mirror of https://github.com/acidanthera/audk.git
942 lines
27 KiB
C
942 lines
27 KiB
C
/** @file
|
|
Main SEC phase code. Transitions to PEI.
|
|
|
|
Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
|
|
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include <PiPei.h>
|
|
|
|
#include <Library/PeimEntryPoint.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/PeiServicesLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/UefiCpuLib.h>
|
|
#include <Library/DebugAgentLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/PeCoffLib.h>
|
|
#include <Library/PeCoffGetEntryPointLib.h>
|
|
#include <Library/PeCoffExtraActionLib.h>
|
|
#include <Library/ExtractGuidedSectionLib.h>
|
|
#include <Library/LocalApicLib.h>
|
|
|
|
#include <Ppi/TemporaryRamSupport.h>
|
|
|
|
#define SEC_IDT_ENTRY_COUNT 34
|
|
|
|
typedef struct _SEC_IDT_TABLE {
|
|
EFI_PEI_SERVICES *PeiService;
|
|
IA32_IDT_GATE_DESCRIPTOR IdtTable[SEC_IDT_ENTRY_COUNT];
|
|
} SEC_IDT_TABLE;
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecStartupPhase2 (
|
|
IN VOID *Context
|
|
);
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TemporaryRamMigration (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
|
IN UINTN CopySize
|
|
);
|
|
|
|
//
|
|
//
|
|
//
|
|
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = {
|
|
TemporaryRamMigration
|
|
};
|
|
|
|
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTable[] = {
|
|
{
|
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
|
&gEfiTemporaryRamSupportPpiGuid,
|
|
&mTemporaryRamSupportPpi
|
|
},
|
|
};
|
|
|
|
//
|
|
// Template of an IDT entry pointing to 10:FFFFFFE4h.
|
|
//
|
|
IA32_IDT_GATE_DESCRIPTOR mIdtEntryTemplate = {
|
|
{ // Bits
|
|
0xffe4, // OffsetLow
|
|
0x10, // Selector
|
|
0x0, // Reserved_0
|
|
IA32_IDT_GATE_TYPE_INTERRUPT_32, // GateType
|
|
0xffff // OffsetHigh
|
|
}
|
|
};
|
|
|
|
/**
|
|
Locates the main boot firmware volume.
|
|
|
|
@param[in,out] BootFv On input, the base of the BootFv
|
|
On output, the decompressed main firmware volume
|
|
|
|
@retval EFI_SUCCESS The main firmware volume was located and decompressed
|
|
@retval EFI_NOT_FOUND The main firmware volume was not found
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindMainFv (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv
|
|
)
|
|
{
|
|
EFI_FIRMWARE_VOLUME_HEADER *Fv;
|
|
UINTN Distance;
|
|
|
|
ASSERT (((UINTN) *BootFv & EFI_PAGE_MASK) == 0);
|
|
|
|
Fv = *BootFv;
|
|
Distance = (UINTN) (*BootFv)->FvLength;
|
|
do {
|
|
Fv = (EFI_FIRMWARE_VOLUME_HEADER*) ((UINT8*) Fv - EFI_PAGE_SIZE);
|
|
Distance += EFI_PAGE_SIZE;
|
|
if (Distance > SIZE_32MB) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
|
continue;
|
|
}
|
|
|
|
if ((UINTN) Fv->FvLength > Distance) {
|
|
continue;
|
|
}
|
|
|
|
*BootFv = Fv;
|
|
return EFI_SUCCESS;
|
|
|
|
} while (TRUE);
|
|
}
|
|
|
|
/**
|
|
Locates a section within a series of sections
|
|
with the specified section type.
|
|
|
|
The Instance parameter indicates which instance of the section
|
|
type to return. (0 is first instance, 1 is second...)
