mirror of https://github.com/acidanthera/audk.git
2871 lines
93 KiB
C
2871 lines
93 KiB
C
/** @file
|
|
|
|
XHCI transfer scheduling routines.
|
|
|
|
Copyright (c) 2011, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "Xhci.h"
|
|
|
|
/**
|
|
Create a command transfer TRB to support XHCI command interfaces.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param CmdTrb The cmd TRB to be executed.
|
|
|
|
@return Created URB or NULL.
|
|
|
|
**/
|
|
URB*
|
|
XhcCreateCmdTrb (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN TRB_TEMPLATE *CmdTrb
|
|
)
|
|
{
|
|
URB *Urb;
|
|
|
|
Urb = AllocateZeroPool (sizeof (URB));
|
|
if (Urb == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Urb->Signature = XHC_URB_SIG;
|
|
|
|
Urb->Ring = &Xhc->CmdRing;
|
|
XhcSyncTrsRing (Xhc, Urb->Ring);
|
|
Urb->TrbNum = 1;
|
|
Urb->TrbStart = Urb->Ring->RingEnqueue;
|
|
CopyMem (Urb->TrbStart, CmdTrb, sizeof (TRB_TEMPLATE));
|
|
Urb->TrbStart->CycleBit = Urb->Ring->RingPCS & BIT0;
|
|
Urb->TrbEnd = Urb->TrbStart;
|
|
|
|
Urb->EvtRing = &Xhc->EventRing;
|
|
XhcSyncEventRing (Xhc, Urb->EvtRing);
|
|
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
|
|
|
|
return Urb;
|
|
}
|
|
|
|
/**
|
|
Execute a XHCI cmd TRB pointed by CmdTrb.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param CmdTrb The cmd TRB to be executed.
|
|
@param Timeout Indicates the maximum time, in millisecond, which the
|
|
transfer is allowed to complete.
|
|
@param EvtTrb The event TRB corresponding to the cmd TRB.
|
|
|
|
@retval EFI_SUCCESS The transfer was completed successfully.
|
|
@retval EFI_INVALID_PARAMETER Some parameters are invalid.
|
|
@retval EFI_TIMEOUT The transfer failed due to timeout.
|
|
@retval EFI_DEVICE_ERROR The transfer failed due to host controller error.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcCmdTransfer (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN TRB_TEMPLATE *CmdTrb,
|
|
IN UINTN Timeout,
|
|
OUT TRB_TEMPLATE **EvtTrb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
URB *Urb;
|
|
|
|
//
|
|
// Validate the parameters
|
|
//
|
|
if ((Xhc == NULL) || (CmdTrb == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Status = EFI_DEVICE_ERROR;
|
|
|
|
if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: HC is halted\n"));
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Create a new URB, then poll the execution status.
|
|
//
|
|
Urb = XhcCreateCmdTrb (Xhc, CmdTrb);
|
|
|
|
if (Urb == NULL) {
|
|
DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: failed to create URB\n"));
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
ASSERT (Urb->EvtRing == &Xhc->EventRing);
|
|
|
|
Status = XhcExecTransfer (Xhc, TRUE, Urb, Timeout);
|
|
*EvtTrb = Urb->EvtTrbStart;
|
|
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
|
|
FreePool (Urb);
|
|
|
|
ON_EXIT:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Create a new URB for a new transaction.
|
|
|
|
@param Xhc The XHCI Instance
|
|
@param BusAddr The logical device address assigned by UsbBus driver
|
|
@param EpAddr Endpoint addrress
|
|
@param DevSpeed The device speed
|
|
@param MaxPacket The max packet length of the endpoint
|
|
@param Type The transaction type
|
|
@param Request The standard USB request for control transfer
|
|
@param Data The user data to transfer
|
|
@param DataLen The length of data buffer
|
|
@param Callback The function to call when data is transferred
|
|
@param Context The context to the callback
|
|
|
|
@return Created URB or NULL
|
|
|
|
**/
|
|
URB*
|
|
XhcCreateUrb (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 BusAddr,
|
|
IN UINT8 EpAddr,
|
|
IN UINT8 DevSpeed,
|
|
IN UINTN MaxPacket,
|
|
IN UINTN Type,
|
|
IN EFI_USB_DEVICE_REQUEST *Request,
|
|
IN VOID *Data,
|
|
IN UINTN DataLen,
|
|
IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
USB_ENDPOINT *Ep;
|
|
EFI_STATUS Status;
|
|
URB *Urb;
|
|
|
|
Urb = AllocateZeroPool (sizeof (URB));
|
|
if (Urb == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Urb->Signature = XHC_URB_SIG;
|
|
InitializeListHead (&Urb->UrbList);
|
|
|
|
Ep = &Urb->Ep;
|
|
Ep->BusAddr = BusAddr;
|
|
Ep->EpAddr = (UINT8)(EpAddr & 0x0F);
|
|
Ep->Direction = ((EpAddr & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
|
|
Ep->DevSpeed = DevSpeed;
|
|
Ep->MaxPacket = MaxPacket;
|
|
Ep->Type = Type;
|
|
|
|
Urb->Request = Request;
|
|
Urb->Data = Data;
|
|
Urb->DataLen = DataLen;
|
|
Urb->Callback = Callback;
|
|
Urb->Context = Context;
|
|
|
|
Status = XhcCreateTransferTrb (Xhc, Urb);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
return Urb;
|
|
}
|
|
|
|
/**
|
|
Create a transfer TRB.
|
|
|
|
@param Xhc The XHCI Instance
|
|
@param Urb The urb used to construct the transfer TRB.
|
|
|
|
@return Created TRB or NULL
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcCreateTransferTrb (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
VOID *OutputContext;
|
|
TRANSFER_RING *EPRing;
|
|
UINT8 EPType;
|
|
UINT8 SlotId;
|
|
UINT8 Dci;
|
|
TRB *TrbStart;
|
|
UINTN TotalLen;
|
|
UINTN Len;
|
|
UINTN TrbNum;
|
|
|
|
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
ASSERT (Dci < 32);
|
|
EPRing = (TRANSFER_RING *)(UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
|
|
Urb->Ring = EPRing;
|
|
OutputContext = (VOID *)(UINTN)Xhc->DCBAA[SlotId];
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
|
|
} else {
|
|
EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
|
|
}
|
|
|
|
//
|
|
// Construct the TRB
|
|
//
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
Urb->TrbStart = EPRing->RingEnqueue;
|
|
switch (EPType) {
|
|
case ED_CONTROL_BIDIR:
|
|
Urb->EvtRing = &Xhc->EventRing;
|
|
XhcSyncEventRing (Xhc, Urb->EvtRing);
|
|
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
|
|
//
|
|
// For control transfer, create SETUP_STAGE_TRB first.
|
|
//
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrSetup.bmRequestType = Urb->Request->RequestType;
|
|
TrbStart->TrbCtrSetup.bRequest = Urb->Request->Request;
|
|
TrbStart->TrbCtrSetup.wValue = Urb->Request->Value;
|
|
TrbStart->TrbCtrSetup.wIndex = Urb->Request->Index;
|
|
TrbStart->TrbCtrSetup.wLength = Urb->Request->Length;
|
|
TrbStart->TrbCtrSetup.Lenth = 8;
|
|
TrbStart->TrbCtrSetup.IntTarget = 0;
|
|
TrbStart->TrbCtrSetup.IOC = 1;
|
|
TrbStart->TrbCtrSetup.IDT = 1;
|
|
TrbStart->TrbCtrSetup.Type = TRB_TYPE_SETUP_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrSetup.TRT = 3;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrSetup.TRT = 2;
|
|
} else {
|
|
TrbStart->TrbCtrSetup.TRT = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrSetup.CycleBit = EPRing->RingPCS & BIT0;
|
|
Urb->TrbNum++;
|
|
|
|
//
|
|
// For control transfer, create DATA_STAGE_TRB.
