ((DEBUG_NET, "\t_BX_= 0x%X\n\r", DisplayPointer->Bx));
|
|
DEBUG ((DEBUG_NET, "\t_DX_= 0x%X\n\r", DisplayPointer->Dx));
|
|
DEBUG ((DEBUG_NET, "\t_DI_= 0x%X\n\r", DisplayPointer->Di));
|
|
DEBUG ((DEBUG_NET, "\t_ES_= 0x%X\n\r", DisplayPointer->Es));
|
|
DEBUG ((DEBUG_NET, "\tUNDI_DS= 0x%X\n\r", DisplayPointer->Undi_Ds));
|
|
DEBUG ((DEBUG_NET, "\tUNDI_CS= 0x%X\n\r", DisplayPointer->Undi_Cs));
|
|
DEBUG ((DEBUG_NET, "\tPXEptr:SEG= 0x%X\n\r", (UINT16) DisplayPointer->PXEptr.Segment));
|
|
DEBUG ((DEBUG_NET, "\tPXEptr:OFF= 0x%X\n\r", (UINT16) DisplayPointer->PXEptr.Offset));
|
|
DEBUG ((DEBUG_NET, "\tPXENVptr:SEG= 0x%X\n\r", (UINT16) DisplayPointer->PXENVptr.Segment));
|
|
DEBUG ((DEBUG_NET, "\tPXENVptr:OFF= 0x%X\n\r", (UINT16) DisplayPointer->PXENVptr.Offset));
|
|
}
|
|
|
|
/**
|
|
Simple table dumper. The ROMID table is necessary in order to effect
|
|
the "Early UNDI" trick. Herein, the UNDI layer can be loaded in the
|
|
pre-boot phase without having to download a Network Boot Program
|
|
across the wire. It is required in the implementation in that we
|
|
are not using PXE.
|
|
|
|
@param RomIDStructure Point to RomID structure.
|
|
|
|
**/
|
|
VOID
|
|
Print_ROMID_Table (
|
|
IN VOID *RomIDStructure
|
|
)
|
|
{
|
|
UNDI_ROMID_T *DisplayPointer;
|
|
|
|
DisplayPointer = (UNDI_ROMID_T *) RomIDStructure;
|
|
|
|
DEBUG ((DEBUG_NET, "Before Parsing the table contents, the table itself lives\n"));
|
|
DEBUG ((DEBUG_NET, "\tat the address 0x%X\n\r", (UINT32)(UINTN) RomIDStructure));
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\n\rROMID %c%c%c%c\n\r",
|
|
DisplayPointer->Signature[0],
|
|
DisplayPointer->Signature[1],
|
|
DisplayPointer->Signature[2],
|
|
DisplayPointer->Signature[3])
|
|
);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Length of this structure in bytes = 0x%X\n\r",
|
|
DisplayPointer->StructLength)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Use to make byte checksum of this structure == zero is = 0x%X\n\r",
|
|
DisplayPointer->StructCksum)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Structure format revision number= 0x%X\n\r",
|
|
DisplayPointer->StructRev)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"API Revision number = 0x%X 0x%X 0x%X\n\r",
|
|
DisplayPointer->UNDI_Rev[0],
|
|
DisplayPointer->UNDI_Rev[1],
|
|
DisplayPointer->UNDI_Rev[2])
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Offset of UNDI loader routine in the option ROM image= 0x%X\n\r",
|
|
DisplayPointer->UNDI_Loader)
|
|
);
|
|
DEBUG ((DEBUG_NET, "From the data above, the absolute entry point of the UNDI loader is\n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\tat address 0x%X\n\r",
|
|
(UINT32) (DisplayPointer->UNDI_Loader + ((UINT32) (UINTN)(DisplayPointer - 0x20) & 0xFFFF0)))
|
|
);
|
|
DEBUG ((DEBUG_NET, "Minimum stack segment size, in bytes,\n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"needed to load and run the UNDI= 0x%X \n\r",
|
|
DisplayPointer->StackSize)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"UNDI runtime code and data = 0x%X\n\r",
|
|
DisplayPointer->DataSize)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Segment size = 0x%X\n\r",
|
|
DisplayPointer->CodeSize)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\n\rBus Type = %c%c%c%c\n\r",
|
|
DisplayPointer->BusType[0],
|
|
DisplayPointer->BusType[1],
|
|
DisplayPointer->BusType[2],
|
|
DisplayPointer->BusType[3])
|
|
);
|
|
}
|
|
|
|
/**
|
|
Print PXE table.