|
|
|
|
@param[in] Sections The sections to search
|
|
@param[in] SizeOfSections Total size of all sections
|
|
@param[in] SectionType The section type to locate
|
|
@param[in] Instance The section instance number
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsSectionInstance (
|
|
IN VOID *Sections,
|
|
IN UINTN SizeOfSections,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
IN UINTN Instance,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfSections;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
|
|
|
//
|
|
// Loop through the FFS file sections within the PEI Core FFS file
|
|
//
|
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) Sections;
|
|
EndOfSections = EndOfSection + SizeOfSections;
|
|
for (;;) {
|
|
if (EndOfSection == EndOfSections) {
|
|
break;
|
|
}
|
|
CurrentAddress = (EndOfSection + 3) & ~(3ULL);
|
|
if (CurrentAddress >= EndOfSections) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;
|
|
|
|
Size = SECTION_SIZE (Section);
|
|
if (Size < sizeof (*Section)) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
EndOfSection = CurrentAddress + Size;
|
|
if (EndOfSection > EndOfSections) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
//
|
|
// Look for the requested section type
|
|
//
|
|
if (Section->Type == SectionType) {
|
|
if (Instance == 0) {
|
|
*FoundSection = Section;
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
Instance--;
|
|
}
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
Locates a section within a series of sections
|
|
with the specified section type.
|
|
|
|
@param[in] Sections The sections to search
|
|
@param[in] SizeOfSections Total size of all sections
|
|
@param[in] SectionType The section type to locate
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsSectionInSections (
|
|
IN VOID *Sections,
|
|
IN UINTN SizeOfSections,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
return FindFfsSectionInstance (
|
|
Sections,
|
|
SizeOfSections,
|
|
SectionType,
|
|
0,
|
|
FoundSection
|
|
);
|
|
}
|
|
|
|
/**
|
|
Locates a FFS file with the specified file type and a section
|
|
within that file with the specified section type.
|
|
|
|
@param[in] Fv The firmware volume to search
|
|
@param[in] FileType The file type to locate
|
|
@param[in] SectionType The section type to locate
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsFileAndSection (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
|
IN EFI_FV_FILETYPE FileType,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
|
EFI_FFS_FILE_HEADER *File;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
|
|
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((EFI_D_ERROR, "FV at %p does not have FV header signature\n", Fv));
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Fv;
|
|
EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;
|
|
|
|
//
|
|
// Loop through the FFS files in the Boot Firmware Volume
|
|
//
|
|
for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {
|
|
|
|
CurrentAddress = (EndOfFile + 7) & ~(7ULL);
|
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
|
|
Size = FFS_FILE_SIZE (File);
|
|
if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
EndOfFile = CurrentAddress + Size;
|
|
if (EndOfFile > EndOfFirmwareVolume) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
//
|
|
// Look for the request file type
|
|
//
|
|
if (File->Type != FileType) {
|
|
continue;
|
|
}
|
|
|
|
Status = FindFfsSectionInSections (
|
|
(VOID*) (File + 1),
|
|
(UINTN) EndOfFile - (UINTN) (File + 1),
|
|
SectionType,
|
|
FoundSection
|
|
);
|
|
if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
|
|
return Status;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Locates the compressed main firmware volume and decompresses it.
