audk/NetworkPkg/Library/DxeIpIoLib/DxeIpIoLib.c

2244 lines
59 KiB
C

/** @file
IpIo Library.
(C) Copyright 2014 Hewlett-Packard Development Company, L.P.<BR>
Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <Protocol/Udp4.h>
#include <Library/IpIoLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DpcLib.h>
GLOBAL_REMOVE_IF_UNREFERENCED LIST_ENTRY mActiveIpIoList = {
&mActiveIpIoList,
&mActiveIpIoList
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_IP4_CONFIG_DATA mIp4IoDefaultIpConfigData = {
EFI_IP_PROTO_UDP,
FALSE,
TRUE,
FALSE,
FALSE,
FALSE,
{
{ 0, 0, 0, 0 }
},
{
{ 0, 0, 0, 0 }
},
0,
255,
FALSE,
FALSE,
0,
0
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_IP6_CONFIG_DATA mIp6IoDefaultIpConfigData = {
EFI_IP_PROTO_UDP,
FALSE,
TRUE,
FALSE,
{
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
},
{
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
},
0,
255,
0,
0,
0
};
GLOBAL_REMOVE_IF_UNREFERENCED ICMP_ERROR_INFO mIcmpErrMap[10] = {
{ FALSE, TRUE }, // ICMP_ERR_UNREACH_NET
{ FALSE, TRUE }, // ICMP_ERR_UNREACH_HOST
{ TRUE, TRUE }, // ICMP_ERR_UNREACH_PROTOCOL
{ TRUE, TRUE }, // ICMP_ERR_UNREACH_PORT
{ TRUE, TRUE }, // ICMP_ERR_MSGSIZE
{ FALSE, TRUE }, // ICMP_ERR_UNREACH_SRCFAIL
{ FALSE, TRUE }, // ICMP_ERR_TIMXCEED_INTRANS
{ FALSE, TRUE }, // ICMP_ERR_TIMEXCEED_REASS
{ FALSE, FALSE }, // ICMP_ERR_QUENCH
{ FALSE, TRUE } // ICMP_ERR_PARAMPROB
};
GLOBAL_REMOVE_IF_UNREFERENCED ICMP_ERROR_INFO mIcmp6ErrMap[10] = {
{ FALSE, TRUE }, // ICMP6_ERR_UNREACH_NET
{ FALSE, TRUE }, // ICMP6_ERR_UNREACH_HOST
{ TRUE, TRUE }, // ICMP6_ERR_UNREACH_PROTOCOL
{ TRUE, TRUE }, // ICMP6_ERR_UNREACH_PORT
{ TRUE, TRUE }, // ICMP6_ERR_PACKAGE_TOOBIG
{ FALSE, TRUE }, // ICMP6_ERR_TIMXCEED_HOPLIMIT
{ FALSE, TRUE }, // ICMP6_ERR_TIMXCEED_REASS
{ FALSE, TRUE }, // ICMP6_ERR_PARAMPROB_HEADER
{ FALSE, TRUE }, // ICMP6_ERR_PARAMPROB_NEXHEADER
{ FALSE, TRUE } // ICMP6_ERR_PARAMPROB_IPV6OPTION
};
/**
Notify function for IP transmit token.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoTransmitHandlerDpc (
IN VOID *Context
);
/**
Notify function for IP transmit token.
@param[in] Event The event signaled.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoTransmitHandler (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
This function create an IP child ,open the IP protocol, and return the opened
IP protocol as Interface.
@param[in] ControllerHandle The controller handle.
@param[in] ImageHandle The image handle.
@param[in] ChildHandle Pointer to the buffer to save the IP child handle.
@param[in] IpVersion The version of the IP protocol to use, either
IPv4 or IPv6.
@param[out] Interface Pointer used to get the IP protocol interface.
@retval EFI_SUCCESS The IP child is created and the IP protocol
interface is retrieved.
@retval EFI_UNSUPPORTED Unsupported IpVersion.
@retval Others The required operation failed.
**/
EFI_STATUS
IpIoCreateIpChildOpenProtocol (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE *ChildHandle,
IN UINT8 IpVersion,
OUT VOID **Interface
)
{
EFI_STATUS Status;
EFI_GUID *ServiceBindingGuid;
EFI_GUID *IpProtocolGuid;
if (IpVersion == IP_VERSION_4) {
ServiceBindingGuid = &gEfiIp4ServiceBindingProtocolGuid;
IpProtocolGuid = &gEfiIp4ProtocolGuid;
} else if (IpVersion == IP_VERSION_6) {
ServiceBindingGuid = &gEfiIp6ServiceBindingProtocolGuid;
IpProtocolGuid = &gEfiIp6ProtocolGuid;
} else {
return EFI_UNSUPPORTED;
}
//
// Create an IP child.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
ImageHandle,
ServiceBindingGuid,
ChildHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Open the IP protocol installed on the *ChildHandle.
//
Status = gBS->OpenProtocol (
*ChildHandle,
IpProtocolGuid,
Interface,
ImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
//
// On failure, destroy the IP child.
//
NetLibDestroyServiceChild (
ControllerHandle,
ImageHandle,
ServiceBindingGuid,
*ChildHandle
);
}
return Status;
}
/**
This function close the previously opened IP protocol and destroy the IP child.
@param[in] ControllerHandle The controller handle.
@param[in] ImageHandle The image handle.
@param[in] ChildHandle The child handle of the IP child.
@param[in] IpVersion The version of the IP protocol to use, either
IPv4 or IPv6.
@retval EFI_SUCCESS The IP protocol is closed and the relevant IP child
is destroyed.
@retval EFI_UNSUPPORTED Unsupported IpVersion.
@retval Others The required operation failed.
**/
EFI_STATUS
IpIoCloseProtocolDestroyIpChild (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE ChildHandle,
IN UINT8 IpVersion
)
{
EFI_STATUS Status;
EFI_GUID *ServiceBindingGuid;
EFI_GUID *IpProtocolGuid;
if (IpVersion == IP_VERSION_4) {
ServiceBindingGuid = &gEfiIp4ServiceBindingProtocolGuid;
IpProtocolGuid = &gEfiIp4ProtocolGuid;
} else if (IpVersion == IP_VERSION_6) {
ServiceBindingGuid = &gEfiIp6ServiceBindingProtocolGuid;
IpProtocolGuid = &gEfiIp6ProtocolGuid;
} else {
return EFI_UNSUPPORTED;
}
//
// Close the previously opened IP protocol.
//
Status = gBS->CloseProtocol (
ChildHandle,
IpProtocolGuid,
ImageHandle,
ControllerHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Destroy the IP child.
//
return NetLibDestroyServiceChild (
ControllerHandle,
ImageHandle,
ServiceBindingGuid,
ChildHandle
);
}
/**
This function handles ICMPv4 packets. It is the worker function of
IpIoIcmpHandler.
@param[in] IpIo Pointer to the IP_IO instance.
@param[in, out] Pkt Pointer to the ICMPv4 packet.
@param[in] Session Pointer to the net session of this ICMPv4 packet.
@retval EFI_SUCCESS The ICMPv4 packet is handled successfully.
@retval EFI_ABORTED This type of ICMPv4 packet is not supported.
**/
EFI_STATUS
IpIoIcmpv4Handler (
IN IP_IO *IpIo,
IN OUT NET_BUF *Pkt,
IN EFI_NET_SESSION_DATA *Session
)
{
IP4_ICMP_ERROR_HEAD *IcmpHdr;
EFI_IP4_HEADER *IpHdr;
UINT8 IcmpErr;
UINT8 *PayLoadHdr;
UINT8 Type;
UINT8 Code;
UINT32 TrimBytes;
ASSERT (IpIo != NULL);
ASSERT (Pkt != NULL);
ASSERT (Session != NULL);
ASSERT (IpIo->IpVersion == IP_VERSION_4);
//
// Check the ICMP packet length.