|
|
|
|
@param PxeTable Point to PXE table structure
|
|
|
|
**/
|
|
VOID
|
|
Print_PXE_Table (
|
|
IN VOID* PxeTable
|
|
)
|
|
{
|
|
PXE_T *DisplayPointer;
|
|
UINTN Index;
|
|
UINT8 *Dptr;
|
|
|
|
DisplayPointer = (PXE_T *) PxeTable;
|
|
Dptr = (UINT8 *) PxeTable;
|
|
|
|
DEBUG ((DEBUG_NET, "This is the PXE table at address 0x%X\n\r", PxeTable));
|
|
|
|
DEBUG ((DEBUG_NET, "A dump of the 0x%X bytes is:\n\r", sizeof (PXE_T)));
|
|
|
|
for (Index = 0; Index < sizeof (PXE_T); Index++) {
|
|
if ((Index % 0x10) == 0) {
|
|
DEBUG ((DEBUG_NET, "\t\n\r"));
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, " 0x%X ", *Dptr++));
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, "\n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\n\rPXE %c%c%c%c%c%c\n\r",
|
|
DisplayPointer->Signature[0],
|
|
DisplayPointer->Signature[1],
|
|
DisplayPointer->Signature[2],
|
|
DisplayPointer->Signature[3])
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Length of this structure in bytes = 0x%X\n\r",
|
|
DisplayPointer->StructLength)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Use to make byte checksum of this structure == zero is = 0x%X\n\r",
|
|
DisplayPointer->StructCksum)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Structure format revision number = 0x%X\n\r",
|
|
DisplayPointer->StructRev)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Must be zero, is equal to 0x%X\n\r",
|
|
DisplayPointer->Reserved1)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Far pointer to UNDI ROMID = 0x%X\n\r",
|
|
(UINT32) (DisplayPointer->Undi.Segment << 0x4 | DisplayPointer->Undi.Offset))
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Far pointer to base-code ROMID = 0x%X\n\r",
|
|
(UINT32) ((DisplayPointer->Base.Segment << 0x04) | DisplayPointer->Base.Offset))
|
|
);
|
|
DEBUG ((DEBUG_NET, "16bit stack segment API entry point. This will be seg:off in \n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"real mode and sel:off in 16:16 protected mode = 0x%X:0x%X\n\r",
|
|
DisplayPointer->EntryPointSP.Segment,
|
|
DisplayPointer->EntryPointSP.Offset)
|
|
);
|
|
|
|
DEBUG ((DEBUG_NET, "\n\tNOTE to the implementer\n\tThis is the entry to use for call-ins\n\r"));
|
|
|
|
DEBUG ((DEBUG_NET, "32bit stack Segment API entry point. This will be sel:off. \n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"In real mode, sel == 0 = 0x%X:0x%X\n\r",
|
|
DisplayPointer->EntryPointESP.Segment,
|
|
DisplayPointer->EntryPointESP.Offset)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Reserved2 value, must be zero, is equal to 0x%X\n\r",
|
|
DisplayPointer->Reserved2)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Number of segment descriptors in this structur = 0x%X\n\r",
|
|
(UINT8) DisplayPointer->SegDescCnt)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"First segment descriptor in GDT assigned to PXE = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->FirstSelector)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The Stack is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->Stack.Seg_Addr,
|
|
(UINT32) DisplayPointer->Stack.Phy_Addr,
|
|
(UINT16) DisplayPointer->Stack.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The UNDIData is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->UNDIData.Seg_Addr,
|
|
(UINT32) DisplayPointer->UNDIData.Phy_Addr,
|
|
(UINT16) DisplayPointer->UNDIData.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The UNDICodeWrite is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->UNDICode.Seg_Addr,
|
|
(UINT32) DisplayPointer->UNDICode.Phy_Addr,
|
|
(UINT16) DisplayPointer->UNDICode.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The Stack is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->UNDICodeWrite.Seg_Addr,
|
|
(UINT32) DisplayPointer->UNDICodeWrite.Phy_Addr,
|
|
(UINT16) DisplayPointer->UNDICodeWrite.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The BC_Data is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->BC_Data.Seg_Addr,
|
|
(UINT32) DisplayPointer->BC_Data.Phy_Addr,
|
|
(UINT16) DisplayPointer->BC_Data.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The BC_Code is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->BC_Code.Seg_Addr,
|
|
(UINT32) DisplayPointer->BC_Code.Phy_Addr,
|
|
(UINT16) DisplayPointer->BC_Code.Seg_Size)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The BC_CodeWrite is \n\r\tSegment Addr = 0x%X\n\r\tPhysical Addr = 0x%X\n\r\tSeg Size = 0x%X\n\r",
|
|
(UINT16) DisplayPointer->BC_CodeWrite.Seg_Addr,
|
|
(UINT32) DisplayPointer->BC_CodeWrite.Phy_Addr,
|
|
(UINT16) DisplayPointer->BC_CodeWrite.Seg_Size)
|
|
);
|
|
}
|
|
|
|
/**
|
|
Print PXENV table.