|
|
//
|
|
if (Urb->DataLen > 0) {
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->Data);
|
|
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->Data);
|
|
TrbStart->TrbCtrData.Lenth = (UINT32) Urb->DataLen;
|
|
TrbStart->TrbCtrData.TDSize = 0;
|
|
TrbStart->TrbCtrData.IntTarget = 0;
|
|
TrbStart->TrbCtrData.ISP = 1;
|
|
TrbStart->TrbCtrData.IOC = 1;
|
|
TrbStart->TrbCtrData.IDT = 0;
|
|
TrbStart->TrbCtrData.CH = 0;
|
|
TrbStart->TrbCtrData.Type = TRB_TYPE_DATA_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrData.DIR = 1;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrData.DIR = 0;
|
|
} else {
|
|
TrbStart->TrbCtrData.DIR = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrData.CycleBit = EPRing->RingPCS & BIT0;
|
|
Urb->TrbNum++;
|
|
}
|
|
//
|
|
// For control transfer, create STATUS_STAGE_TRB.
|
|
// Get the pointer to next TRB for status stage use
|
|
//
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrStatus.IntTarget = 0;
|
|
TrbStart->TrbCtrStatus.IOC = 1;
|
|
TrbStart->TrbCtrStatus.CH = 0;
|
|
TrbStart->TrbCtrStatus.Type = TRB_TYPE_STATUS_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrStatus.DIR = 0;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrStatus.DIR = 1;
|
|
} else {
|
|
TrbStart->TrbCtrStatus.DIR = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrStatus.CycleBit = EPRing->RingPCS & BIT0;
|
|
//
|
|
// Update the enqueue pointer
|
|
//
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
Urb->TrbNum++;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
|
|
|
|
break;
|
|
|
|
case ED_BULK_OUT:
|
|
case ED_BULK_IN:
|
|
Urb->EvtRing = &Xhc->EventRing;
|
|
XhcSyncEventRing (Xhc, Urb->EvtRing);
|
|
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
|
|
|
|
TotalLen = 0;
|
|
Len = 0;
|
|
TrbNum = 0;
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
while (TotalLen < Urb->DataLen) {
|
|
if ((TotalLen + 0x10000) >= Urb->DataLen) {
|
|
Len = Urb->DataLen - TotalLen;
|
|
} else {
|
|
Len = 0x10000;
|
|
}
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
|
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
|
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
|
TrbStart->TrbNormal.TDSize = 0;
|
|
TrbStart->TrbNormal.IntTarget = 0;
|
|
TrbStart->TrbNormal.ISP = 1;
|
|
TrbStart->TrbNormal.IOC = 1;
|
|
TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
|
|
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
TrbNum++;
|
|
TotalLen += Len;
|
|
}
|
|
|
|
Urb->TrbNum = TrbNum;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
|
|
break;
|
|
|
|
case ED_INTERRUPT_OUT:
|
|
case ED_INTERRUPT_IN:
|
|
Urb->EvtRing = &Xhc->EventRing;
|
|
XhcSyncEventRing (Xhc, Urb->EvtRing);
|
|
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
|
|
|
|
TotalLen = 0;
|
|
Len = 0;
|
|
TrbNum = 0;
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
while (TotalLen < Urb->DataLen) {
|
|
if ((TotalLen + 0x10000) >= Urb->DataLen) {
|
|
Len = Urb->DataLen - TotalLen;
|
|
} else {
|
|
Len = 0x10000;
|
|
}
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
|
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
|
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
|
TrbStart->TrbNormal.TDSize = 0;
|
|
TrbStart->TrbNormal.IntTarget = 0;
|
|
TrbStart->TrbNormal.ISP = 1;
|
|
TrbStart->TrbNormal.IOC = 1;
|
|
TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
|
|
|
|
XhcSyncTrsRing (Xhc, EPRing);
|
|
TrbNum++;
|
|
TotalLen += Len;
|
|
}
|
|
|
|
Urb->TrbNum = TrbNum;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
|
|
break;
|
|
|
|
default:
|
|
DEBUG ((EFI_D_INFO, "Not supported EPType 0x%x!\n",EPType));
|
|
ASSERT (FALSE);
|
|
break;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize the XHCI host controller for schedule.
|
|
|
|
@param Xhc The XHCI Instance to be initialized.
|
|
|
|
**/
|
|
VOID
|
|
XhcInitSched (
|
|
IN USB_XHCI_INSTANCE *Xhc
|
|
)
|
|
{
|
|
VOID *Dcbaa;
|
|
UINT64 CmdRing;
|
|
UINTN Entries;
|
|
UINT32 MaxScratchpadBufs;
|
|
UINT64 *ScratchBuf;
|
|
UINT64 *ScratchEntryBuf;
|
|
UINT32 Index;
|
|
|
|
//
|
|
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
|
|
// to enable the device slots that system software is going to use.
|
|
//
|
|
Xhc->MaxSlotsEn = Xhc->HcSParams1.Data.MaxSlots;
|
|
ASSERT (Xhc->MaxSlotsEn >= 1 && Xhc->MaxSlotsEn <= 255);
|
|
XhcWriteOpReg (Xhc, XHC_CONFIG_OFFSET, Xhc->MaxSlotsEn);
|
|
|
|
//
|
|
// The Device Context Base Address Array entry associated with each allocated Device Slot
|
|
// shall contain a 64-bit pointer to the base of the associated Device Context.
|
|
// The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries.
|
|
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
|
|
//
|
|
Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
|
|
Dcbaa = AllocatePages (EFI_SIZE_TO_PAGES (Entries));
|
|
ASSERT (Dcbaa != NULL);
|
|
ZeroMem (Dcbaa, Entries);
|
|
|
|
//
|
|
// A Scratchpad Buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary.
|
|
// System software shall allocate the Scratchpad Buffer(s) before placing the xHC in to Run
|
|
// mode (Run/Stop(R/S) ='1').
|
|
//
|
|
MaxScratchpadBufs = ((Xhc->HcSParams2.Data.ScratchBufHi) << 5) | (Xhc->HcSParams2.Data.ScratchBufLo);
|
|
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
|
|
ASSERT (MaxScratchpadBufs <= 1023);
|
|
if (MaxScratchpadBufs != 0) {
|
|
ScratchBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)), Xhc->PageSize);
|
|
ASSERT (ScratchBuf != NULL);
|
|
ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
|
|
Xhc->ScratchBuf = ScratchBuf;
|
|
|
|
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
|
|
ScratchEntryBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (Xhc->PageSize), Xhc->PageSize);
|
|
ASSERT (ScratchEntryBuf != NULL);
|
|
ZeroMem (ScratchEntryBuf, Xhc->PageSize);
|
|
*ScratchBuf++ = (UINT64)(UINTN)ScratchEntryBuf;
|
|
}
|
|
|
|
//
|
|
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
|
|
// Device Context Base Address Array points to the Scratchpad Buffer Array.
|
|
//
|
|
*(UINT64 *)Dcbaa = (UINT64)(UINTN)Xhc->ScratchBuf;
|
|
}
|
|
|
|
//
|
|
// Program the Device Context Base Address Array Pointer (DCBAAP) register (5.4.6) with
|
|
// a 64-bit address pointing to where the Device Context Base Address Array is located.