//
if (Pkt->TotalSize < sizeof (IP4_ICMP_ERROR_HEAD)) {
return EFI_ABORTED;
}
IcmpHdr = NET_PROTO_HDR (Pkt, IP4_ICMP_ERROR_HEAD);
IpHdr = (EFI_IP4_HEADER *)(&IcmpHdr->IpHead);
if (Pkt->TotalSize < ICMP_ERRLEN (IpHdr)) {
return EFI_ABORTED;
}
Type = IcmpHdr->Head.Type;
Code = IcmpHdr->Head.Code;
//
// Analyze the ICMP Error in this ICMP pkt
//
switch (Type) {
case ICMP_TYPE_UNREACH:
switch (Code) {
case ICMP_CODE_UNREACH_NET:
case ICMP_CODE_UNREACH_HOST:
case ICMP_CODE_UNREACH_PROTOCOL:
case ICMP_CODE_UNREACH_PORT:
case ICMP_CODE_UNREACH_SRCFAIL:
IcmpErr = (UINT8)(ICMP_ERR_UNREACH_NET + Code);
break;
case ICMP_CODE_UNREACH_NEEDFRAG:
IcmpErr = ICMP_ERR_MSGSIZE;
break;
case ICMP_CODE_UNREACH_NET_UNKNOWN:
case ICMP_CODE_UNREACH_NET_PROHIB:
case ICMP_CODE_UNREACH_TOSNET:
IcmpErr = ICMP_ERR_UNREACH_NET;
break;
case ICMP_CODE_UNREACH_HOST_UNKNOWN:
case ICMP_CODE_UNREACH_ISOLATED:
case ICMP_CODE_UNREACH_HOST_PROHIB:
case ICMP_CODE_UNREACH_TOSHOST:
IcmpErr = ICMP_ERR_UNREACH_HOST;
break;
default:
return EFI_ABORTED;
}
break;
case ICMP_TYPE_TIMXCEED:
if (Code > 1) {
return EFI_ABORTED;
}
IcmpErr = (UINT8)(Code + ICMP_ERR_TIMXCEED_INTRANS);
break;
case ICMP_TYPE_PARAMPROB:
if (Code > 1) {
return EFI_ABORTED;
}
IcmpErr = ICMP_ERR_PARAMPROB;
break;
case ICMP_TYPE_SOURCEQUENCH:
if (Code != 0) {
return EFI_ABORTED;
}
IcmpErr = ICMP_ERR_QUENCH;
break;
default:
return EFI_ABORTED;
}
//
// Notify user the ICMP pkt only containing payload except
// IP and ICMP header
//
PayLoadHdr = (UINT8 *)((UINT8 *)IpHdr + EFI_IP4_HEADER_LEN (IpHdr));
TrimBytes = (UINT32)(PayLoadHdr - (UINT8 *)IcmpHdr);
NetbufTrim (Pkt, TrimBytes, TRUE);
//
// If the input packet has invalid format, and TrimBytes is larger than
// the packet size, the NetbufTrim might trim the packet to zero.
//
if (Pkt->TotalSize != 0) {
IpIo->PktRcvdNotify (EFI_ICMP_ERROR, IcmpErr, Session, Pkt, IpIo->RcvdContext);
}
return EFI_SUCCESS;
}
/**
This function handles ICMPv6 packets. It is the worker function of
IpIoIcmpHandler.
@param[in] IpIo Pointer to the IP_IO instance.
@param[in, out] Pkt Pointer to the ICMPv6 packet.
@param[in] Session Pointer to the net session of this ICMPv6 packet.
@retval EFI_SUCCESS The ICMPv6 packet is handled successfully.
@retval EFI_ABORTED This type of ICMPv6 packet is not supported.
**/
EFI_STATUS
IpIoIcmpv6Handler (
IN IP_IO *IpIo,
IN OUT NET_BUF *Pkt,
IN EFI_NET_SESSION_DATA *Session
)
{
IP6_ICMP_ERROR_HEAD *IcmpHdr;
EFI_IP6_HEADER *IpHdr;
UINT8 IcmpErr;
UINT8 *PayLoadHdr;
UINT8 Type;
UINT8 Code;
UINT8 NextHeader;
UINT32 TrimBytes;
BOOLEAN Flag;
ASSERT (IpIo != NULL);
ASSERT (Pkt != NULL);
ASSERT (Session != NULL);
ASSERT (IpIo->IpVersion == IP_VERSION_6);
//
// Check the ICMPv6 packet length.
//
if (Pkt->TotalSize < sizeof (IP6_ICMP_ERROR_HEAD)) {
return EFI_ABORTED;
}
IcmpHdr = NET_PROTO_HDR (Pkt, IP6_ICMP_ERROR_HEAD);
Type = IcmpHdr->Head.Type;
Code = IcmpHdr->Head.Code;
//
// Analyze the ICMPv6 Error in this ICMPv6 packet
//
switch (Type) {
case ICMP_V6_DEST_UNREACHABLE:
switch (Code) {
case ICMP_V6_NO_ROUTE_TO_DEST:
case ICMP_V6_BEYOND_SCOPE:
case ICMP_V6_ROUTE_REJECTED:
IcmpErr = ICMP6_ERR_UNREACH_NET;
break;
case ICMP_V6_COMM_PROHIBITED:
case ICMP_V6_ADDR_UNREACHABLE:
case ICMP_V6_SOURCE_ADDR_FAILED:
IcmpErr = ICMP6_ERR_UNREACH_HOST;
break;
case ICMP_V6_PORT_UNREACHABLE:
IcmpErr = ICMP6_ERR_UNREACH_PORT;
break;
default:
return EFI_ABORTED;
}
break;
case ICMP_V6_PACKET_TOO_BIG:
if (Code >= 1) {
return EFI_ABORTED;
}
IcmpErr = ICMP6_ERR_PACKAGE_TOOBIG;
break;
case ICMP_V6_TIME_EXCEEDED:
if (Code > 1) {
return EFI_ABORTED;
}
IcmpErr = (UINT8)(ICMP6_ERR_TIMXCEED_HOPLIMIT + Code);
break;
case ICMP_V6_PARAMETER_PROBLEM:
if (Code > 3) {
return EFI_ABORTED;
}
IcmpErr = (UINT8)(ICMP6_ERR_PARAMPROB_HEADER + Code);
break;
default:
return EFI_ABORTED;
}
//
// Notify user the ICMPv6 packet only containing payload except
// IPv6 basic header, extension header and ICMP header
//
IpHdr = (EFI_IP6_HEADER *)(&IcmpHdr->IpHead);
NextHeader = IpHdr->NextHeader;
PayLoadHdr = (UINT8 *)((UINT8 *)IcmpHdr + sizeof (IP6_ICMP_ERROR_HEAD));
Flag = TRUE;
do {
switch (NextHeader) {
case EFI_IP_PROTO_UDP:
case EFI_IP_PROTO_TCP:
case EFI_IP_PROTO_ICMP:
case IP6_NO_NEXT_HEADER:
Flag = FALSE;
break;
case IP6_HOP_BY_HOP:
case IP6_DESTINATION:
//
// The Hdr Ext Len is 8-bit unsigned integer in 8-octet units, not including
// the first 8 octets.
//
NextHeader = *(PayLoadHdr);
PayLoadHdr = (UINT8 *)(PayLoadHdr + (*(PayLoadHdr + 1) + 1) * 8);
break;
case IP6_FRAGMENT:
//
// The Fragment Header Length is 8 octets.
//
NextHeader = *(PayLoadHdr);
PayLoadHdr = (UINT8 *)(PayLoadHdr + 8);
break;
default:
return EFI_ABORTED;
}
} while (Flag);
TrimBytes = (UINT32)(PayLoadHdr - (UINT8 *)IcmpHdr);
NetbufTrim (Pkt, TrimBytes, TRUE);
//
// If the input packet has invalid format, and TrimBytes is larger than
// the packet size, the NetbufTrim might trim the packet to zero.
//
if (Pkt->TotalSize != 0) {
IpIo->PktRcvdNotify (EFI_ICMP_ERROR, IcmpErr, Session, Pkt, IpIo->RcvdContext);
}
return EFI_SUCCESS;
}
/**
This function handles ICMP packets.