|
|
|
|
@param PxenvTable Point to PXENV
|
|
|
|
**/
|
|
VOID
|
|
Print_PXENV_Table (
|
|
IN VOID *PxenvTable
|
|
)
|
|
{
|
|
PXENV_T *DisplayPointer;
|
|
|
|
DisplayPointer = (PXENV_T *) PxenvTable;
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\n\rPXENV+ %c%c%c%c%c%c\n\r",
|
|
DisplayPointer->Signature[0],
|
|
DisplayPointer->Signature[1],
|
|
DisplayPointer->Signature[2],
|
|
DisplayPointer->Signature[3],
|
|
DisplayPointer->Signature[4],
|
|
DisplayPointer->Signature[5])
|
|
);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"PXE version number. \n\r\tLSB is minor version. \n\r\tMSB is major version = 0x%X\n\r",
|
|
DisplayPointer->Version)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Length of PXE-2.0 Entry Point structure in bytes = 0x%X\n\r",
|
|
DisplayPointer->StructLength)
|
|
);
|
|
DEBUG ((DEBUG_NET, "Used to make structure checksum equal zero is now = 0x%X\n\r", DisplayPointer->StructCksum));
|
|
DEBUG ((DEBUG_NET, "Real mode API entry point segment:Offset. = 0x%X\n\r", DisplayPointer->RMEntry));
|
|
DEBUG ((DEBUG_NET, "Protected mode API entry point = 0x%X\n\r", DisplayPointer->PMEntryOff));
|
|
DEBUG ((DEBUG_NET, " segment:Offset. This will always be zero. \n\r"));
|
|
DEBUG ((DEBUG_NET, "Protected mode API calls = 0x%X\n\r", DisplayPointer->PMEntrySeg));
|
|
DEBUG ((DEBUG_NET, "Real mode stack segment = 0x%X\n\r", DisplayPointer->StackSeg));
|
|
DEBUG ((DEBUG_NET, "Stack segment size in bytes = 0x%X\n\r", DisplayPointer->StackSize));
|
|
DEBUG ((DEBUG_NET, "Real mode base-code code segment = 0x%X\n\r", DisplayPointer->BaseCodeSeg));
|
|
DEBUG ((DEBUG_NET, "Base-code code segment size = 0x%X\n\r", DisplayPointer->BaseCodeSize));
|
|
DEBUG ((DEBUG_NET, "Real mode base-code data segment = 0x%X\n\r", DisplayPointer->BaseDataSeg));
|
|
DEBUG ((DEBUG_NET, "Base-code data segment size = 0x%X\n\r", DisplayPointer->BaseDataSize));
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"UNDI code segment size in bytes = 0x%X\n\r",
|
|
DisplayPointer->UNDICodeSize)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"Real mode segment:Offset pointer \n\r\tto PXE Runtime ID structure, address = 0x%X\n\r",
|
|
DisplayPointer->RuntimePtr)
|
|
);
|
|
DEBUG (
|
|
(
|
|
DEBUG_NET,
|
|
"From above, we have a linear address of 0x%X\n\r",
|
|
(UINT32)
|
|
(
|
|
((UINT32)(UINTN)(DisplayPointer->RuntimePtr) & 0xFFFF) +
|
|
(((UINT32)(UINTN)(DisplayPointer->RuntimePtr) & 0xFFFF0000) >> 12)
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
#define OPTION_ROM_PTR ((OPTION_ROM_HEADER *) RomAddress)
|
|
|
|
/**
|
|
If available, launch the BaseCode from a NIC option ROM.
|
|
This should install the !PXE and PXENV+ structures in memory for
|
|
subsequent use.
|
|
|
|
|
|
@param SimpleNetworkDevice Simple network device instance
|
|
@param RomAddress The ROM base address for NIC rom.