|
|
//
|
|
Xhc->DCBAA = (UINT64 *)(UINTN)Dcbaa;
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(Xhc->DCBAA));
|
|
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->DCBAA));
|
|
DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
|
|
|
|
//
|
|
// Define the Command Ring Dequeue Pointer by programming the Command Ring Control Register
|
|
// (5.4.5) with a 64-bit address pointing to the starting address of the first TRB of the Command Ring.
|
|
// Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command Ring Pointer shall
|
|
// always be '0'.
|
|
//
|
|
CreateTransferRing (Xhc, CMD_RING_TRB_NUMBER, &Xhc->CmdRing);
|
|
//
|
|
// The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. As it fetches TRBs from a
|
|
// Transfer Ring it checks for a Cycle bit transition. If a transition detected, the ring is empty.
|
|
// So we set RCS as inverted PCS init value to let Command Ring empty
|
|
//
|
|
CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
|
|
ASSERT ((CmdRing & 0x3F) == 0);
|
|
CmdRing |= XHC_CRCR_RCS;
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRing));
|
|
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRing));
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
|
|
|
|
//
|
|
// Disable the 'interrupter enable' bit in USB_CMD
|
|
// and clear IE & IP bit in all Interrupter X Management Registers.
|
|
//
|
|
XhcClearOpRegBit (Xhc, XHC_USBCMD_OFFSET, XHC_USBCMD_INTE);
|
|
for (Index = 0; Index < (UINT16)(Xhc->HcSParams1.Data.MaxIntrs); Index++) {
|
|
XhcClearRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IE);
|
|
XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IP);
|
|
}
|
|
|
|
//
|
|
// Allocate EventRing for Cmd, Ctrl, Bulk, Interrupt, AsynInterrupt transfer
|
|
//
|
|
CreateEventRing (Xhc, &Xhc->EventRing);
|
|
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_EVENTRING=0x%x\n", Xhc->EventRing.EventRingSeg0));
|
|
}
|
|
|
|
/**
|
|
System software shall use a Reset Endpoint Command (section 4.11.4.7) to remove the Halted
|
|
condition in the xHC. After the successful completion of the Reset Endpoint Command, the Endpoint
|
|
Context is transitioned from the Halted to the Stopped state and the Transfer Ring of the endpoint is
|
|
reenabled. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the
|
|
Stopped to the Running state.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param Urb The urb which makes the endpoint halted.
|
|
|
|
@retval EFI_SUCCESS The recovery is successful.
|
|
@retval Others Failed to recovery halted endpoint.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcRecoverHaltedEndpoint (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
CMD_TRB_RESET_ENDPOINT CmdTrbResetED;
|
|
CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
|
|
UINT8 Dci;
|
|
UINT8 SlotId;
|
|
|
|
Status = EFI_SUCCESS;
|
|
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
ASSERT (Dci < 32);
|
|
|
|
DEBUG ((EFI_D_INFO, "Recovery Halted Slot = %x,Dci = %x\n", SlotId, Dci));
|
|
|
|
//
|
|
// 1) Send Reset endpoint command to transit from halt to stop state
|
|
//
|
|
ZeroMem (&CmdTrbResetED, sizeof (CmdTrbResetED));
|
|
CmdTrbResetED.CycleBit = 1;
|
|
CmdTrbResetED.Type = TRB_TYPE_RESET_ENDPOINT;
|
|
CmdTrbResetED.EDID = Dci;
|
|
CmdTrbResetED.SlotId = SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbResetED,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
//
|
|
// 2)Set dequeue pointer
|
|
//
|
|
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
|
|
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (Urb->Ring->RingEnqueue) | Urb->Ring->RingPCS;
|
|
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (Urb->Ring->RingEnqueue);
|
|
CmdSetTRDeq.CycleBit = 1;
|
|
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
|
|
CmdSetTRDeq.Endpoint = Dci;
|
|
CmdSetTRDeq.SlotId = SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdSetTRDeq,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
//
|
|
// 3)Ring the doorbell to transit from stop to active
|
|
//
|
|
XhcRingDoorBell (Xhc, SlotId, Dci);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Create XHCI event ring.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param EventRing The created event ring.
|
|
|
|
**/
|
|
VOID
|
|
CreateEventRing (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
OUT EVENT_RING *EventRing
|
|
)
|
|
{
|
|
VOID *Buf;
|
|
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
|
|
|
|
ASSERT (EventRing != NULL);
|
|
|
|
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
|
|
|
EventRing->EventRingSeg0 = Buf;
|
|
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
|
|
EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
|
EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
|
//
|
|
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
|
|
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
|
|
//
|
|
EventRing->EventRingCCS = 1;
|
|
|
|
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
|
|
|
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
|
|
EventRing->ERSTBase = ERSTBase;
|
|
ERSTBase->PtrLo = XHC_LOW_32BIT (EventRing->EventRingSeg0);
|
|
ERSTBase->PtrHi = XHC_HIGH_32BIT (EventRing->EventRingSeg0);
|
|
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
|
|
|
|
//
|
|
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
|
|
//
|
|
XhcWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTSZ_OFFSET,
|
|
ERST_NUMBER
|
|
);
|
|
//
|
|
// Program the Interrupter Event Ring Dequeue Pointer (ERDP) register (5.5.2.3.3)
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERDP_OFFSET,
|
|
XHC_LOW_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
|
);
|
|
XhcWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERDP_OFFSET + 4,
|
|
XHC_HIGH_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
|
);
|
|
//
|
|
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTBA_OFFSET,
|
|
XHC_LOW_32BIT((UINT64)(UINTN)ERSTBase)
|
|
);
|
|
XhcWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTBA_OFFSET + 4,
|
|
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTBase)
|
|
);
|
|
//
|
|
// Need set IMAN IE bit to enble the ring interrupt
|
|
//
|
|
XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET, XHC_IMAN_IE);
|
|
}
|
|
|
|
/**
|
|
Create XHCI transfer ring.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param TrbNum The number of TRB in the ring.
|
|
@param TransferRing The created transfer ring.
|
|
|
|
**/
|
|
VOID
|
|
CreateTransferRing (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINTN TrbNum,
|
|
OUT TRANSFER_RING *TransferRing
|
|
)
|
|
{
|
|
VOID *Buf;
|
|
LINK_TRB *EndTrb;
|
|
|
|
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TrbNum));
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
|
|
|
TransferRing->RingSeg0 = Buf;
|
|
TransferRing->TrbNumber = TrbNum;
|
|
TransferRing->RingEnqueue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
|
|
TransferRing->RingDequeue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
|
|
TransferRing->RingPCS = 1;
|
|
//
|
|
// 4.9.2 Transfer Ring Management
|
|
// To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring to
|
|
// point to the first TRB in the ring.