@param[in] IpIo Pointer to the IP_IO instance.
@param[in, out] Pkt Pointer to the ICMP packet.
@param[in] Session Pointer to the net session of this ICMP packet.
@retval EFI_SUCCESS The ICMP packet is handled successfully.
@retval EFI_ABORTED This type of ICMP packet is not supported.
@retval EFI_UNSUPPORTED The IP protocol version in IP_IO is not supported.
**/
EFI_STATUS
IpIoIcmpHandler (
IN IP_IO *IpIo,
IN OUT NET_BUF *Pkt,
IN EFI_NET_SESSION_DATA *Session
)
{
if (IpIo->IpVersion == IP_VERSION_4) {
return IpIoIcmpv4Handler (IpIo, Pkt, Session);
} else if (IpIo->IpVersion == IP_VERSION_6) {
return IpIoIcmpv6Handler (IpIo, Pkt, Session);
} else {
return EFI_UNSUPPORTED;
}
}
/**
Free function for receive token of IP_IO. It is used to
signal the recycle event to notify IP to recycle the
data buffer.
@param[in] Event The event to be signaled.
**/
VOID
EFIAPI
IpIoExtFree (
IN VOID *Event
)
{
gBS->SignalEvent ((EFI_EVENT)Event);
}
/**
Create a send entry to wrap a packet before sending
out it through IP.
@param[in, out] IpIo Pointer to the IP_IO instance.
@param[in, out] Pkt Pointer to the packet.
@param[in] Sender Pointer to the IP sender.
@param[in] Context Pointer to the context.
@param[in] NotifyData Pointer to the notify data.
@param[in] Dest Pointer to the destination IP address.
@param[in] Override Pointer to the overridden IP_IO data.
@return Pointer to the data structure created to wrap the packet. If any error occurs,
then return NULL.
**/
IP_IO_SEND_ENTRY *
IpIoCreateSndEntry (
IN OUT IP_IO *IpIo,
IN OUT NET_BUF *Pkt,
IN IP_IO_IP_PROTOCOL Sender,
IN VOID *Context OPTIONAL,
IN VOID *NotifyData OPTIONAL,
IN EFI_IP_ADDRESS *Dest OPTIONAL,
IN IP_IO_OVERRIDE *Override
)
{
IP_IO_SEND_ENTRY *SndEntry;
EFI_EVENT Event;
EFI_STATUS Status;
NET_FRAGMENT *ExtFragment;
UINT32 FragmentCount;
IP_IO_OVERRIDE *OverrideData;
IP_IO_IP_TX_DATA *TxData;
EFI_IP4_TRANSMIT_DATA *Ip4TxData;
EFI_IP6_TRANSMIT_DATA *Ip6TxData;
if ((IpIo->IpVersion != IP_VERSION_4) && (IpIo->IpVersion != IP_VERSION_6)) {
return NULL;
}
Event = NULL;
TxData = NULL;
OverrideData = NULL;
//
// Allocate resource for SndEntry
//
SndEntry = AllocatePool (sizeof (IP_IO_SEND_ENTRY));
if (NULL == SndEntry) {
return NULL;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IpIoTransmitHandler,
SndEntry,
&Event
);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
FragmentCount = Pkt->BlockOpNum;
//
// Allocate resource for TxData
//
TxData = (IP_IO_IP_TX_DATA *)AllocatePool (
sizeof (IP_IO_IP_TX_DATA) + sizeof (NET_FRAGMENT) * (FragmentCount - 1)
);
if (NULL == TxData) {
goto ON_ERROR;
}
//
// Build a fragment table to contain the fragments in the packet.
//
if (IpIo->IpVersion == IP_VERSION_4) {
ExtFragment = (NET_FRAGMENT *)TxData->Ip4TxData.FragmentTable;
} else {
ExtFragment = (NET_FRAGMENT *)TxData->Ip6TxData.FragmentTable;
}
NetbufBuildExt (Pkt, ExtFragment, &FragmentCount);
//
// Allocate resource for OverrideData if needed
//
if (NULL != Override) {
OverrideData = AllocateCopyPool (sizeof (IP_IO_OVERRIDE), Override);
if (NULL == OverrideData) {
goto ON_ERROR;
}
}
//
// Set other fields of TxData except the fragment table
//
if (IpIo->IpVersion == IP_VERSION_4) {
Ip4TxData = &TxData->Ip4TxData;
IP4_COPY_ADDRESS (&Ip4TxData->DestinationAddress, Dest);
Ip4TxData->OverrideData = &OverrideData->Ip4OverrideData;
Ip4TxData->OptionsLength = 0;
Ip4TxData->OptionsBuffer = NULL;
Ip4TxData->TotalDataLength = Pkt->TotalSize;
Ip4TxData->FragmentCount = FragmentCount;
//
// Set the fields of SndToken
//
SndEntry->SndToken.Ip4Token.Event = Event;
SndEntry->SndToken.Ip4Token.Packet.TxData = Ip4TxData;
} else {
Ip6TxData = &TxData->Ip6TxData;
if (Dest != NULL) {
CopyMem (&Ip6TxData->DestinationAddress, Dest, sizeof (EFI_IPv6_ADDRESS));
} else {
ZeroMem (&Ip6TxData->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
}
Ip6TxData->OverrideData = &OverrideData->Ip6OverrideData;
Ip6TxData->DataLength = Pkt->TotalSize;
Ip6TxData->FragmentCount = FragmentCount;
Ip6TxData->ExtHdrsLength = 0;
Ip6TxData->ExtHdrs = NULL;
//
// Set the fields of SndToken
//
SndEntry->SndToken.Ip6Token.Event = Event;
SndEntry->SndToken.Ip6Token.Packet.TxData = Ip6TxData;
}
//
// Set the fields of SndEntry
//
SndEntry->IpIo = IpIo;
SndEntry->Ip = Sender;
SndEntry->Context = Context;
SndEntry->NotifyData = NotifyData;
SndEntry->Pkt = Pkt;
NET_GET_REF (Pkt);
InsertTailList (&IpIo->PendingSndList, &SndEntry->Entry);
return SndEntry;
ON_ERROR:
if (OverrideData != NULL) {
FreePool (OverrideData);
}
if (TxData != NULL) {
FreePool (TxData);
}
if (SndEntry != NULL) {
FreePool (SndEntry);
}
if (Event != NULL) {
gBS->CloseEvent (Event);
}
return NULL;
}
/**
Destroy the SndEntry.
This function pairs with IpIoCreateSndEntry().
@param[in] SndEntry Pointer to the send entry to be destroyed.
**/
VOID
IpIoDestroySndEntry (
IN IP_IO_SEND_ENTRY *SndEntry
)
{
EFI_EVENT Event;
IP_IO_IP_TX_DATA *TxData;
IP_IO_OVERRIDE *Override;
if (SndEntry->IpIo->IpVersion == IP_VERSION_4) {
Event = SndEntry->SndToken.Ip4Token.Event;
TxData = (IP_IO_IP_TX_DATA *)SndEntry->SndToken.Ip4Token.Packet.TxData;
Override = (IP_IO_OVERRIDE *)TxData->Ip4TxData.OverrideData;
} else if (SndEntry->IpIo->IpVersion == IP_VERSION_6) {
Event = SndEntry->SndToken.Ip6Token.Event;
TxData = (IP_IO_IP_TX_DATA *)SndEntry->SndToken.Ip6Token.Packet.TxData;
Override = (IP_IO_OVERRIDE *)TxData->Ip6TxData.OverrideData;
} else {
return;
}
gBS->CloseEvent (Event);
FreePool (TxData);
if (NULL != Override) {
FreePool (Override);
}
NetbufFree (SndEntry->Pkt);
RemoveEntryList (&SndEntry->Entry);
FreePool (SndEntry);
}
/**
Notify function for IP transmit token.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoTransmitHandlerDpc (
IN VOID *Context
)
{
IP_IO *IpIo;
IP_IO_SEND_ENTRY *SndEntry;
EFI_STATUS Status;
SndEntry = (IP_IO_SEND_ENTRY *)Context;
IpIo = SndEntry->IpIo;
if (IpIo->IpVersion == IP_VERSION_4) {
Status = SndEntry->SndToken.Ip4Token.Status;
} else if (IpIo->IpVersion == IP_VERSION_6) {
Status = SndEntry->SndToken.Ip6Token.Status;
} else {
return;
}
if ((IpIo->PktSentNotify != NULL) && (SndEntry->NotifyData != NULL)) {
IpIo->PktSentNotify (
Status,
SndEntry->Context,
SndEntry->Ip,
SndEntry->NotifyData
);
}
IpIoDestroySndEntry (SndEntry);
}
/**
Notify function for IP transmit token.