|
|
|
|
@retval EFI_NOT_FOUND The check sum does not match
|
|
@retval EFI_NOT_FOUND Rom ID offset is wrong
|
|
@retval EFI_NOT_FOUND No Rom ID structure is found
|
|
**/
|
|
EFI_STATUS
|
|
LaunchBaseCode (
|
|
EFI_SIMPLE_NETWORK_DEV *SimpleNetworkDevice,
|
|
UINTN RomAddress
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_IA32_REGISTER_SET InOutRegs;
|
|
UNDI_ROMID_T *RomIdTableAddress;
|
|
UNDI_LOADER_T *UndiLoaderTable;
|
|
UINT16 Segment;
|
|
UINT16 *StackPointer;
|
|
VOID *Buffer;
|
|
UINTN Size;
|
|
PXE_T *Pxe;
|
|
UINT32 RomLength;
|
|
UINTN PciSegment;
|
|
UINTN Bus;
|
|
UINTN Device;
|
|
UINTN Function;
|
|
BOOLEAN ThunkFailed;
|
|
|
|
DEBUG ((DEBUG_NET, "\n\r\n\rCheck for the UNDI ROMID Signature\n\r"));
|
|
|
|
//
|
|
// paranoia - check structures for validity
|
|
//
|
|
RomLength = OPTION_ROM_PTR->ROMlength << 9;
|
|
if (CalculateSum8 ((UINT8 *) RomAddress, RomLength) != 0) {
|
|
DEBUG ((DEBUG_ERROR, "ROM Header Checksum Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
RomIdTableAddress = (UNDI_ROMID_T *) (RomAddress + OPTION_ROM_PTR->PxeRomIdOffset);
|
|
|
|
if (((UINT32)OPTION_ROM_PTR->PxeRomIdOffset + RomIdTableAddress->StructLength) > RomLength) {
|
|
DEBUG ((DEBUG_ERROR, "ROM ID Offset Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
//
|
|
// see if this is a header for an UNDI ROM ID structure (vs. a $BC$ or BUSD type)
|
|
//
|
|
if (CompareMem (RomIdTableAddress->Signature, UNDI_ROMID_SIG, sizeof RomIdTableAddress->Signature) != 0) {
|
|
DEBUG ((DEBUG_ERROR, "No ROM ID Structure found....\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
//
|
|
// its not - keep looking
|
|
//
|
|
}
|
|
|
|
if (CalculateSum8 ((UINT8 *) RomIdTableAddress, RomIdTableAddress->StructLength) != 0) {
|
|
DEBUG ((DEBUG_ERROR, "ROM ID Checksum Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
Print_ROMID_Table (RomIdTableAddress);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The ROM ID is located at 0x%X\n\r",
|
|
RomIdTableAddress)
|
|
);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"With an UNDI Loader located at 0x%X\n\r",
|
|
RomAddress + RomIdTableAddress->UNDI_Loader)
|
|
);
|
|
|
|
//
|
|
// found an UNDI ROM ID structure
|
|
//
|
|
SimpleNetworkDevice->Nii.ImageAddr = RomAddress;
|
|
SimpleNetworkDevice->Nii.ImageSize = RomLength;
|
|
SimpleNetworkDevice->Nii.MajorVer = RomIdTableAddress->UNDI_Rev[2];
|
|
SimpleNetworkDevice->Nii.MinorVer = RomIdTableAddress->UNDI_Rev[1];
|
|
|
|
DEBUG ((DEBUG_NET, "Allocate area for the UNDI_LOADER_T structure\n\r"));
|
|
//
|
|
// Allocate 1 page below 1MB to put real mode thunk code in
|
|
//
|
|
// Undi Loader Table is a PXE Specification prescribed data structure
|
|
// that is used to transfer information into and out of the Undi layer.
|
|
// Note how it must be located below 1 MB.
|
|
//
|
|
SimpleNetworkDevice->UndiLoaderTablePages = EFI_SIZE_TO_PAGES (PARAGRAPH_SIZE + sizeof (UNDI_LOADER_T));
|
|
Status = BiosSnp16AllocatePagesBelowOneMb (
|
|
SimpleNetworkDevice->UndiLoaderTablePages,
|
|
&SimpleNetworkDevice->UndiLoaderTable
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
UndiLoaderTable = SimpleNetworkDevice->UndiLoaderTable;
|
|
|
|
DEBUG ((DEBUG_NET, "Allocate area for the real-mode stack whose sole purpose\n\r"));
|
|
DEBUG ((DEBUG_NET, "in life right now is to store a SEG:OFFSET combo pair that\n\r"));
|
|
DEBUG ((DEBUG_NET, "points to an Undi_Loader_t table structure\n\r"));
|
|
|
|
Size = 0x100;
|
|
Status = gBS->AllocatePool (EfiLoaderData, Size, &Buffer);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Now we want to put a pointer to the Under Loader Table in our MemPage
|
|
// Buffer. This will be the argument stack for the call into the Undi Loader
|
|
//
|
|
StackPointer = (UINT16 *) Buffer;
|
|
*StackPointer++ = TO_OFFSET (UndiLoaderTable);
|
|
//
|
|
// push the OFFSET
|
|
//
|
|
*StackPointer++ = TO_SEGMENT (UndiLoaderTable);
|
|
//
|
|
// push the SEGMENT
|
|
//
|
|
StackPointer = (UINT16 *) Buffer;
|
|
//
|
|
// reset the stack pointer
|
|
//
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"After the fixups, the stack pointer is 0x%X\n\r",
|
|
(UINT64)(UINTN) StackPointer)
|
|
);
|
|
|
|
//
|
|
// Allocate memory for the Deployed UNDI.