|
|
//
|
|
EndTrb = (LINK_TRB *) ((UINTN)Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
|
|
EndTrb->Type = TRB_TYPE_LINK;
|
|
EndTrb->PtrLo = XHC_LOW_32BIT (Buf);
|
|
EndTrb->PtrHi = XHC_HIGH_32BIT (Buf);
|
|
//
|
|
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
|
|
//
|
|
EndTrb->TC = 1;
|
|
//
|
|
// Set Cycle bit as other TRB PCS init value
|
|
//
|
|
EndTrb->CycleBit = 0;
|
|
}
|
|
|
|
/**
|
|
Free XHCI event ring.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param EventRing The event ring to be freed.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcFreeEventRing (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN EVENT_RING *EventRing
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
EVENT_RING_SEG_TABLE_ENTRY *TablePtr;
|
|
VOID *RingBuf;
|
|
EVENT_RING_SEG_TABLE_ENTRY *EventRingPtr;
|
|
|
|
if(EventRing->EventRingSeg0 == NULL) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Get the Event Ring Segment Table base address
|
|
//
|
|
TablePtr = (EVENT_RING_SEG_TABLE_ENTRY *)(EventRing->ERSTBase);
|
|
|
|
//
|
|
// Get all the TRBs Ring and release
|
|
//
|
|
for (Index = 0; Index < ERST_NUMBER; Index++) {
|
|
EventRingPtr = TablePtr + Index;
|
|
RingBuf = (VOID *)(UINTN)(EventRingPtr->PtrLo | ((UINT64)EventRingPtr->PtrHi << 32));
|
|
|
|
if(RingBuf != NULL) {
|
|
FreePages (RingBuf, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
|
ZeroMem (EventRingPtr, sizeof (EVENT_RING_SEG_TABLE_ENTRY));
|
|
}
|
|
}
|
|
|
|
FreePages (TablePtr, EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Free the resouce allocated at initializing schedule.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
|
|
**/
|
|
VOID
|
|
XhcFreeSched (
|
|
IN USB_XHCI_INSTANCE *Xhc
|
|
)
|
|
{
|
|
UINT32 Index;
|
|
UINT64 *ScratchBuf;
|
|
|
|
if (Xhc->ScratchBuf != NULL) {
|
|
ScratchBuf = Xhc->ScratchBuf;
|
|
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
|
|
FreeAlignedPages ((VOID*)(UINTN)*ScratchBuf++, EFI_SIZE_TO_PAGES (Xhc->PageSize));
|
|
}
|
|
FreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)));
|
|
}
|
|
|
|
if (Xhc->DCBAA != NULL) {
|
|
FreePages (Xhc->DCBAA, EFI_SIZE_TO_PAGES((Xhc->MaxSlotsEn + 1) * sizeof(UINT64)));
|
|
Xhc->DCBAA = NULL;
|
|
}
|
|
|
|
if (Xhc->CmdRing.RingSeg0 != NULL){
|
|
FreePages (Xhc->CmdRing.RingSeg0, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER));
|
|
Xhc->CmdRing.RingSeg0 = NULL;
|
|
}
|
|
|
|
XhcFreeEventRing (Xhc,&Xhc->EventRing);
|
|
}
|
|
|
|
/**
|
|
Check if it is ring TRB.
|
|
|
|
@param Ring The transfer ring
|
|
@param Trb The TRB to check if it's in the transfer ring
|
|
|
|
@retval TRUE It is in the ring
|
|
@retval FALSE It is not in the ring
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsTransferRingTrb (
|
|
IN TRANSFER_RING *Ring,
|
|
IN TRB_TEMPLATE *Trb
|
|
)
|
|
{
|
|
BOOLEAN Flag;
|
|
TRB_TEMPLATE *Trb1;
|
|
UINTN Index;
|
|
|
|
Trb1 = Ring->RingSeg0;
|
|
Flag = FALSE;
|
|
|
|
ASSERT (Ring->TrbNumber == CMD_RING_TRB_NUMBER || Ring->TrbNumber == TR_RING_TRB_NUMBER);
|
|
|
|
for (Index = 0; Index < Ring->TrbNumber; Index++) {
|
|
if (Trb == Trb1) {
|
|
Flag = TRUE;
|
|
break;
|
|
}
|
|
Trb1++;
|
|
}
|
|
|
|
return Flag;
|
|
}
|
|
|
|
/**
|
|
Check the URB's execution result and update the URB's
|
|
result accordingly.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param Urb The URB to check result.
|
|
|
|
@return Whether the result of URB transfer is finialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcCheckUrbResult (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
BOOLEAN StartDone;
|
|
BOOLEAN EndDone;
|
|
EVT_TRB_TRANSFER *EvtTrb;
|
|
TRB_TEMPLATE *TRBPtr;
|
|
UINTN Index;
|
|
UINT8 TRBType;
|
|
EFI_STATUS Status;
|
|
|
|
ASSERT ((Xhc != NULL) && (Urb != NULL));
|
|
|
|
Urb->Completed = 0;
|
|
Urb->Result = EFI_USB_NOERROR;
|
|
Status = EFI_SUCCESS;
|
|
EvtTrb = NULL;
|
|
|
|
if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
|
|
Urb->Result |= EFI_USB_ERR_SYSTEM;
|
|
Status = EFI_DEVICE_ERROR;
|
|
goto EXIT;
|
|
}
|
|
|
|
//
|
|
// Restore the EventRingDequeue and poll the transfer event ring from beginning
|
|
//
|
|
StartDone = FALSE;
|
|
EndDone = FALSE;
|
|
Urb->EvtRing->EventRingDequeue = Urb->EvtTrbStart;
|
|
for (Index = 0; Index < Urb->EvtRing->TrbNumber; Index++) {
|
|
XhcSyncEventRing (Xhc, Urb->EvtRing);
|
|
Status = XhcCheckNewEvent (Xhc, Urb->EvtRing, ((TRB_TEMPLATE **)&EvtTrb));
|
|
if (Status == EFI_NOT_READY) {
|
|
Urb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
goto EXIT;
|
|
}
|
|
|
|
//
|
|
// Only handle COMMAND_COMPLETETION_EVENT and TRANSFER_EVENT.
|
|
//
|
|
if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
|
|
continue;
|
|
}
|
|
|
|
TRBPtr = (TRB_TEMPLATE *)(UINTN)(EvtTrb->TRBPtrLo | (UINT64) EvtTrb->TRBPtrHi << 32);
|
|
if (IsTransferRingTrb (Urb->Ring, TRBPtr)) {
|
|
switch (EvtTrb->Completecode) {
|
|
case TRB_COMPLETION_STALL_ERROR:
|
|
Urb->Result |= EFI_USB_ERR_STALL;
|
|
Status = EFI_DEVICE_ERROR;
|
|
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: STALL_ERROR! Completecode = %x\n",EvtTrb->Completecode));
|
|
goto EXIT;
|
|
break;
|
|
|
|
case TRB_COMPLETION_BABBLE_ERROR:
|
|
Urb->Result |= EFI_USB_ERR_BABBLE;
|
|
Status = EFI_DEVICE_ERROR;
|
|
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: BABBLE_ERROR! Completecode = %x\n",EvtTrb->Completecode));
|
|
goto EXIT;
|
|
break;
|
|
|
|
case TRB_COMPLETION_DATA_BUFFER_ERROR:
|
|
Urb->Result |= EFI_USB_ERR_BUFFER;
|
|
Status = EFI_DEVICE_ERROR;
|
|
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: ERR_BUFFER! Completecode = %x\n",EvtTrb->Completecode));
|
|
goto EXIT;
|
|
break;
|
|
|
|
case TRB_COMPLETION_USB_TRANSACTION_ERROR:
|
|
Urb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
Status = EFI_DEVICE_ERROR;
|
|
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: TRANSACTION_ERROR! Completecode = %x\n",EvtTrb->Completecode));
|
|
goto EXIT;
|
|
break;
|
|
|
|
case TRB_COMPLETION_SHORT_PACKET:
|
|
case TRB_COMPLETION_SUCCESS:
|
|
if (EvtTrb->Completecode == TRB_COMPLETION_SHORT_PACKET) {
|
|
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: short packet happens!\n"));
|
|
}
|
|
|
|
TRBType = (UINT8) (TRBPtr->Type);
|
|
if ((TRBType == TRB_TYPE_DATA_STAGE) ||
|
|
(TRBType == TRB_TYPE_NORMAL) ||
|
|
(TRBType == TRB_TYPE_ISOCH)) {
|
|
Urb->Completed += (Urb->DataLen - EvtTrb->Lenth);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
break;
|
|
|
|
default:
|
|
DEBUG ((EFI_D_ERROR, "Transfer Default Error Occur! Completecode = 0x%x!\n",EvtTrb->Completecode));
|
|
Urb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
Status = EFI_DEVICE_ERROR;
|
|
goto EXIT;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Only check first and end Trb event address
|
|
//
|
|
if (TRBPtr == Urb->TrbStart) {
|
|
StartDone = TRUE;
|
|
}
|
|
|
|
if (TRBPtr == Urb->TrbEnd) {
|
|
EndDone = TRUE;
|
|
}
|
|
|
|
if (StartDone && EndDone) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
EXIT:
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the transfer by polling the URB. This is a synchronous operation.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param CmdTransfer The executed URB is for cmd transfer or not.