|
|
|
|
@param[in,out] Fv On input, the firmware volume to search
|
|
On output, the decompressed BOOT/PEI FV
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
DecompressMemFvs (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **Fv
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_GUID_DEFINED_SECTION *Section;
|
|
UINT32 OutputBufferSize;
|
|
UINT32 ScratchBufferSize;
|
|
UINT16 SectionAttribute;
|
|
UINT32 AuthenticationStatus;
|
|
VOID *OutputBuffer;
|
|
VOID *ScratchBuffer;
|
|
EFI_COMMON_SECTION_HEADER *FvSection;
|
|
EFI_FIRMWARE_VOLUME_HEADER *PeiMemFv;
|
|
EFI_FIRMWARE_VOLUME_HEADER *DxeMemFv;
|
|
UINT32 FvHeaderSize;
|
|
UINT32 FvSectionSize;
|
|
|
|
FvSection = (EFI_COMMON_SECTION_HEADER*) NULL;
|
|
|
|
Status = FindFfsFileAndSection (
|
|
*Fv,
|
|
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
|
|
EFI_SECTION_GUID_DEFINED,
|
|
(EFI_COMMON_SECTION_HEADER**) &Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Unable to find GUID defined section\n"));
|
|
return Status;
|
|
}
|
|
|
|
Status = ExtractGuidedSectionGetInfo (
|
|
Section,
|
|
&OutputBufferSize,
|
|
&ScratchBufferSize,
|
|
&SectionAttribute
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Unable to GetInfo for GUIDed section\n"));
|
|
return Status;
|
|
}
|
|
|
|
OutputBuffer = (VOID*) ((UINT8*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
|
|
ScratchBuffer = ALIGN_POINTER ((UINT8*) OutputBuffer + OutputBufferSize, SIZE_1MB);
|
|
|
|
DEBUG ((EFI_D_VERBOSE, "%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
|
|
"PcdOvmfDecompressionScratchEnd=0x%x\n", __FUNCTION__, OutputBuffer,
|
|
OutputBufferSize, ScratchBuffer, ScratchBufferSize,
|
|
PcdGet32 (PcdOvmfDecompressionScratchEnd)));
|
|
ASSERT ((UINTN)ScratchBuffer + ScratchBufferSize ==
|
|
PcdGet32 (PcdOvmfDecompressionScratchEnd));
|
|
|
|
Status = ExtractGuidedSectionDecode (
|
|
Section,
|
|
&OutputBuffer,
|
|
ScratchBuffer,
|
|
&AuthenticationStatus
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Error during GUID section decode\n"));
|
|
return Status;
|
|
}
|
|
|
|
Status = FindFfsSectionInstance (
|
|
OutputBuffer,
|
|
OutputBufferSize,
|
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
|
0,
|
|
&FvSection
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Unable to find PEI FV section\n"));
|
|
return Status;
|
|
}
|
|
|
|
ASSERT (SECTION_SIZE (FvSection) ==
|
|
(PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection)));
|
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
|
|
|
PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
|
|
CopyMem (PeiMemFv, (VOID*) (FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));
|
|
|
|
if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
|
|
CpuDeadLoop ();
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
Status = FindFfsSectionInstance (
|
|
OutputBuffer,
|
|
OutputBufferSize,
|
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
|
1,
|
|
&FvSection
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Unable to find DXE FV section\n"));
|
|
return Status;
|
|
}
|
|
|
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
|
|
|
if (IS_SECTION2 (FvSection)) {
|
|
FvSectionSize = SECTION2_SIZE (FvSection);
|
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER2);
|
|
} else {
|
|
FvSectionSize = SECTION_SIZE (FvSection);
|
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER);
|
|
}
|
|
|
|
ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));
|
|
|
|
DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase);
|
|
CopyMem (DxeMemFv, (VOID*) ((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));
|
|
|
|
if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
|
|
CpuDeadLoop ();
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
*Fv = PeiMemFv;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Locates the PEI Core entry point address
|
|
|
|
@param[in] Fv The firmware volume to search
|
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindPeiCoreImageBaseInFv (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
|
|
Status = FindFfsFileAndSection (
|
|
Fv,
|
|
EFI_FV_FILETYPE_PEI_CORE,
|
|
EFI_SECTION_PE32,
|
|
&Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
Status = FindFfsFileAndSection (
|
|
Fv,
|
|
EFI_FV_FILETYPE_PEI_CORE,
|
|
EFI_SECTION_TE,
|
|
&Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Unable to find PEI Core image\n"));
|
|
return Status;
|
|
}
|
|
}
|
|
|
|
*PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 8-bits of CMOS data.
|
|
|
|
Reads the 8-bits of CMOS data at the location specified by Index.
|
|
The 8-bit read value is returned.
|
|
|
|
@param Index The CMOS location to read.
|
|
|
|
@return The value read.