|
|
// The UNDI is essentially telling us how much space it needs, and
|
|
// it is up to the EFI driver to allocate sufficient, boot-time
|
|
// persistent resources for the call
|
|
//
|
|
SimpleNetworkDevice->DestinationDataSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->DataSize);
|
|
Status = BiosSnp16AllocatePagesBelowOneMb (
|
|
SimpleNetworkDevice->DestinationDataSegmentPages,
|
|
&SimpleNetworkDevice->DestinationDataSegment
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
UndiLoaderTable->Undi_Ds = (UINT16) ((UINTN) SimpleNetworkDevice->DestinationDataSegment >> 4);
|
|
|
|
//
|
|
// Allocate memory for the Deployed UNDI stack
|
|
// The UNDI is essentially telling us how much space it needs, and
|
|
// it is up to the EFI driver to allocate sufficient, boot-time
|
|
// persistent resources for the call
|
|
//
|
|
SimpleNetworkDevice->DestinationStackSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->StackSize);
|
|
Status = BiosSnp16AllocatePagesBelowOneMb (
|
|
SimpleNetworkDevice->DestinationStackSegmentPages,
|
|
&SimpleNetworkDevice->DestinationStackSegment
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
|
|
return Status;
|
|
}
|
|
//
|
|
// Allocate memory for the Deployed UNDI.
|
|
// The UNDI is essentially telling us how much space it needs, and
|
|
// it is up to the EFI driver to allocate sufficient, boot-time
|
|
// persistent resources for the call
|
|
//
|
|
SimpleNetworkDevice->DestinationCodeSegmentPages = EFI_SIZE_TO_PAGES (RomIdTableAddress->CodeSize);
|
|
Status = BiosSnp16AllocatePagesBelowOneMb (
|
|
SimpleNetworkDevice->DestinationCodeSegmentPages,
|
|
&SimpleNetworkDevice->DestinationCodeSegment
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
UndiLoaderTable->Undi_Cs = (UINT16) ((UINTN) SimpleNetworkDevice->DestinationCodeSegment >> 4);
|
|
|
|
//
|
|
// these are in the Input and Output Parameter to be sent to the UNDI Loader code
|
|
//
|
|
UndiLoaderTable->Status = 0xAA55;
|
|
//
|
|
// -------------------- Changed by Michael_Huang@3Com.com -----------------
|
|
// UndiLoaderTable->_AX is AX value when UNDI ROM is initialized by BIOS, it is the PCI bus device
|
|
// function of the NIC. Please refer to PXE Spec for detail info.