|
|
@param Urb The URB to execute.
|
|
@param Timeout The time to wait before abort, in millisecond.
|
|
|
|
@return EFI_DEVICE_ERROR The transfer failed due to transfer error.
|
|
@return EFI_TIMEOUT The transfer failed due to time out.
|
|
@return EFI_SUCCESS The transfer finished OK.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcExecTransfer (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN BOOLEAN CmdTransfer,
|
|
IN URB *Urb,
|
|
IN UINTN Timeout
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN Index;
|
|
UINTN Loop;
|
|
UINT8 SlotId;
|
|
UINT8 Dci;
|
|
|
|
if (CmdTransfer) {
|
|
SlotId = 0;
|
|
Dci = 0;
|
|
} else {
|
|
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
ASSERT (Dci < 32);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
Loop = (Timeout * XHC_1_MILLISECOND / XHC_POLL_DELAY) + 1;
|
|
if (Timeout == 0) {
|
|
Loop = 0xFFFFFFFF;
|
|
}
|
|
|
|
XhcRingDoorBell (Xhc, SlotId, Dci);
|
|
|
|
for (Index = 0; Index < Loop; Index++) {
|
|
Status = XhcCheckUrbResult (Xhc, Urb);
|
|
if ((Status != EFI_NOT_READY)) {
|
|
break;
|
|
}
|
|
gBS->Stall (XHC_POLL_DELAY);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Delete a single asynchronous interrupt transfer for
|
|
the device and endpoint.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param BusAddr The logical device address assigned by UsbBus driver.
|
|
@param EpNum The endpoint of the target.
|
|
|
|
@retval EFI_SUCCESS An asynchronous transfer is removed.
|
|
@retval EFI_NOT_FOUND No transfer for the device is found.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhciDelAsyncIntTransfer (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 BusAddr,
|
|
IN UINT8 EpNum
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
URB *Urb;
|
|
EFI_USB_DATA_DIRECTION Direction;
|
|
|
|
Direction = ((EpNum & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
|
|
EpNum &= 0x0F;
|
|
|
|
Urb = NULL;
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
if ((Urb->Ep.BusAddr == BusAddr) &&
|
|
(Urb->Ep.EpAddr == EpNum) &&
|
|
(Urb->Ep.Direction == Direction)) {
|
|
RemoveEntryList (&Urb->UrbList);
|
|
FreePool (Urb->Data);
|
|
FreePool (Urb);
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
Remove all the asynchronous interrutp transfers.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
|
|
**/
|
|
VOID
|
|
XhciDelAllAsyncIntTransfers (
|
|
IN USB_XHCI_INSTANCE *Xhc
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
URB *Urb;
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
RemoveEntryList (&Urb->UrbList);
|
|
FreePool (Urb->Data);
|
|
FreePool (Urb);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Update the queue head for next round of asynchronous transfer
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param Urb The URB to update
|
|
|
|
**/
|
|
VOID
|
|
XhcUpdateAsyncRequest (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
Status = XhcCreateTransferTrb (Xhc, Urb);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
Status = RingIntTransferDoorBell (Xhc, Urb);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Interrupt transfer periodic check handler.
|
|
|
|
@param Event Interrupt event.
|
|
@param Context Pointer to USB_XHCI_INSTANCE.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
XhcMonitorAsyncRequests (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
USB_XHCI_INSTANCE *Xhc;
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
UINT8 *ProcBuf;
|
|
URB *Urb;
|
|
UINT8 SlotId;
|
|
EFI_STATUS Status;
|
|
EFI_TPL OldTpl;
|
|
|
|
OldTpl = gBS->RaiseTPL (XHC_TPL);
|
|
|
|
Xhc = (USB_XHCI_INSTANCE*) Context;
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
|
|
//
|
|
// Make sure that the device is available before every check.
|
|
//
|
|
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Check the result of URB execution. If it is still
|
|
// active, check the next one.
|
|
//
|
|
Status = XhcCheckUrbResult (Xhc, Urb);
|
|
|
|
if (Status == EFI_NOT_READY) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Allocate a buffer then copy the transferred data for user.
|
|
// If failed to allocate the buffer, update the URB for next
|
|
// round of transfer. Ignore the data of this round.
|
|
//
|
|
ProcBuf = NULL;
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
ASSERT (Urb->Completed <= Urb->DataLen);
|
|
|
|
ProcBuf = AllocateZeroPool (Urb->Completed);
|
|
|
|
if (ProcBuf == NULL) {
|
|
XhcUpdateAsyncRequest (Xhc, Urb);
|
|
continue;
|
|
}
|
|
|
|
CopyMem (ProcBuf, Urb->Data, Urb->Completed);
|
|
}
|
|
|
|
XhcUpdateAsyncRequest (Xhc, Urb);
|
|
|
|
//
|
|
// Leave error recovery to its related device driver. A
|
|
// common case of the error recovery is to re-submit the
|
|
// interrupt transfer which is linked to the head of the
|
|
// list. This function scans from head to tail. So the
|
|
// re-submitted interrupt transfer's callback function
|
|
// will not be called again in this round. Don't touch this
|
|
// URB after the callback, it may have been removed by the
|
|
// callback.
|
|
//
|
|
if (Urb->Callback != NULL) {
|
|
//
|
|
// Restore the old TPL, USB bus maybe connect device in
|
|
// his callback. Some drivers may has a lower TPL restriction.
|
|
//
|
|
gBS->RestoreTPL (OldTpl);
|
|
(Urb->Callback) (ProcBuf, Urb->Completed, Urb->Context, Urb->Result);
|
|
OldTpl = gBS->RaiseTPL (XHC_TPL);
|
|
}
|
|
|
|
if (ProcBuf != NULL) {
|
|
gBS->FreePool (ProcBuf);
|
|
}
|
|
}
|
|
gBS->RestoreTPL (OldTpl);
|
|
}
|
|
|
|
/**
|
|
Monitor the port status change. Enable/Disable device slot if there is a device attached/detached.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param ParentRouteChart The route string pointed to the parent device if it exists.
|
|
@param Port The port to be polled.
|
|
@param PortState The port state.
|
|
|
|
@retval EFI_SUCCESS Successfully enable/disable device slot according to port state.
|
|
@retval Others Should not appear.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcPollPortStatusChange (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT8 Port,
|
|
IN EFI_USB_PORT_STATUS *PortState
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT8 Speed;
|
|
UINT8 SlotId;
|
|
USB_DEV_ROUTE RouteChart;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (ParentRouteChart.Dword == 0) {
|
|
RouteChart.Route.RouteString = 0;
|
|
RouteChart.Route.RootPortNum = Port + 1;
|
|
RouteChart.Route.TierNum = 1;
|
|
} else {
|
|
if(Port < 14) {
|
|
RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (Port << (4 * (ParentRouteChart.Route.TierNum - 1)));
|
|
} else {
|
|
RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (15 << (4 * (ParentRouteChart.Route.TierNum - 1)));
|
|
}
|
|
RouteChart.Route.RootPortNum = ParentRouteChart.Route.RootPortNum;
|
|
RouteChart.Route.TierNum = ParentRouteChart.Route.TierNum + 1;
|
|
}
|
|
|
|
if (((PortState->PortStatus & USB_PORT_STAT_ENABLE) != 0) &&
|
|
((PortState->PortStatus & USB_PORT_STAT_CONNECTION) != 0)) {
|
|
//
|
|
// Has a device attached, Identify device speed after port is enabled.