|
|
|
|
**/
|
|
STATIC
|
|
UINT8
|
|
CmosRead8 (
|
|
IN UINTN Index
|
|
)
|
|
{
|
|
IoWrite8 (0x70, (UINT8) Index);
|
|
return IoRead8 (0x71);
|
|
}
|
|
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsS3Resume (
|
|
VOID
|
|
)
|
|
{
|
|
return (CmosRead8 (0xF) == 0xFE);
|
|
}
|
|
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
GetS3ResumePeiFv (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **PeiFv
|
|
)
|
|
{
|
|
*PeiFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Locates the PEI Core entry point address
|
|
|
|
@param[in,out] Fv The firmware volume to search
|
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
VOID
|
|
FindPeiCoreImageBase (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv,
|
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase
|
|
)
|
|
{
|
|
BOOLEAN S3Resume;
|
|
|
|
*PeiCoreImageBase = 0;
|
|
|
|
S3Resume = IsS3Resume ();
|
|
if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
|
|
//
|
|
// A malicious runtime OS may have injected something into our previously
|
|
// decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
|
|
//
|
|
DEBUG ((EFI_D_VERBOSE, "SEC: S3 resume\n"));
|
|
GetS3ResumePeiFv (BootFv);
|
|
} else {
|
|
//
|
|
// We're either not resuming, or resuming "securely" -- we'll decompress
|
|
// both PEI FV and DXE FV from pristine flash.
|
|
//
|
|
DEBUG ((EFI_D_VERBOSE, "SEC: %a\n",
|
|
S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"));
|
|
FindMainFv (BootFv);
|
|
|
|
DecompressMemFvs (BootFv);
|
|
}
|
|
|
|
FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase);
|
|
}
|
|
|
|
/**
|
|
Find core image base.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindImageBase (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFirmwareVolumePtr,
|
|
OUT EFI_PHYSICAL_ADDRESS *SecCoreImageBase
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
|
EFI_FFS_FILE_HEADER *File;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
|
|
|
*SecCoreImageBase = 0;
|
|
|
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) BootFirmwareVolumePtr;
|
|
EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;
|
|
|
|
//
|
|
// Loop through the FFS files in the Boot Firmware Volume
|
|
//
|
|
for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {
|
|
|
|
CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
|
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
|
|
Size = FFS_FILE_SIZE (File);
|
|
if (Size < sizeof (*File)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EndOfFile = CurrentAddress + Size;
|
|
if (EndOfFile > EndOfFirmwareVolume) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Look for SEC Core
|
|
//
|
|
if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Loop through the FFS file sections within the FFS file
|
|
//
|
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) (File + 1);
|
|
for (;;) {
|
|
CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
|
|
Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;
|
|
|
|
Size = SECTION_SIZE (Section);
|
|
if (Size < sizeof (*Section)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EndOfSection = CurrentAddress + Size;
|
|
if (EndOfSection > EndOfFile) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Look for executable sections
|
|
//
|
|
if (Section->Type == EFI_SECTION_PE32 || Section->Type == EFI_SECTION_TE) {
|
|
if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
|
|
*SecCoreImageBase = (PHYSICAL_ADDRESS) (UINTN) (Section + 1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// SEC Core image found
|
|
//
|
|
if (*SecCoreImageBase != 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Find and return Pei Core entry point.
|
|
|
|
It also find SEC and PEI Core file debug information. It will report them if
|
|
remote debug is enabled.