@param[in] Event The event signaled.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoTransmitHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
// Request IpIoTransmitHandlerDpc as a DPC at TPL_CALLBACK
//
QueueDpc (TPL_CALLBACK, IpIoTransmitHandlerDpc, Context);
}
/**
The dummy handler for the dummy IP receive token.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoDummyHandlerDpc (
IN VOID *Context
)
{
IP_IO_IP_INFO *IpInfo;
EFI_STATUS Status;
EFI_EVENT RecycleEvent;
IpInfo = (IP_IO_IP_INFO *)Context;
if ((IpInfo->IpVersion != IP_VERSION_4) && (IpInfo->IpVersion != IP_VERSION_6)) {
return;
}
RecycleEvent = NULL;
if (IpInfo->IpVersion == IP_VERSION_4) {
Status = IpInfo->DummyRcvToken.Ip4Token.Status;
if (IpInfo->DummyRcvToken.Ip4Token.Packet.RxData != NULL) {
RecycleEvent = IpInfo->DummyRcvToken.Ip4Token.Packet.RxData->RecycleSignal;
}
} else {
Status = IpInfo->DummyRcvToken.Ip6Token.Status;
if (IpInfo->DummyRcvToken.Ip6Token.Packet.RxData != NULL) {
RecycleEvent = IpInfo->DummyRcvToken.Ip6Token.Packet.RxData->RecycleSignal;
}
}
if (EFI_ABORTED == Status) {
//
// The reception is actively aborted by the consumer, directly return.
//
return;
} else if (EFI_SUCCESS == Status) {
//
// Recycle the RxData.
//
ASSERT (RecycleEvent != NULL);
gBS->SignalEvent (RecycleEvent);
}
//
// Continue the receive.
//
if (IpInfo->IpVersion == IP_VERSION_4) {
IpInfo->Ip.Ip4->Receive (
IpInfo->Ip.Ip4,
&IpInfo->DummyRcvToken.Ip4Token
);
} else {
IpInfo->Ip.Ip6->Receive (
IpInfo->Ip.Ip6,
&IpInfo->DummyRcvToken.Ip6Token
);
}
}
/**
This function add IpIoDummyHandlerDpc to the end of the DPC queue.
@param[in] Event The event signaled.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoDummyHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
// Request IpIoDummyHandlerDpc as a DPC at TPL_CALLBACK
//
QueueDpc (TPL_CALLBACK, IpIoDummyHandlerDpc, Context);
}
/**
Notify function for the IP receive token, used to process
the received IP packets.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoListenHandlerDpc (
IN VOID *Context
)
{
IP_IO *IpIo;
EFI_STATUS Status;
IP_IO_IP_RX_DATA *RxData;
EFI_NET_SESSION_DATA Session;
NET_BUF *Pkt;
IpIo = (IP_IO *)Context;
if (IpIo->IpVersion == IP_VERSION_4) {
Status = IpIo->RcvToken.Ip4Token.Status;
RxData = (IP_IO_IP_RX_DATA *)IpIo->RcvToken.Ip4Token.Packet.RxData;
} else if (IpIo->IpVersion == IP_VERSION_6) {
Status = IpIo->RcvToken.Ip6Token.Status;
RxData = (IP_IO_IP_RX_DATA *)IpIo->RcvToken.Ip6Token.Packet.RxData;
} else {
return;
}
if (EFI_ABORTED == Status) {
//
// The reception is actively aborted by the consumer, directly return.
//
return;
}
if ((EFI_SUCCESS != Status) && (EFI_ICMP_ERROR != Status)) {
//
// Only process the normal packets and the icmp error packets.
//
if (RxData != NULL) {
goto CleanUp;
} else {
goto Resume;
}
}
//
// if RxData is NULL with Status == EFI_SUCCESS or EFI_ICMP_ERROR, this should be a code issue in the low layer (IP).
//
ASSERT (RxData != NULL);
if (RxData == NULL) {
goto Resume;
}
if (NULL == IpIo->PktRcvdNotify) {
goto CleanUp;
}
if (IpIo->IpVersion == IP_VERSION_4) {
ASSERT (RxData->Ip4RxData.Header != NULL);
if (IP4_IS_LOCAL_BROADCAST (EFI_IP4 (RxData->Ip4RxData.Header->SourceAddress))) {
//
// The source address is a broadcast address, discard it.
//
goto CleanUp;
}
if ((EFI_IP4 (RxData->Ip4RxData.Header->SourceAddress) != 0) &&
(IpIo->SubnetMask != 0) &&
IP4_NET_EQUAL (IpIo->StationIp, EFI_NTOHL (((EFI_IP4_RECEIVE_DATA *)RxData)->Header->SourceAddress), IpIo->SubnetMask) &&
!NetIp4IsUnicast (EFI_NTOHL (((EFI_IP4_RECEIVE_DATA *)RxData)->Header->SourceAddress), IpIo->SubnetMask))
{
//
// The source address doesn't match StationIp and it's not a unicast IP address, discard it.
//
goto CleanUp;
}
if (RxData->Ip4RxData.DataLength == 0) {
//
// Discard zero length data payload packet.
//
goto CleanUp;
}
//
// The fragment should always be valid for non-zero length packet.
//
ASSERT (RxData->Ip4RxData.FragmentCount != 0);
//
// Create a netbuffer representing IPv4 packet
//
Pkt = NetbufFromExt (
(NET_FRAGMENT *)RxData->Ip4RxData.FragmentTable,
RxData->Ip4RxData.FragmentCount,
0,
0,
IpIoExtFree,
RxData->Ip4RxData.RecycleSignal
);
if (NULL == Pkt) {
goto CleanUp;
}
//
// Create a net session
//
Session.Source.Addr[0] = EFI_IP4 (RxData->Ip4RxData.Header->SourceAddress);
Session.Dest.Addr[0] = EFI_IP4 (RxData->Ip4RxData.Header->DestinationAddress);
Session.IpHdr.Ip4Hdr = RxData->Ip4RxData.Header;
Session.IpHdrLen = RxData->Ip4RxData.HeaderLength;
Session.IpVersion = IP_VERSION_4;
} else {
ASSERT (RxData->Ip6RxData.Header != NULL);
if (!NetIp6IsValidUnicast (&RxData->Ip6RxData.Header->SourceAddress)) {
goto CleanUp;
}
if (RxData->Ip6RxData.DataLength == 0) {
//
// Discard zero length data payload packet.
//
goto CleanUp;
}
//
// The fragment should always be valid for non-zero length packet.