|
|
//
|
|
Speed = EFI_USB_SPEED_FULL;
|
|
if ((PortState->PortStatus & USB_PORT_STAT_LOW_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_LOW;
|
|
} else if ((PortState->PortStatus & USB_PORT_STAT_HIGH_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_HIGH;
|
|
} else if ((PortState->PortStatus & USB_PORT_STAT_SUPER_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_SUPER;
|
|
}
|
|
//
|
|
// Execute Enable_Slot cmd for attached device, initialize device context and assign device address.
|
|
//
|
|
SlotId = XhcRouteStringToSlotId (Xhc, RouteChart);
|
|
if (SlotId == 0) {
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
Status = XhcInitializeDeviceSlot (Xhc, ParentRouteChart, Port, RouteChart, Speed);
|
|
} else {
|
|
Status = XhcInitializeDeviceSlot64 (Xhc, ParentRouteChart, Port, RouteChart, Speed);
|
|
}
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
} else if ((PortState->PortStatus & USB_PORT_STAT_CONNECTION) == 0) {
|
|
//
|
|
// Device is detached. Disable the allocated device slot and release resource.
|
|
//
|
|
SlotId = XhcRouteStringToSlotId (Xhc, RouteChart);
|
|
if (SlotId != 0) {
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
Status = XhcDisableSlotCmd (Xhc, SlotId);
|
|
} else {
|
|
Status = XhcDisableSlotCmd64 (Xhc, SlotId);
|
|
}
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Calculate the device context index by endpoint address and direction.
|
|
|
|
@param EpAddr The target endpoint number.
|
|
@param Direction The direction of the target endpoint.
|
|
|
|
@return The device context index of endpoint.
|
|
|
|
**/
|
|
UINT8
|
|
XhcEndpointToDci (
|
|
IN UINT8 EpAddr,
|
|
IN UINT8 Direction
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
if (EpAddr == 0) {
|
|
return 1;
|
|
} else {
|
|
Index = (UINT8) (2 * EpAddr);
|
|
if (Direction == EfiUsbDataIn) {
|
|
Index += 1;
|
|
}
|
|
return Index;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Find out the actual device address according to the requested device address from UsbBus.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param BusDevAddr The requested device address by UsbBus upper driver.
|
|
|
|
@return The actual device address assigned to the device.
|
|
|
|
**/
|
|
UINT8
|
|
EFIAPI
|
|
XhcBusDevAddrToSlotId (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 BusDevAddr
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (Xhc->UsbDevContext[Index + 1].Enabled &&
|
|
(Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
|
|
(Xhc->UsbDevContext[Index + 1].BusDevAddr == BusDevAddr)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == 255) {
|
|
return 0;
|
|
}
|
|
|
|
return Xhc->UsbDevContext[Index + 1].SlotId;
|
|
}
|
|
|
|
/**
|
|
Find out the slot id according to the device's route string.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param RouteString The route string described the device location.
|
|
|
|
@return The slot id used by the device.
|
|
|
|
**/
|
|
UINT8
|
|
EFIAPI
|
|
XhcRouteStringToSlotId (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN USB_DEV_ROUTE RouteString
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (Xhc->UsbDevContext[Index + 1].Enabled &&
|
|
(Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
|
|
(Xhc->UsbDevContext[Index + 1].RouteString.Dword == RouteString.Dword)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == 255) {
|
|
return 0;
|
|
}
|
|
|
|
return Xhc->UsbDevContext[Index + 1].SlotId;
|
|
}
|
|
|
|
/**
|
|
Synchronize the specified event ring to update the enqueue and dequeue pointer.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param EvtRing The event ring to sync.
|
|
|
|
@retval EFI_SUCCESS The event ring is synchronized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcSyncEventRing (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN EVENT_RING *EvtRing
|
|
)
|
|
{
|
|
UINTN Index;
|
|
TRB_TEMPLATE *EvtTrb1;
|
|
TRB_TEMPLATE *EvtTrb2;
|
|
UINT64 XhcDequeue;
|
|
UINT32 High;
|
|
UINT32 Low;
|
|
|
|
ASSERT (EvtRing != NULL);
|
|
|
|
//
|
|
// Calculate the EventRingEnqueue and EventRingCCS.
|
|
// Note: only support single Segment
|
|
//
|
|
EvtTrb1 = EvtRing->EventRingSeg0;
|
|
EvtTrb2 = EvtRing->EventRingSeg0;
|
|
|
|
for (Index = 0; Index < EvtRing->TrbNumber; Index++) {
|
|
if (EvtTrb1->CycleBit != EvtTrb2->CycleBit) {
|
|
break;
|
|
}
|
|
EvtTrb1++;
|
|
}
|
|
|
|
if (Index < EvtRing->TrbNumber) {
|
|
EvtRing->EventRingEnqueue = EvtTrb1;
|
|
EvtRing->EventRingCCS = (EvtTrb2->CycleBit) ? 1 : 0;
|
|
} else {
|
|
EvtRing->EventRingEnqueue = EvtTrb2;
|
|
EvtRing->EventRingCCS = (EvtTrb2->CycleBit) ? 0 : 1;
|
|
}
|
|
|
|
//
|
|
// Apply the EventRingDequeue to Xhc
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
Low = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET);
|
|
High = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
|
|
XhcDequeue = (UINT64)(LShiftU64((UINT64)High, 32) | Low);
|
|
|
|
if ((XhcDequeue & (~0x0F)) != ((UINT64)(UINTN)EvtRing->EventRingDequeue & (~0x0F))) {
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, Low | BIT3);
|
|
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, High);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Synchronize the specified transfer ring to update the enqueue and dequeue pointer.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param TrsRing The transfer ring to sync.
|
|
|
|
@retval EFI_SUCCESS The transfer ring is synchronized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcSyncTrsRing (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN TRANSFER_RING *TrsRing
|
|
)
|
|
{
|
|
UINTN Index;
|
|
TRB_TEMPLATE *TrsTrb;
|
|
|
|
ASSERT (TrsRing != NULL);
|
|
//
|
|
// Calculate the latest RingEnqueue and RingPCS
|
|
//
|
|
TrsTrb = TrsRing->RingEnqueue;
|
|
ASSERT (TrsTrb != NULL);
|
|
|
|
for (Index = 0; Index < TrsRing->TrbNumber; Index++) {
|
|
if (TrsTrb->CycleBit != (TrsRing->RingPCS & BIT0)) {
|
|
break;
|
|
}
|
|
TrsTrb++;
|
|
if ((UINT8) TrsTrb->Type == TRB_TYPE_LINK) {
|
|
ASSERT (((LINK_TRB*)TrsTrb)->TC != 0);
|
|
//
|
|
// set cycle bit in Link TRB as normal
|
|
//
|
|
((LINK_TRB*)TrsTrb)->CycleBit = TrsRing->RingPCS & BIT0;
|
|
//
|
|
// Toggle PCS maintained by software
|
|
//
|
|
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
|
|
TrsTrb = (TRB_TEMPLATE *)(UINTN)((TrsTrb->Parameter1 | ((UINT64)TrsTrb->Parameter2 << 32)) & ~0x0F);
|
|
}
|
|
}
|
|
|
|
ASSERT (Index != TrsRing->TrbNumber);
|
|
|
|
if (TrsTrb != TrsRing->RingEnqueue) {
|
|
TrsRing->RingEnqueue = TrsTrb;
|
|
}
|
|
|
|
//
|
|
// Clear the Trb context for enqueue, but reserve the PCS bit
|
|
//
|
|
TrsTrb->Parameter1 = 0;
|
|
TrsTrb->Parameter2 = 0;
|
|
TrsTrb->Status = 0;
|
|
TrsTrb->RsvdZ1 = 0;
|
|
TrsTrb->Type = 0;
|
|
TrsTrb->Control = 0;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Check if there is a new generated event.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param EvtRing The event ring to check.