|
|
|
|
**/
|
|
VOID
|
|
FindAndReportEntryPoints (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER **BootFirmwareVolumePtr,
|
|
OUT EFI_PEI_CORE_ENTRY_POINT *PeiCoreEntryPoint
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS SecCoreImageBase;
|
|
EFI_PHYSICAL_ADDRESS PeiCoreImageBase;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
|
|
//
|
|
// Find SEC Core and PEI Core image base
|
|
//
|
|
Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase);
|
|
|
|
ZeroMem ((VOID *) &ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT));
|
|
//
|
|
// Report SEC Core debug information when remote debug is enabled
|
|
//
|
|
ImageContext.ImageAddress = SecCoreImageBase;
|
|
ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
|
|
PeCoffLoaderRelocateImageExtraAction (&ImageContext);
|
|
|
|
//
|
|
// Report PEI Core debug information when remote debug is enabled
|
|
//
|
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiCoreImageBase;
|
|
ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
|
|
PeCoffLoaderRelocateImageExtraAction (&ImageContext);
|
|
|
|
//
|
|
// Find PEI Core entry point
|
|
//
|
|
Status = PeCoffLoaderGetEntryPoint ((VOID *) (UINTN) PeiCoreImageBase, (VOID**) PeiCoreEntryPoint);
|
|
if (EFI_ERROR (Status)) {
|
|
*PeiCoreEntryPoint = 0;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecCoreStartupWithStack (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFv,
|
|
IN VOID *TopOfCurrentStack
|
|
)
|
|
{
|
|
EFI_SEC_PEI_HAND_OFF SecCoreData;
|
|
SEC_IDT_TABLE IdtTableInStack;
|
|
IA32_DESCRIPTOR IdtDescriptor;
|
|
UINT32 Index;
|
|
volatile UINT8 *Table;
|
|
|
|
//
|
|
// To ensure SMM can't be compromised on S3 resume, we must force re-init of
|
|
// the BaseExtractGuidedSectionLib. Since this is before library contructors
|
|
// are called, we must use a loop rather than SetMem.
|
|
//
|
|
Table = (UINT8*)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
|
|
for (Index = 0;
|
|
Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
|
|
++Index) {
|
|
Table[Index] = 0;
|
|
}
|
|
|
|
ProcessLibraryConstructorList (NULL, NULL);
|
|
|
|
DEBUG ((EFI_D_INFO,
|
|
"SecCoreStartupWithStack(0x%x, 0x%x)\n",
|
|
(UINT32)(UINTN)BootFv,
|
|
(UINT32)(UINTN)TopOfCurrentStack
|
|
));
|
|
|
|
//
|
|
// Initialize floating point operating environment
|
|
// to be compliant with UEFI spec.
|
|
//
|
|
InitializeFloatingPointUnits ();
|
|
|
|
//
|
|
// Initialize IDT
|
|
//
|
|
IdtTableInStack.PeiService = NULL;
|
|
for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index ++) {
|
|
CopyMem (&IdtTableInStack.IdtTable[Index], &mIdtEntryTemplate, sizeof (mIdtEntryTemplate));
|
|
}
|
|
|
|
IdtDescriptor.Base = (UINTN)&IdtTableInStack.IdtTable;
|
|
IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);
|
|
|
|
AsmWriteIdtr (&IdtDescriptor);
|
|
|
|
#if defined (MDE_CPU_X64)
|
|
//
|
|
// ASSERT that the Page Tables were set by the reset vector code to
|
|
// the address we expect.
|
|
//
|
|
ASSERT (AsmReadCr3 () == (UINTN) PcdGet32 (PcdOvmfSecPageTablesBase));
|
|
#endif
|
|
|
|
//
|
|
// |-------------| <-- TopOfCurrentStack
|
|
// | Stack | 32k
|
|
// |-------------|
|
|
// | Heap | 32k
|
|
// |-------------| <-- SecCoreData.TemporaryRamBase
|
|
//
|
|
|
|
ASSERT ((UINTN) (PcdGet32 (PcdOvmfSecPeiTempRamBase) +
|
|
PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
|
|
(UINTN) TopOfCurrentStack);
|
|
|
|
//
|
|
// Initialize SEC hand-off state
|
|
//
|
|
SecCoreData.DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
|
|
|
|
SecCoreData.TemporaryRamSize = (UINTN) PcdGet32 (PcdOvmfSecPeiTempRamSize);
|
|
SecCoreData.TemporaryRamBase = (VOID*)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);
|
|
|
|
SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase;
|
|
SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1;
|
|
|
|
SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
|
|
SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1;
|
|
|
|
SecCoreData.BootFirmwareVolumeBase = BootFv;
|
|
SecCoreData.BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;
|
|
|
|
//
|
|
// Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
|
|
//
|
|
IoWrite8 (0x21, 0xff);
|
|
IoWrite8 (0xA1, 0xff);
|
|
|
|
//
|
|
// Initialize Local APIC Timer hardware and disable Local APIC Timer
|
|
// interrupts before initializing the Debug Agent and the debug timer is
|
|
// enabled.