//
ASSERT (RxData->Ip6RxData.FragmentCount != 0);
//
// Create a netbuffer representing IPv6 packet
//
Pkt = NetbufFromExt (
(NET_FRAGMENT *)RxData->Ip6RxData.FragmentTable,
RxData->Ip6RxData.FragmentCount,
0,
0,
IpIoExtFree,
RxData->Ip6RxData.RecycleSignal
);
if (NULL == Pkt) {
goto CleanUp;
}
//
// Create a net session
//
CopyMem (
&Session.Source,
&RxData->Ip6RxData.Header->SourceAddress,
sizeof (EFI_IPv6_ADDRESS)
);
CopyMem (
&Session.Dest,
&RxData->Ip6RxData.Header->DestinationAddress,
sizeof (EFI_IPv6_ADDRESS)
);
Session.IpHdr.Ip6Hdr = RxData->Ip6RxData.Header;
Session.IpHdrLen = RxData->Ip6RxData.HeaderLength;
Session.IpVersion = IP_VERSION_6;
}
if (EFI_SUCCESS == Status) {
IpIo->PktRcvdNotify (EFI_SUCCESS, 0, &Session, Pkt, IpIo->RcvdContext);
} else {
//
// Status is EFI_ICMP_ERROR
//
Status = IpIoIcmpHandler (IpIo, Pkt, &Session);
if (EFI_ERROR (Status)) {
NetbufFree (Pkt);
}
}
goto Resume;
CleanUp:
if (IpIo->IpVersion == IP_VERSION_4) {
gBS->SignalEvent (RxData->Ip4RxData.RecycleSignal);
} else {
gBS->SignalEvent (RxData->Ip6RxData.RecycleSignal);
}
Resume:
if (IpIo->IpVersion == IP_VERSION_4) {
IpIo->Ip.Ip4->Receive (IpIo->Ip.Ip4, &(IpIo->RcvToken.Ip4Token));
} else {
IpIo->Ip.Ip6->Receive (IpIo->Ip.Ip6, &(IpIo->RcvToken.Ip6Token));
}
}
/**
This function add IpIoListenHandlerDpc to the end of the DPC queue.
@param[in] Event The event signaled.
@param[in] Context The context passed in by the event notifier.
**/
VOID
EFIAPI
IpIoListenHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
// Request IpIoListenHandlerDpc as a DPC at TPL_CALLBACK
//
QueueDpc (TPL_CALLBACK, IpIoListenHandlerDpc, Context);
}
/**
Create a new IP_IO instance.
If IpVersion is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
This function uses IP4/IP6 service binding protocol in Controller to create
an IP4/IP6 child (aka IP4/IP6 instance).
@param[in] Image The image handle of the driver or application that
consumes IP_IO.
@param[in] Controller The controller handle that has IP4 or IP6 service
binding protocol installed.
@param[in] IpVersion The version of the IP protocol to use, either
IPv4 or IPv6.
@return Pointer to a newly created IP_IO instance, or NULL if failed.
**/
IP_IO *
EFIAPI
IpIoCreate (
IN EFI_HANDLE Image,
IN EFI_HANDLE Controller,
IN UINT8 IpVersion
)
{
EFI_STATUS Status;
IP_IO *IpIo;
EFI_EVENT Event;
ASSERT ((IpVersion == IP_VERSION_4) || (IpVersion == IP_VERSION_6));
IpIo = AllocateZeroPool (sizeof (IP_IO));
if (NULL == IpIo) {
return NULL;
}
InitializeListHead (&(IpIo->PendingSndList));
InitializeListHead (&(IpIo->IpList));
IpIo->Controller = Controller;
IpIo->Image = Image;
IpIo->IpVersion = IpVersion;
Event = NULL;
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IpIoListenHandler,
IpIo,
&Event
);
if (EFI_ERROR (Status)) {
goto ReleaseIpIo;
}
if (IpVersion == IP_VERSION_4) {
IpIo->RcvToken.Ip4Token.Event = Event;
} else {
IpIo->RcvToken.Ip6Token.Event = Event;
}
//
// Create an IP child and open IP protocol
//
Status = IpIoCreateIpChildOpenProtocol (
Controller,
Image,
&IpIo->ChildHandle,
IpVersion,
(VOID **)&(IpIo->Ip)
);
if (EFI_ERROR (Status)) {
goto ReleaseIpIo;
}
return IpIo;
ReleaseIpIo:
if (Event != NULL) {
gBS->CloseEvent (Event);
}
gBS->FreePool (IpIo);
return NULL;
}
/**
Open an IP_IO instance for use.
If Ip version is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
This function is called after IpIoCreate(). It is used for configuring the IP
instance and register the callbacks and their context data for sending and
receiving IP packets.
@param[in, out] IpIo Pointer to an IP_IO instance that needs
to open.
@param[in] OpenData The configuration data and callbacks for
the IP_IO instance.
@retval EFI_SUCCESS The IP_IO instance opened with OpenData
successfully.
@retval EFI_ACCESS_DENIED The IP_IO instance is configured, avoid to
reopen it.
@retval EFI_UNSUPPORTED IPv4 RawData mode is no supported.
@retval EFI_INVALID_PARAMETER Invalid input parameter.
@retval Others Error condition occurred.
**/
EFI_STATUS
EFIAPI
IpIoOpen (
IN OUT IP_IO *IpIo,
IN IP_IO_OPEN_DATA *OpenData
)
{
EFI_STATUS Status;
UINT8 IpVersion;
if ((IpIo == NULL) || (OpenData == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (IpIo->IsConfigured) {
return EFI_ACCESS_DENIED;
}
IpVersion = IpIo->IpVersion;
ASSERT ((IpVersion == IP_VERSION_4) || (IpVersion == IP_VERSION_6));
//
// configure ip
//
if (IpVersion == IP_VERSION_4) {
//
// RawData mode is no supported.
//
ASSERT (!OpenData->IpConfigData.Ip4CfgData.RawData);
if (OpenData->IpConfigData.Ip4CfgData.RawData) {
return EFI_UNSUPPORTED;
}
if (!OpenData->IpConfigData.Ip4CfgData.UseDefaultAddress) {
IpIo->StationIp = EFI_NTOHL (OpenData->IpConfigData.Ip4CfgData.StationAddress);
IpIo->SubnetMask = EFI_NTOHL (OpenData->IpConfigData.Ip4CfgData.SubnetMask);
}
Status = IpIo->Ip.Ip4->Configure (
IpIo->Ip.Ip4,
&OpenData->IpConfigData.Ip4CfgData
);
} else {
Status = IpIo->Ip.Ip6->Configure (
IpIo->Ip.Ip6,
&OpenData->IpConfigData.Ip6CfgData
);
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// @bug To delete the default route entry in this Ip, if it is:
// @bug (0.0.0.0, 0.0.0.0, 0.0.0.0). Delete this statement if Ip modified
// @bug its code
//
if (IpVersion == IP_VERSION_4) {
Status = IpIo->Ip.Ip4->Routes (
IpIo->Ip.Ip4,
TRUE,
&mZeroIp4Addr,
&mZeroIp4Addr,
&mZeroIp4Addr
);
if (EFI_ERROR (Status) && (EFI_NOT_FOUND != Status)) {
return Status;
}
}
IpIo->PktRcvdNotify = OpenData->PktRcvdNotify;
IpIo->PktSentNotify = OpenData->PktSentNotify;
IpIo->RcvdContext = OpenData->RcvdContext;
IpIo->SndContext = OpenData->SndContext;
if (IpVersion == IP_VERSION_4) {
IpIo->Protocol = OpenData->IpConfigData.Ip4CfgData.DefaultProtocol;
//
// start to listen incoming packet
//
Status = IpIo->Ip.Ip4->Receive (
IpIo->Ip.Ip4,
&(IpIo->RcvToken.Ip4Token)
);
if (EFI_ERROR (Status)) {
IpIo->Ip.Ip4->Configure (IpIo->Ip.Ip4, NULL);
return Status;
}
} else {
IpIo->Protocol = OpenData->IpConfigData.Ip6CfgData.DefaultProtocol;
Status = IpIo->Ip.Ip6->Receive (
IpIo->Ip.Ip6,
&(IpIo->RcvToken.Ip6Token)
);
if (EFI_ERROR (Status)) {
IpIo->Ip.Ip6->Configure (IpIo->Ip.Ip6, NULL);
return Status;
}
}
IpIo->IsConfigured = TRUE;
InsertTailList (&mActiveIpIoList, &IpIo->Entry);
return Status;
}
/**
Stop an IP_IO instance.
If Ip version is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
This function is paired with IpIoOpen(). The IP_IO will be unconfigured and all
the pending send/receive tokens will be canceled.