|
|
@param NewEvtTrb The new event TRB found.
|
|
|
|
@retval EFI_SUCCESS Found a new event TRB at the event ring.
|
|
@retval EFI_NOT_READY The event ring has no new event.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcCheckNewEvent (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN EVENT_RING *EvtRing,
|
|
OUT TRB_TEMPLATE **NewEvtTrb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TRB_TEMPLATE*EvtTrb;
|
|
|
|
ASSERT (EvtRing != NULL);
|
|
|
|
EvtTrb = EvtRing->EventRingDequeue;
|
|
*NewEvtTrb = EvtRing->EventRingDequeue;
|
|
|
|
if (EvtRing->EventRingDequeue == EvtRing->EventRingEnqueue) {
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (((EvtTrb->Status >> 24) & 0xFF) != TRB_COMPLETION_SUCCESS) {
|
|
Status = EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
EvtRing->EventRingDequeue++;
|
|
//
|
|
// If the dequeue pointer is beyond the ring, then roll-back it to the begining of the ring.
|
|
//
|
|
if ((UINTN)EvtRing->EventRingDequeue >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) {
|
|
EvtRing->EventRingDequeue = EvtRing->EventRingSeg0;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Ring the door bell to notify XHCI there is a transaction to be executed.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id of the target device.
|
|
@param Dci The device context index of the target slot or endpoint.
|
|
|
|
@retval EFI_SUCCESS Successfully ring the door bell.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcRingDoorBell (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 Dci
|
|
)
|
|
{
|
|
if (SlotId == 0) {
|
|
XhcWriteDoorBellReg (Xhc, 0, 0);
|
|
} else {
|
|
XhcWriteDoorBellReg (Xhc, SlotId * sizeof (UINT32), Dci);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Ring the door bell to notify XHCI there is a transaction to be executed through URB.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param Urb The URB to be rung.
|
|
|
|
@retval EFI_SUCCESS Successfully ring the door bell.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
RingIntTransferDoorBell (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
UINT8 SlotId;
|
|
UINT8 Dci;
|
|
|
|
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
XhcRingDoorBell (Xhc, SlotId, Dci);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Assign and initialize the device slot for a new device.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param ParentRouteChart The route string pointed to the parent device.
|
|
@param ParentPort The port at which the device is located.
|
|
@param RouteChart The route string pointed to the device.
|
|
@param DeviceSpeed The device speed.
|
|
|
|
@retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcInitializeDeviceSlot (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT16 ParentPort,
|
|
IN USB_DEV_ROUTE RouteChart,
|
|
IN UINT8 DeviceSpeed
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
|
|
UINT8 DeviceAddress;
|
|
CMD_TRB_ENABLE_SLOT CmdTrb;
|
|
UINT8 SlotId;
|
|
UINT8 ParentSlotId;
|
|
DEVICE_CONTEXT *ParentDeviceContext;
|
|
|
|
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
|
CmdTrb.CycleBit = 1;
|
|
CmdTrb.Type = TRB_TYPE_EN_SLOT;
|
|
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrb,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
|
|
DEBUG ((EFI_D_INFO, "Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
|
|
SlotId = (UINT8)EvtTrb->SlotId;
|
|
ASSERT (SlotId != 0);
|
|
|
|
ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
|
|
Xhc->UsbDevContext[SlotId].Enabled = TRUE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = SlotId;
|
|
Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
|
|
Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
|
|
|
|
//
|
|
// 4.3.3 Device Slot Initialization
|
|
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
|
//
|
|
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
|
ASSERT (InputContext != NULL);
|
|
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
|
|
|
|
//
|
|
// 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
|
|
// flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
|
|
// Context are affected by the command.
|
|
//
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
|
|
|
|
//
|
|
// 3) Initialize the Input Slot Context data structure
|
|
//
|
|
InputContext->Slot.RouteString = RouteChart.Route.RouteString;
|
|
InputContext->Slot.Speed = DeviceSpeed + 1;
|
|
InputContext->Slot.ContextEntries = 1;
|
|
InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
|
|
|
|
if (RouteChart.Route.RouteString) {
|
|
//
|
|
// The device is behind of hub device.
|
|
//
|
|
ParentSlotId = XhcRouteStringToSlotId(Xhc, ParentRouteChart);
|
|
ASSERT (ParentSlotId != 0);
|
|
//
|
|
//if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
|
|
//
|
|
ParentDeviceContext = (DEVICE_CONTEXT *)Xhc->UsbDevContext[ParentSlotId].OutputContext;
|
|
if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
|
|
(ParentDeviceContext->Slot.TTHubSlotId == 0)) {
|
|
if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
|
|
//
|
|
// Full/Low device attached to High speed hub port that isolates the high speed signaling
|
|
// environment from Full/Low speed signaling environment for a device
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentPort;
|
|
InputContext->Slot.TTHubSlotId = ParentSlotId;
|
|
}
|
|
} else {
|
|
//
|
|
// Inherit the TT parameters from parent device.
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
|
|
InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
|
|
//
|
|
// If the device is a High speed device then down the speed to be the same as its parent Hub
|
|
//
|
|
if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
|
|
//
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
|
|
//
|
|
// 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
|
|
//
|
|
InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
InputContext->EP[0].MaxPacketSize = 512;
|
|
} else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->EP[0].MaxPacketSize = 64;
|
|
} else {
|
|
InputContext->EP[0].MaxPacketSize = 8;
|
|
}
|
|
//
|
|
// Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
|
|
// 1KB, and Bulk and Isoch endpoints 3KB.
|
|
//
|
|
InputContext->EP[0].AverageTRBLength = 8;
|
|
InputContext->EP[0].MaxBurstSize = 0;
|
|
InputContext->EP[0].Interval = 0;
|
|
InputContext->EP[0].MaxPStreams = 0;
|
|
InputContext->EP[0].Mult = 0;
|
|
InputContext->EP[0].CErr = 3;
|
|
|
|
//
|
|
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
|
//
|
|
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
|
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
|
|
|
//
|
|
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
|
//
|
|
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
|
ASSERT (OutputContext != NULL);
|
|
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
|
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
|
|
|
|
Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
|
|
//
|
|
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
|
// a pointer to the Output Device Context data structure (6.2.1).
|
|
//
|
|
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
|
|
|
//
|
|
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
|
// Context data structure described above.
|
|
//
|
|
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
|
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
|
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
|
CmdTrbAddr.CycleBit = 1;
|
|
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
|
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
DeviceAddress = (UINT8) ((DEVICE_CONTEXT *) OutputContext)->Slot.DeviceAddress;
|
|
DEBUG ((EFI_D_INFO, " Address %d assigned succeefully\n", DeviceAddress));
|
|
|
|
Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Assign and initialize the device slot for a new device.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param ParentRouteChart The route string pointed to the parent device.
|
|
@param ParentPort The port at which the device is located.