|
|
// old code is:
|
|
// UndiLoaderTable->Ax = 0x0;
|
|
// -----------------------------------------------------------------------
|
|
//
|
|
SimpleNetworkDevice->PciIo->GetLocation (
|
|
SimpleNetworkDevice->PciIo,
|
|
&PciSegment,
|
|
&Bus,
|
|
&Device,
|
|
&Function
|
|
);
|
|
UndiLoaderTable->Ax = (UINT16) ((Bus << 0x8) | (Device << 0x3) | (Function));
|
|
UndiLoaderTable->Bx = 0x0;
|
|
UndiLoaderTable->Dx = 0x0;
|
|
UndiLoaderTable->Di = 0x0;
|
|
UndiLoaderTable->Es = 0x0;
|
|
|
|
//
|
|
// set these OUT values to zero in order to ensure that
|
|
// uninitialized memory is not mistaken for display data
|
|
//
|
|
UndiLoaderTable->PXEptr.Offset = 0;
|
|
UndiLoaderTable->PXEptr.Segment = 0;
|
|
UndiLoaderTable->PXENVptr.Segment = 0;
|
|
UndiLoaderTable->PXENVptr.Offset = 0;
|
|
|
|
DEBUG (
|
|
(DEBUG_INIT,
|
|
"The NIC is located at Bus 0x%X, Device 0x%X, Function 0x%X\n\r",
|
|
Bus,
|
|
Device,
|
|
Function)
|
|
);
|
|
|
|
//
|
|
// These are the values that set up the ACTUAL IA32 machine state, whether in
|
|
// Real16 in EFI32 or the IVE for IA64
|
|
// register values are unused except for CS:IP and SS:SP
|
|
//
|
|
InOutRegs.X.AX = 0;
|
|
InOutRegs.X.BX = 0;
|
|
InOutRegs.X.CX = 0;
|
|
InOutRegs.X.DX = 0;
|
|
InOutRegs.X.SI = 0;
|
|
InOutRegs.X.DI = 0;
|
|
InOutRegs.X.BP = 0;
|
|
InOutRegs.X.DS = 0;
|
|
InOutRegs.X.ES = 0;
|
|
//
|
|
// just to be clean
|
|
//
|
|
DEBUG ((DEBUG_NET, "The way this game works is that the SS:SP +4 should point\n\r"));
|
|
DEBUG ((DEBUG_NET, "to the contents of the UndiLoaderTable\n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The Undi Loader Table is at address = 0x%X\n\r",
|
|
(UINT32)(UINTN) UndiLoaderTable)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The segment and offsets are 0x%X and 0x%X, resp\n",
|
|
TO_SEGMENT (UndiLoaderTable),
|
|
TO_OFFSET (UndiLoaderTable))
|
|
);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The Linear Address of the UNDI Loader entry is 0x%X\n",
|
|
RomAddress + RomIdTableAddress->UNDI_Loader)
|
|
);
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The Address offset of the UNDI Loader entry is 0x%X\n",
|
|
RomIdTableAddress->UNDI_Loader)
|
|
);
|
|
|
|
DEBUG ((DEBUG_NET, "Before the call, we have...\n\r"));
|
|
Print_Undi_Loader_Table (UndiLoaderTable);
|
|
|
|
Segment = ((UINT16) (RShiftU64 (RomAddress, 4) & 0xFFFF));
|
|
DEBUG ((DEBUG_NET, "The Segment of the call is 0x%X\n\r", Segment));
|
|
|
|
//
|
|
// make the call into the UNDI Code
|
|
//
|
|
DEBUG ((DEBUG_INIT, "Make the call into the UNDI code now\n\r"));
|
|
|
|
DEBUG ((DEBUG_NET, "\nThe 20-BIt address of the Call, and the location \n\r"));
|
|
DEBUG ((DEBUG_NET, "\twhere we should be able to set a breakpoint is \n\r"));
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"\t\t0x%X, from SEG:OFF 0x%X:0x%X\n\r\n\r",
|
|
Segment * 0x10 + RomIdTableAddress->UNDI_Loader,
|
|
Segment,
|
|
RomIdTableAddress->UNDI_Loader)
|
|
);
|
|
|
|
ThunkFailed = SimpleNetworkDevice->LegacyBios->FarCall86 (
|
|
SimpleNetworkDevice->LegacyBios,
|
|
Segment, // Input segment
|
|
(UINT16) RomIdTableAddress->UNDI_Loader, // Offset
|
|
&InOutRegs, // Ptr to Regs
|
|
Buffer, // Reference to Stack
|
|
Size // Size of the Stack
|
|
);
|
|
if (ThunkFailed) {
|
|
return EFI_ABORTED;
|
|
}
|
|
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"The return code UndiLoaderTable->Status is = 0x%X\n\r",
|
|
UndiLoaderTable->Status)
|
|
);
|
|
DEBUG (
|
|
(DEBUG_NET,
|
|
"This error code should match eax, which is = 0x%X\n\r",
|
|
InOutRegs.X.AX)
|
|
);
|
|
|
|
if ((UndiLoaderTable->Status != 0) || (InOutRegs.X.AX != PXENV_EXIT_SUCCESS)) {
|
|
DEBUG ((DEBUG_NET, "LaunchBaseCode exits with error, RomAddress = 0x%X\n\r", RomAddress));
|
|