@param[in, out] IpIo Pointer to the IP_IO instance that needs to stop.
@retval EFI_SUCCESS The IP_IO instance stopped successfully.
@retval EFI_INVALID_PARAMETER Invalid input parameter.
@retval Others Error condition occurred.
**/
EFI_STATUS
EFIAPI
IpIoStop (
IN OUT IP_IO *IpIo
)
{
EFI_STATUS Status;
IP_IO_IP_INFO *IpInfo;
UINT8 IpVersion;
if (IpIo == NULL) {
return EFI_INVALID_PARAMETER;
}
if (!IpIo->IsConfigured) {
return EFI_SUCCESS;
}
IpVersion = IpIo->IpVersion;
ASSERT ((IpVersion == IP_VERSION_4) || (IpVersion == IP_VERSION_6));
//
// Remove the IpIo from the active IpIo list.
//
RemoveEntryList (&IpIo->Entry);
//
// Configure NULL Ip
//
if (IpVersion == IP_VERSION_4) {
Status = IpIo->Ip.Ip4->Configure (IpIo->Ip.Ip4, NULL);
} else {
Status = IpIo->Ip.Ip6->Configure (IpIo->Ip.Ip6, NULL);
}
if (EFI_ERROR (Status)) {
return Status;
}
IpIo->IsConfigured = FALSE;
//
// Destroy the Ip List used by IpIo
//
while (!IsListEmpty (&(IpIo->IpList))) {
IpInfo = NET_LIST_HEAD (&(IpIo->IpList), IP_IO_IP_INFO, Entry);
IpIoRemoveIp (IpIo, IpInfo);
}
//
// All pending send tokens should be flushed by resetting the IP instances.
//
ASSERT (IsListEmpty (&IpIo->PendingSndList));
//
// Close the receive event.
//
if (IpVersion == IP_VERSION_4) {
gBS->CloseEvent (IpIo->RcvToken.Ip4Token.Event);
} else {
gBS->CloseEvent (IpIo->RcvToken.Ip6Token.Event);
}
return EFI_SUCCESS;
}
/**
Destroy an IP_IO instance.
This function is paired with IpIoCreate(). The IP_IO will be closed first.
Resource will be freed afterwards. See IpIoCloseProtocolDestroyIpChild().
@param[in, out] IpIo Pointer to the IP_IO instance that needs to be
destroyed.
@retval EFI_SUCCESS The IP_IO instance destroyed successfully.
@retval Others Error condition occurred.
**/
EFI_STATUS
EFIAPI
IpIoDestroy (
IN OUT IP_IO *IpIo
)
{
EFI_STATUS Status;
//
// Stop the IpIo.
//
Status = IpIoStop (IpIo);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Close the IP protocol and destroy the child.
//
Status = IpIoCloseProtocolDestroyIpChild (
IpIo->Controller,
IpIo->Image,
IpIo->ChildHandle,
IpIo->IpVersion
);
if (EFI_ERROR (Status)) {
return Status;
}
gBS->FreePool (IpIo);
return EFI_SUCCESS;
}
/**
Send out an IP packet.
This function is called after IpIoOpen(). The data to be sent is wrapped in
Pkt. The IP instance wrapped in IpIo is used for sending by default but can be
overridden by Sender. Other sending configs, like source address and gateway
address etc., are specified in OverrideData.
@param[in, out] IpIo Pointer to an IP_IO instance used for sending IP
packet.
@param[in, out] Pkt Pointer to the IP packet to be sent.
@param[in] Sender The IP protocol instance used for sending.
@param[in] Context Optional context data.
@param[in] NotifyData Optional notify data.
@param[in] Dest The destination IP address to send this packet to.
This parameter is optional when using IPv6.
@param[in] OverrideData The data to override some configuration of the IP
instance used for sending.
@retval EFI_SUCCESS The operation is completed successfully.
@retval EFI_INVALID_PARAMETER The input parameter is not correct.
@retval EFI_NOT_STARTED The IpIo is not configured.
@retval EFI_OUT_OF_RESOURCES Failed due to resource limit.
@retval Others Error condition occurred.
**/
EFI_STATUS
EFIAPI
IpIoSend (
IN OUT IP_IO *IpIo,
IN OUT NET_BUF *Pkt,
IN IP_IO_IP_INFO *Sender OPTIONAL,
IN VOID *Context OPTIONAL,
IN VOID *NotifyData OPTIONAL,
IN EFI_IP_ADDRESS *Dest OPTIONAL,
IN IP_IO_OVERRIDE *OverrideData OPTIONAL
)
{
EFI_STATUS Status;
IP_IO_IP_PROTOCOL Ip;
IP_IO_SEND_ENTRY *SndEntry;
if ((IpIo == NULL) || (Pkt == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((IpIo->IpVersion == IP_VERSION_4) && (Dest == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (!IpIo->IsConfigured) {
return EFI_NOT_STARTED;
}
Ip = (NULL == Sender) ? IpIo->Ip : Sender->Ip;
//
// create a new SndEntry
//
SndEntry = IpIoCreateSndEntry (IpIo, Pkt, Ip, Context, NotifyData, Dest, OverrideData);
if (NULL == SndEntry) {
return EFI_OUT_OF_RESOURCES;
}
//
// Send this Packet
//
if (IpIo->IpVersion == IP_VERSION_4) {
Status = Ip.Ip4->Transmit (
Ip.Ip4,
&SndEntry->SndToken.Ip4Token
);
} else {
Status = Ip.Ip6->Transmit (
Ip.Ip6,
&SndEntry->SndToken.Ip6Token
);
}
if (EFI_ERROR (Status)) {
IpIoDestroySndEntry (SndEntry);
}
return Status;
}
/**
Cancel the IP transmit token which wraps this Packet.
If IpIo is NULL, then ASSERT().
If Packet is NULL, then ASSERT().
@param[in] IpIo Pointer to the IP_IO instance.
@param[in] Packet Pointer to the packet of NET_BUF to cancel.
**/
VOID
EFIAPI
IpIoCancelTxToken (
IN IP_IO *IpIo,
IN VOID *Packet
)
{
LIST_ENTRY *Node;
IP_IO_SEND_ENTRY *SndEntry;
IP_IO_IP_PROTOCOL Ip;
ASSERT ((IpIo != NULL) && (Packet != NULL));
NET_LIST_FOR_EACH (Node, &IpIo->PendingSndList) {
SndEntry = NET_LIST_USER_STRUCT (Node, IP_IO_SEND_ENTRY, Entry);
if (SndEntry->Pkt == Packet) {
Ip = SndEntry->Ip;
if (IpIo->IpVersion == IP_VERSION_4) {
Ip.Ip4->Cancel (
Ip.Ip4,
&SndEntry->SndToken.Ip4Token
);
} else {
Ip.Ip6->Cancel (
Ip.Ip6,
&SndEntry->SndToken.Ip6Token
);
}
break;
}
}
}
/**
Add a new IP instance for sending data.
If IpIo is NULL, then ASSERT().
If Ip version is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
The function is used to add the IP_IO to the IP_IO sending list. The caller
can later use IpIoFindSender() to get the IP_IO and call IpIoSend() to send
data.
@param[in, out] IpIo Pointer to a IP_IO instance to add a new IP
instance for sending purpose.
@return Pointer to the created IP_IO_IP_INFO structure, NULL if failed.
**/
IP_IO_IP_INFO *
EFIAPI
IpIoAddIp (
IN OUT IP_IO *IpIo
)
{
EFI_STATUS Status;
IP_IO_IP_INFO *IpInfo;
EFI_EVENT Event;
ASSERT (IpIo != NULL);
ASSERT ((IpIo->IpVersion == IP_VERSION_4) || (IpIo->IpVersion == IP_VERSION_6));
IpInfo = AllocatePool (sizeof (IP_IO_IP_INFO));
if (IpInfo == NULL) {
return NULL;
}
//
// Init this IpInfo, set the Addr and SubnetMask to 0 before we configure the IP
// instance.