|
|
//
|
|
InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
|
|
DisableApicTimerInterrupt ();
|
|
|
|
//
|
|
// Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
|
|
//
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
|
|
}
|
|
|
|
/**
|
|
Caller provided function to be invoked at the end of InitializeDebugAgent().
|
|
|
|
Entry point to the C language phase of SEC. After the SEC assembly
|
|
code has initialized some temporary memory and set up the stack,
|
|
the control is transferred to this function.
|
|
|
|
@param[in] Context The first input parameter of InitializeDebugAgent().
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
SecStartupPhase2(
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
EFI_SEC_PEI_HAND_OFF *SecCoreData;
|
|
EFI_FIRMWARE_VOLUME_HEADER *BootFv;
|
|
EFI_PEI_CORE_ENTRY_POINT PeiCoreEntryPoint;
|
|
|
|
SecCoreData = (EFI_SEC_PEI_HAND_OFF *) Context;
|
|
|
|
//
|
|
// Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
|
|
// is enabled.
|
|
//
|
|
BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
|
|
FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
|
|
SecCoreData->BootFirmwareVolumeBase = BootFv;
|
|
SecCoreData->BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;
|
|
|
|
//
|
|
// Transfer the control to the PEI core
|
|
//
|
|
(*PeiCoreEntryPoint) (SecCoreData, (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTable);
|
|
|
|
//
|
|
// If we get here then the PEI Core returned, which is not recoverable.
|
|
//
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TemporaryRamMigration (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
|
IN UINTN CopySize
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR IdtDescriptor;
|
|
VOID *OldHeap;
|
|
VOID *NewHeap;
|
|
VOID *OldStack;
|
|
VOID *NewStack;
|
|
DEBUG_AGENT_CONTEXT_POSTMEM_SEC DebugAgentContext;
|
|
BOOLEAN OldStatus;
|
|
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
|
|
|
|
DEBUG ((EFI_D_INFO,
|
|
"TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
|
|
TemporaryMemoryBase,
|
|
PermanentMemoryBase,
|
|
(UINT64)CopySize
|
|
));
|
|
|
|
OldHeap = (VOID*)(UINTN)TemporaryMemoryBase;
|
|
NewHeap = (VOID*)((UINTN)PermanentMemoryBase + (CopySize >> 1));
|
|
|
|
OldStack = (VOID*)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
|
|
NewStack = (VOID*)(UINTN)PermanentMemoryBase;
|
|
|
|
DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap;
|
|
DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
|
|
|
|
OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *) &DebugAgentContext, NULL);
|
|
|
|
//
|
|
// Migrate Heap
|
|
//
|
|
CopyMem (NewHeap, OldHeap, CopySize >> 1);
|
|
|
|
//
|
|
// Migrate Stack
|
|
//
|
|
CopyMem (NewStack, OldStack, CopySize >> 1);
|
|
|
|
//
|
|
// Rebase IDT table in permanent memory
|
|
//
|
|
AsmReadIdtr (&IdtDescriptor);
|
|
IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack;
|
|
|
|
AsmWriteIdtr (&IdtDescriptor);
|
|
|
|
//
|
|
// Use SetJump()/LongJump() to switch to a new stack.
|
|
//
|
|
if (SetJump (&JumpBuffer) == 0) {
|
|
#if defined (MDE_CPU_IA32)
|
|
JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset;
|
|
JumpBuffer.Ebp = JumpBuffer.Ebp + DebugAgentContext.StackMigrateOffset;
|
|
#endif
|
|
#if defined (MDE_CPU_X64)
|
|
JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset;
|
|
JumpBuffer.Rbp = JumpBuffer.Rbp + DebugAgentContext.StackMigrateOffset;
|
|
#endif
|
|
LongJump (&JumpBuffer, (UINTN)-1);
|
|
}
|
|
|
|
SaveAndSetDebugTimerInterrupt (OldStatus);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|