return EFI_ABORTED;
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, "Now returned from the UNDI code\n\r"));
|
|
|
|
DEBUG ((DEBUG_NET, "After the call, we have...\n\r"));
|
|
Print_Undi_Loader_Table (UndiLoaderTable);
|
|
|
|
DEBUG ((DEBUG_NET, "Display the PXENV+ and !PXE tables exported by NIC\n\r"));
|
|
Print_PXENV_Table ((VOID *)(((UINTN)UndiLoaderTable->PXENVptr.Segment << 4) | UndiLoaderTable->PXENVptr.Offset));
|
|
Print_PXE_Table ((VOID *)(((UINTN)UndiLoaderTable->PXEptr.Segment << 4) + UndiLoaderTable->PXEptr.Offset));
|
|
|
|
Pxe = (PXE_T *)(((UINTN)UndiLoaderTable->PXEptr.Segment << 4) + UndiLoaderTable->PXEptr.Offset);
|
|
SimpleNetworkDevice->Nii.Id = (UINT64)(UINTN) Pxe;
|
|
|
|
gBS->FreePool (Buffer);
|
|
|
|
//
|
|
// paranoia - make sure a valid !PXE structure
|
|
//
|
|
if (CompareMem (Pxe->Signature, PXE_SIG, sizeof Pxe->Signature) != 0) {
|
|
DEBUG ((DEBUG_ERROR, "!PXE Structure not found....\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
//
|
|
// its not - keep looking
|
|
//
|
|
}
|
|
|
|
if (CalculateSum8 ((UINT8 *) Pxe, Pxe->StructLength) != 0) {
|
|
DEBUG ((DEBUG_ERROR, "!PXE Checksum Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if (Pxe->StructLength < (UINT8 *) &Pxe->FirstSelector - (UINT8 *) Pxe->Signature) {
|
|
DEBUG ((DEBUG_ERROR, "!PXE Length Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if ((((UINTN) Pxe->Undi.Segment) << 4) + Pxe->Undi.Offset != (UINTN) RomIdTableAddress) {
|
|
DEBUG ((DEBUG_ERROR, "!PXE RomId Address Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
//
|
|
// This is the magic to bind the global PXE interface
|
|
// This dirtiness is for non-protocol shrouded access
|
|
//
|
|
SimpleNetworkDevice->PxeEntrySegment = Pxe->EntryPointSP.Segment;
|
|
|
|
if (SimpleNetworkDevice->PxeEntrySegment == 0) {
|
|
DEBUG ((DEBUG_ERROR, "!PXE EntryPointSP segment Error\n\r"));
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
SimpleNetworkDevice->PxeEntryOffset = Pxe->EntryPointSP.Offset;
|
|
|
|
DEBUG (
|
|
(
|
|
DEBUG_NET, "The entry point is 0x%X:0x%X\n\r", SimpleNetworkDevice->PxeEntrySegment, SimpleNetworkDevice->
|
|
PxeEntryOffset
|
|
)
|
|
);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Effect the Far Call into the PXE Layer
|
|
|
|
Note: When using a 32-bit stack segment do not push 32-bit words onto the stack. The PXE API
|
|
services will not work, unless there are three 16-bit parameters pushed onto the stack.
|
|
push DS ;Far pointer to parameter structure
|
|
push offset pxe_data_call_struct ;is pushed onto stack.
|
|
push Index ;UINT16 is pushed onto stack.
|
|
call dword ptr (s_PXE ptr es:[di]).EntryPointSP
|
|
add sp, 6 ;Caller cleans up stack.
|
|
|
|
@param SimpleNetworkDevice Device instance for simple network
|
|
@param Table Point to parameter/retun value table for legacy far call
|
|
@param TableSize The size of parameter/return value table
|
|
@param CallIndex The index of legacy call.
|
|
|
|
@return EFI_STATUS
|
|
**/
|
|
EFI_STATUS
|
|
MakePxeCall (
|
|
EFI_SIMPLE_NETWORK_DEV *SimpleNetworkDevice,
|
|
IN OUT VOID *Table,
|
|
IN UINTN TableSize,
|
|
IN UINT16 CallIndex
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_IA32_REGISTER_SET InOutRegs;
|
|
UINT16 *BPtr;
|
|
VOID *Buffer;
|
|
UINTN Size;
|
|
VOID *MemPageAddress;
|
|
UINTN Index;
|
|
BOOLEAN ThunkFailed;
|
|
|
|
DEBUG ((DEBUG_NET, "MakePxeCall(CallIndex = %02x, Table = %X, TableSize = %d)\n", CallIndex, Table, TableSize));
|
|
|
|
if (SimpleNetworkDevice->PxeEntrySegment == 0 && SimpleNetworkDevice->PxeEntryOffset == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
//
|
|
// Allocate a transient data structure for the argument table
|
|
// This table needs to have the input XXX_t structure copied into here.