//
InitializeListHead (&IpInfo->Entry);
IpInfo->ChildHandle = NULL;
ZeroMem (&IpInfo->Addr, sizeof (IpInfo->Addr));
ZeroMem (&IpInfo->PreMask, sizeof (IpInfo->PreMask));
IpInfo->RefCnt = 1;
IpInfo->IpVersion = IpIo->IpVersion;
//
// Create the IP instance and open the IP protocol.
//
Status = IpIoCreateIpChildOpenProtocol (
IpIo->Controller,
IpIo->Image,
&IpInfo->ChildHandle,
IpInfo->IpVersion,
(VOID **)&IpInfo->Ip
);
if (EFI_ERROR (Status)) {
goto ReleaseIpInfo;
}
//
// Create the event for the DummyRcvToken.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IpIoDummyHandler,
IpInfo,
&Event
);
if (EFI_ERROR (Status)) {
goto ReleaseIpChild;
}
if (IpInfo->IpVersion == IP_VERSION_4) {
IpInfo->DummyRcvToken.Ip4Token.Event = Event;
} else {
IpInfo->DummyRcvToken.Ip6Token.Event = Event;
}
//
// Link this IpInfo into the IpIo.
//
InsertTailList (&IpIo->IpList, &IpInfo->Entry);
return IpInfo;
ReleaseIpChild:
IpIoCloseProtocolDestroyIpChild (
IpIo->Controller,
IpIo->Image,
IpInfo->ChildHandle,
IpInfo->IpVersion
);
ReleaseIpInfo:
gBS->FreePool (IpInfo);
return NULL;
}
/**
Configure the IP instance of this IpInfo and start the receiving if IpConfigData
is not NULL.
If IpInfo is NULL, then ASSERT().
If Ip version is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
@param[in, out] IpInfo Pointer to the IP_IO_IP_INFO instance.
@param[in, out] IpConfigData The IP configure data used to configure the IP
instance, if NULL the IP instance is reset. If
UseDefaultAddress is set to TRUE, and the configure
operation succeeds, the default address information
is written back in this IpConfigData.
@retval EFI_SUCCESS The IP instance of this IpInfo is configured successfully
or no need to reconfigure it.
@retval Others Configuration fails.
**/
EFI_STATUS
EFIAPI
IpIoConfigIp (
IN OUT IP_IO_IP_INFO *IpInfo,
IN OUT VOID *IpConfigData OPTIONAL
)
{
EFI_STATUS Status;
IP_IO_IP_PROTOCOL Ip;
UINT8 IpVersion;
EFI_IP4_MODE_DATA Ip4ModeData;
EFI_IP6_MODE_DATA Ip6ModeData;
ASSERT (IpInfo != NULL);
if (IpInfo->RefCnt > 1) {
//
// This IP instance is shared, don't reconfigure it until it has only one
// consumer. Currently, only the tcp children cloned from their passive parent
// will share the same IP. So this cases only happens while IpConfigData is NULL,
// let the last consumer clean the IP instance.
//
return EFI_SUCCESS;
}
IpVersion = IpInfo->IpVersion;
ASSERT ((IpVersion == IP_VERSION_4) || (IpVersion == IP_VERSION_6));
Ip = IpInfo->Ip;
if (IpInfo->IpVersion == IP_VERSION_4) {
Status = Ip.Ip4->Configure (Ip.Ip4, IpConfigData);
} else {
Status = Ip.Ip6->Configure (Ip.Ip6, IpConfigData);
}
if (EFI_ERROR (Status)) {
return Status;
}
if (IpConfigData != NULL) {
if (IpInfo->IpVersion == IP_VERSION_4) {
if (((EFI_IP4_CONFIG_DATA *)IpConfigData)->UseDefaultAddress) {
Status = Ip.Ip4->GetModeData (
Ip.Ip4,
&Ip4ModeData,
NULL,
NULL
);
if (EFI_ERROR (Status)) {
Ip.Ip4->Configure (Ip.Ip4, NULL);
return Status;
}
IP4_COPY_ADDRESS (&((EFI_IP4_CONFIG_DATA *)IpConfigData)->StationAddress, &Ip4ModeData.ConfigData.StationAddress);
IP4_COPY_ADDRESS (&((EFI_IP4_CONFIG_DATA *)IpConfigData)->SubnetMask, &Ip4ModeData.ConfigData.SubnetMask);
}
CopyMem (
&IpInfo->Addr.Addr,
&((EFI_IP4_CONFIG_DATA *)IpConfigData)->StationAddress,
sizeof (IP4_ADDR)
);
CopyMem (
&IpInfo->PreMask.SubnetMask,
&((EFI_IP4_CONFIG_DATA *)IpConfigData)->SubnetMask,
sizeof (IP4_ADDR)
);
Status = Ip.Ip4->Receive (
Ip.Ip4,
&IpInfo->DummyRcvToken.Ip4Token
);
if (EFI_ERROR (Status)) {
Ip.Ip4->Configure (Ip.Ip4, NULL);
}
} else {
Status = Ip.Ip6->GetModeData (
Ip.Ip6,
&Ip6ModeData,
NULL,
NULL
);
if (EFI_ERROR (Status)) {
Ip.Ip6->Configure (Ip.Ip6, NULL);
return Status;
}
if (Ip6ModeData.IsConfigured) {
CopyMem (
&((EFI_IP6_CONFIG_DATA *)IpConfigData)->StationAddress,
&Ip6ModeData.ConfigData.StationAddress,
sizeof (EFI_IPv6_ADDRESS)
);
if (Ip6ModeData.AddressList != NULL) {
FreePool (Ip6ModeData.AddressList);
}
if (Ip6ModeData.GroupTable != NULL) {
FreePool (Ip6ModeData.GroupTable);
}
if (Ip6ModeData.RouteTable != NULL) {
FreePool (Ip6ModeData.RouteTable);
}
if (Ip6ModeData.NeighborCache != NULL) {
FreePool (Ip6ModeData.NeighborCache);
}
if (Ip6ModeData.PrefixTable != NULL) {
FreePool (Ip6ModeData.PrefixTable);
}
if (Ip6ModeData.IcmpTypeList != NULL) {
FreePool (Ip6ModeData.IcmpTypeList);
}
} else {
Status = EFI_NO_MAPPING;
return Status;
}
CopyMem (
&IpInfo->Addr,
&Ip6ModeData.ConfigData.StationAddress,
sizeof (EFI_IPv6_ADDRESS)
);
Status = Ip.Ip6->Receive (
Ip.Ip6,
&IpInfo->DummyRcvToken.Ip6Token
);
if (EFI_ERROR (Status)) {
Ip.Ip6->Configure (Ip.Ip6, NULL);
}
}
} else {
//
// The IP instance is reset, set the stored Addr and SubnetMask to zero.
//
ZeroMem (&IpInfo->Addr, sizeof (IpInfo->Addr));
ZeroMem (&IpInfo->PreMask, sizeof (IpInfo->PreMask));
}
return Status;
}
/**
Destroy an IP instance maintained in IpIo->IpList for
sending purpose.
If Ip version is not IP_VERSION_4 or IP_VERSION_6, then ASSERT().
This function pairs with IpIoAddIp(). The IpInfo is previously created by
IpIoAddIp(). The IP_IO_IP_INFO::RefCnt is decremented and the IP instance
will be destroyed if the RefCnt is zero.
@param[in] IpIo Pointer to the IP_IO instance.
@param[in] IpInfo Pointer to the IpInfo to be removed.
**/
VOID
EFIAPI
IpIoRemoveIp (
IN IP_IO *IpIo,
IN IP_IO_IP_INFO *IpInfo
)
{
UINT8 IpVersion;
if ((IpIo == NULL) || (IpInfo == NULL)) {
return;
}
ASSERT (IpInfo->RefCnt > 0);
NET_PUT_REF (IpInfo);
if (IpInfo->RefCnt > 0) {
return;
}
IpVersion = IpIo->IpVersion;
ASSERT ((IpVersion == IP_VERSION_4) || (IpVersion == IP_VERSION_6));
RemoveEntryList (&IpInfo->Entry);
if (IpVersion == IP_VERSION_4) {
IpInfo->Ip.Ip4->Configure (
IpInfo->Ip.Ip4,
NULL
);
IpIoCloseProtocolDestroyIpChild (
IpIo->Controller,
IpIo->Image,
IpInfo->ChildHandle,
IP_VERSION_4
);
gBS->CloseEvent (IpInfo->DummyRcvToken.Ip4Token.Event);
} else {
IpInfo->Ip.Ip6->Configure (
IpInfo->Ip.Ip6,
NULL
);
IpIoCloseProtocolDestroyIpChild (
IpIo->Controller,
IpIo->Image,
IpInfo->ChildHandle,
IP_VERSION_6
);
gBS->CloseEvent (IpInfo->DummyRcvToken.Ip6Token.Event);
}
FreePool (IpInfo);
}
/**
Find the first IP protocol maintained in IpIo whose local
address is the same as Src.
This function is called when the caller needs the IpIo to send data to the
specified Src. The IpIo was added previously by IpIoAddIp().
@param[in, out] IpIo Pointer to the pointer of the IP_IO instance.
@param[in] IpVersion The version of the IP protocol to use, either
IPv4 or IPv6.
@param[in] Src The local IP address.
@return Pointer to the IP protocol can be used for sending purpose and its local
address is the same with Src. NULL if failed.
**/
IP_IO_IP_INFO *
EFIAPI
IpIoFindSender (
IN OUT IP_IO **IpIo,
IN UINT8 IpVersion,
IN EFI_IP_ADDRESS *Src
)
{
LIST_ENTRY *IpIoEntry;
IP_IO *IpIoPtr;
LIST_ENTRY *IpInfoEntry;
IP_IO_IP_INFO *IpInfo;
if ((IpIo == NULL) || (Src == NULL)) {
return NULL;
}
if ((IpVersion != IP_VERSION_4) && (IpVersion != IP_VERSION_6)) {
return NULL;
}
NET_LIST_FOR_EACH (IpIoEntry, &mActiveIpIoList) {
IpIoPtr = NET_LIST_USER_STRUCT (IpIoEntry, IP_IO, Entry);
if (((*IpIo != NULL) && (*IpIo != IpIoPtr)) || (IpIoPtr->IpVersion != IpVersion)) {
continue;
}
NET_LIST_FOR_EACH (IpInfoEntry, &IpIoPtr->IpList) {
IpInfo = NET_LIST_USER_STRUCT (IpInfoEntry, IP_IO_IP_INFO, Entry);
if (IpInfo->IpVersion == IP_VERSION_4) {
if (EFI_IP4_EQUAL (&IpInfo->Addr.v4, &Src->v4)) {
*IpIo = IpIoPtr;
return IpInfo;
}
} else {
if (EFI_IP6_EQUAL (&IpInfo->Addr.v6, &Src->v6)) {
*IpIo = IpIoPtr;
return IpInfo;
}
}
}
}
//
// No match.
//
return NULL;
}
/**
Get the ICMP error map information.
The ErrorStatus will be returned. The IsHard and Notify are optional. If they
are not NULL, this routine will fill them.
@param[in] IcmpError IcmpError Type.
@param[in] IpVersion The version of the IP protocol to use,
either IPv4 or IPv6.
@param[out] IsHard If TRUE, indicates that it is a hard error.
@param[out] Notify If TRUE, SockError needs to be notified.
@retval EFI_UNSUPPORTED Unrecognizable ICMP error code.
@return ICMP Error Status, such as EFI_NETWORK_UNREACHABLE.
**/
EFI_STATUS
EFIAPI
IpIoGetIcmpErrStatus (
IN UINT8 IcmpError,
IN UINT8 IpVersion,
OUT BOOLEAN *IsHard OPTIONAL,
OUT BOOLEAN *Notify OPTIONAL
)
{
if (IpVersion == IP_VERSION_4 ) {
ASSERT (IcmpError <= ICMP_ERR_PARAMPROB);
if (IsHard != NULL) {
*IsHard = mIcmpErrMap[IcmpError].IsHard;
}
if (Notify != NULL) {
*Notify = mIcmpErrMap[IcmpError].Notify;
}
switch (IcmpError) {
case ICMP_ERR_UNREACH_NET:
return EFI_NETWORK_UNREACHABLE;
case ICMP_ERR_TIMXCEED_INTRANS:
case ICMP_ERR_TIMXCEED_REASS:
case ICMP_ERR_UNREACH_HOST:
return EFI_HOST_UNREACHABLE;
case ICMP_ERR_UNREACH_PROTOCOL:
return EFI_PROTOCOL_UNREACHABLE;
case ICMP_ERR_UNREACH_PORT:
return EFI_PORT_UNREACHABLE;
case ICMP_ERR_MSGSIZE:
case ICMP_ERR_UNREACH_SRCFAIL:
case ICMP_ERR_QUENCH:
case ICMP_ERR_PARAMPROB:
return EFI_ICMP_ERROR;
default:
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
} else if (IpVersion == IP_VERSION_6) {
ASSERT (IcmpError <= ICMP6_ERR_PARAMPROB_IPV6OPTION);
if (IsHard != NULL) {
*IsHard = mIcmp6ErrMap[IcmpError].IsHard;
}
if (Notify != NULL) {
*Notify = mIcmp6ErrMap[IcmpError].Notify;
}
switch (IcmpError) {
case ICMP6_ERR_UNREACH_NET:
return EFI_NETWORK_UNREACHABLE;
case ICMP6_ERR_UNREACH_HOST:
case ICMP6_ERR_TIMXCEED_HOPLIMIT:
case ICMP6_ERR_TIMXCEED_REASS:
return EFI_HOST_UNREACHABLE;
case ICMP6_ERR_UNREACH_PROTOCOL:
return EFI_PROTOCOL_UNREACHABLE;
case ICMP6_ERR_UNREACH_PORT:
return EFI_PORT_UNREACHABLE;
case ICMP6_ERR_PACKAGE_TOOBIG:
case ICMP6_ERR_PARAMPROB_HEADER:
case ICMP6_ERR_PARAMPROB_NEXHEADER:
case ICMP6_ERR_PARAMPROB_IPV6OPTION:
return EFI_ICMP_ERROR;
default:
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
} else {
//
// Should never be here
//
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
}
/**
Refresh the remote peer's Neighbor Cache entries.
This function is called when the caller needs the IpIo to refresh the existing
IPv6 neighbor cache entries since the neighbor is considered reachable by the
node has recently received a confirmation that packets sent recently to the
neighbor were received by its IP layer.
@param[in] IpIo Pointer to an IP_IO instance
@param[in] Neighbor The IP address of the neighbor
@param[in] Timeout Time in 100-ns units that this entry will
remain in the neighbor cache. A value of
zero means that the entry is permanent.
A value of non-zero means that the entry is
dynamic and will be deleted after Timeout.
@retval EFI_SUCCESS The operation is completed successfully.
@retval EFI_NOT_STARTED The IpIo is not configured.
@retval EFI_INVALID_PARAMETER Neighbor Address is invalid.
@retval EFI_NOT_FOUND The neighbor cache entry is not in the
neighbor table.
@retval EFI_UNSUPPORTED IP version is IPv4, which doesn't support neighbor cache refresh.
@retval EFI_OUT_OF_RESOURCES Failed due to resource limit.
**/
EFI_STATUS
EFIAPI
IpIoRefreshNeighbor (
IN IP_IO *IpIo,
IN EFI_IP_ADDRESS *Neighbor,
IN UINT32 Timeout
)
{
EFI_IP6_PROTOCOL *Ip;
if (!IpIo->IsConfigured) {
return EFI_NOT_STARTED;
}
if (IpIo->IpVersion != IP_VERSION_6) {
return EFI_UNSUPPORTED;
}
Ip = IpIo->Ip.Ip6;
return Ip->Neighbors (Ip, FALSE, &Neighbor->v6, NULL, Timeout, TRUE);
}