|
|
// The PXE UNDI can only grab this table when it's below one-MB, and
|
|
// this implementation will not try to push this table on the stack
|
|
// (although this is a possible optimization path since EFI always allocates
|
|
// 4K as a minimum page size...............)
|
|
//
|
|
Status = BiosSnp16AllocatePagesBelowOneMb (
|
|
TableSize / EFI_PAGE_SIZE + 1,
|
|
&MemPageAddress
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "We had a failure in AllocatePages, status code = 0x%X\n", Status));
|
|
return Status;
|
|
}
|
|
//
|
|
// Copy the > 1MB pool table to a sub-1MB buffer
|
|
//
|
|
CopyMem (MemPageAddress, Table, TableSize);
|
|
|
|
//
|
|
// Allocate space for IA-32 register context
|
|
//
|
|
ZeroMem (&InOutRegs, sizeof (InOutRegs));
|
|
InOutRegs.X.ES = SimpleNetworkDevice->PxeEntrySegment;
|
|
InOutRegs.X.DI = SimpleNetworkDevice->PxeEntryOffset;
|
|
|
|
//
|
|
// The game here is to build the stack which will subsequently
|
|
// get copied down below 1 MB by the FarCall primitive.
|
|
// This is now our working stack
|
|
//
|
|
Size = 6;
|
|
Status = gBS->AllocatePool (
|
|
EfiRuntimeServicesData,
|
|
Size,
|
|
&Buffer
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
BPtr = (UINT16 *) Buffer;
|
|
*BPtr++ = CallIndex;
|
|
//
|
|
// SP + 2
|
|
//
|
|
*BPtr++ = TO_OFFSET (MemPageAddress);
|
|
*BPtr++ = TO_SEGMENT (MemPageAddress);
|
|
|
|
DEBUG ((DEBUG_NET, "State before FarCall86\n"));
|
|
DEBUG ((DEBUG_NET, "The Buffer is at 0x%X\n\r", Buffer));
|
|
BPtr = (UINT16 *) Buffer;
|
|
DEBUG ((DEBUG_NET, " Buffer = %04X %04X %04X", *BPtr, *(BPtr + 1), *(BPtr + 2)));
|
|
DEBUG ((DEBUG_NET, " MemPage = "));
|
|
for (Index = 0; Index < TableSize; Index++) {
|
|
DEBUG ((DEBUG_NET, " %02x", *((UINT8 *) MemPageAddress + Index)));
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, "\n"));
|
|
|
|
ThunkFailed = SimpleNetworkDevice->LegacyBios->FarCall86 (
|
|
SimpleNetworkDevice->LegacyBios,
|
|
SimpleNetworkDevice->PxeEntrySegment, // Input segment
|
|
SimpleNetworkDevice->PxeEntryOffset,
|
|
&InOutRegs, // Ptr to Regs
|
|
Buffer, // Reference to Stack
|
|
6 // Size of the Stack
|
|
);
|
|
if (ThunkFailed) {
|
|
return EFI_ABORTED;
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, "State after FarCall86\n"));
|
|
DEBUG ((DEBUG_NET, "The Buffer is at 0x%X\n\r", Buffer));
|
|
BPtr = (UINT16 *) Buffer;
|
|
DEBUG ((DEBUG_NET, " Buffer = %04X %04X %04X", *BPtr, *(BPtr + 1), *(BPtr + 2)));
|
|
DEBUG ((DEBUG_NET, " MemPage = "));
|
|
for (Index = 0; Index < TableSize; Index++) {
|
|
DEBUG ((DEBUG_NET, " %02x", *((UINT8 *) MemPageAddress + Index)));
|
|
}
|
|
|
|
DEBUG ((DEBUG_NET, "\n"));
|
|
|
|
//
|
|
// Copy the sub 1MB table to > 1MB table
|
|
//
|
|
CopyMem (Table, MemPageAddress, TableSize);
|
|
|
|
//
|
|
// For PXE UNDI call, AX contains the return status.
|
|
// Convert the PXE UNDI Status to EFI_STATUS type
|
|
//
|
|
if (InOutRegs.X.AX == PXENV_EXIT_SUCCESS) {
|
|
Status = EFI_SUCCESS;
|
|
} else {
|
|
Status = EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Clean up house
|
|
//
|
|
gBS->FreePool (Buffer);
|
|
gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) MemPageAddress, TableSize / EFI_PAGE_SIZE + 1);
|
|
|
|
return Status;
|
|
}
|