|
|
@param RouteChart The route string pointed to the device.
|
|
@param DeviceSpeed The device speed.
|
|
|
|
@retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcInitializeDeviceSlot64 (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT16 ParentPort,
|
|
IN USB_DEV_ROUTE RouteChart,
|
|
IN UINT8 DeviceSpeed
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
|
|
UINT8 DeviceAddress;
|
|
CMD_TRB_ENABLE_SLOT CmdTrb;
|
|
UINT8 SlotId;
|
|
UINT8 ParentSlotId;
|
|
DEVICE_CONTEXT_64 *ParentDeviceContext;
|
|
|
|
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
|
CmdTrb.CycleBit = 1;
|
|
CmdTrb.Type = TRB_TYPE_EN_SLOT;
|
|
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrb,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
|
|
DEBUG ((EFI_D_INFO, "Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
|
|
SlotId = (UINT8)EvtTrb->SlotId;
|
|
ASSERT (SlotId != 0);
|
|
|
|
ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
|
|
Xhc->UsbDevContext[SlotId].Enabled = TRUE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = SlotId;
|
|
Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
|
|
Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
|
|
|
|
//
|
|
// 4.3.3 Device Slot Initialization
|
|
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
|
//
|
|
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
|
ASSERT (InputContext != NULL);
|
|
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
|
|
|
|
//
|
|
// 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
|
|
// flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
|
|
// Context are affected by the command.
|
|
//
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
|
|
|
|
//
|
|
// 3) Initialize the Input Slot Context data structure
|
|
//
|
|
InputContext->Slot.RouteString = RouteChart.Route.RouteString;
|
|
InputContext->Slot.Speed = DeviceSpeed + 1;
|
|
InputContext->Slot.ContextEntries = 1;
|
|
InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
|
|
|
|
if (RouteChart.Route.RouteString) {
|
|
//
|
|
// The device is behind of hub device.
|
|
//
|
|
ParentSlotId = XhcRouteStringToSlotId(Xhc, ParentRouteChart);
|
|
ASSERT (ParentSlotId != 0);
|
|
//
|
|
//if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
|
|
//
|
|
ParentDeviceContext = (DEVICE_CONTEXT_64 *)Xhc->UsbDevContext[ParentSlotId].OutputContext;
|
|
if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
|
|
(ParentDeviceContext->Slot.TTHubSlotId == 0)) {
|
|
if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
|
|
//
|
|
// Full/Low device attached to High speed hub port that isolates the high speed signaling
|
|
// environment from Full/Low speed signaling environment for a device
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentPort;
|
|
InputContext->Slot.TTHubSlotId = ParentSlotId;
|
|
}
|
|
} else {
|
|
//
|
|
// Inherit the TT parameters from parent device.
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
|
|
InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
|
|
//
|
|
// If the device is a High speed device then down the speed to be the same as its parent Hub
|
|
//
|
|
if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
|
|
//
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
|
|
//
|
|
// 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
|
|
//
|
|
InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
InputContext->EP[0].MaxPacketSize = 512;
|
|
} else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->EP[0].MaxPacketSize = 64;
|
|
} else {
|
|
InputContext->EP[0].MaxPacketSize = 8;
|
|
}
|
|
//
|
|
// Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
|
|
// 1KB, and Bulk and Isoch endpoints 3KB.
|
|
//
|
|
InputContext->EP[0].AverageTRBLength = 8;
|
|
InputContext->EP[0].MaxBurstSize = 0;
|
|
InputContext->EP[0].Interval = 0;
|
|
InputContext->EP[0].MaxPStreams = 0;
|
|
InputContext->EP[0].Mult = 0;
|
|
InputContext->EP[0].CErr = 3;
|
|
|
|
//
|
|
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
|
//
|
|
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
|
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
|
|
|
//
|
|
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
|
//
|
|
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
|
ASSERT (OutputContext != NULL);
|
|
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
|
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
|
|
|
|
Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
|
|
//
|
|
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
|
// a pointer to the Output Device Context data structure (6.2.1).
|
|
//
|
|
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
|
|
|
//
|
|
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
|
// Context data structure described above.
|
|
//
|
|
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
|
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
|
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
|
CmdTrbAddr.CycleBit = 1;
|
|
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
|
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
DeviceAddress = (UINT8) ((DEVICE_CONTEXT_64 *) OutputContext)->Slot.DeviceAddress;
|
|
DEBUG ((EFI_D_INFO, " Address %d assigned succeefully\n", DeviceAddress));
|
|
|
|
Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Disable the specified device slot.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be disabled.
|
|
|
|
@retval EFI_SUCCESS Successfully disable the device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcDisableSlotCmd (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TRB_TEMPLATE *EvtTrb;
|
|
CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
|
|
UINT8 Index;
|
|
VOID *RingSeg;
|
|
|
|
//
|
|
// Disable the device slots occupied by these devices on its downstream ports.
|
|
// Entry 0 is reserved.
|
|
//
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (!Xhc->UsbDevContext[Index + 1].Enabled ||
|
|
(Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
|
|
(Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
|
|
continue;
|
|
}
|
|
|
|
Status = XhcDisableSlotCmd (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: failed to disable child, ignore error\n"));
|
|
Xhc->UsbDevContext[Index + 1].SlotId = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Construct the disable slot command
|
|
//
|
|
DEBUG ((EFI_D_INFO, "Disable device slot %d!\n", SlotId));
|
|
|
|
ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
|
|
CmdTrbDisSlot.CycleBit = 1;
|
|
CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
|
|
CmdTrbDisSlot.SlotId = SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR(Status);
|
|
//
|
|
// Free the slot's device context entry
|
|
//
|
|
Xhc->DCBAA[SlotId] = 0;
|
|
|
|
//
|
|
// Free the slot related data structure
|
|
//
|
|
for (Index = 0; Index < 31; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
|
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
|
if (RingSeg != NULL) {
|
|
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
|
}
|
|
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
|
}
|
|
}
|
|
|
|
for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
|
|
FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
|
|
}
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
|
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
|
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
|
}
|
|
//
|
|
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
|
// asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
|
|
// remove urb from XHCI's asynchronous transfer list.
|
|
//
|
|
Xhc->UsbDevContext[SlotId].Enabled = FALSE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = 0;
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Disable the specified device slot.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be disabled.
|
|
|
|
@retval EFI_SUCCESS Successfully disable the device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcDisableSlotCmd64 (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TRB_TEMPLATE *EvtTrb;
|
|
CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
|
|
UINT8 Index;
|
|
VOID *RingSeg;
|
|
|
|
//
|
|
// Disable the device slots occupied by these devices on its downstream ports.
|
|
// Entry 0 is reserved.
|
|
//
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (!Xhc->UsbDevContext[Index + 1].Enabled ||
|
|
(Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
|
|
(Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
|
|
continue;
|
|
}
|
|
|
|
Status = XhcDisableSlotCmd64 (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: failed to disable child, ignore error\n"));
|
|
Xhc->UsbDevContext[Index + 1].SlotId = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Construct the disable slot command
|
|
//
|
|
DEBUG ((EFI_D_INFO, "Disable device slot %d!\n", SlotId));
|
|
|
|
ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
|
|
CmdTrbDisSlot.CycleBit = 1;
|
|
CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
|
|
CmdTrbDisSlot.SlotId = SlotId;
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR(Status);
|
|
//
|
|
// Free the slot's device context entry
|
|
//
|
|
Xhc->DCBAA[SlotId] = 0;
|
|
|
|
//
|
|
// Free the slot related data structure
|
|
//
|
|
for (Index = 0; Index < 31; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
|
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
|
if (RingSeg != NULL) {
|
|
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
|
}
|
|
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
|
}
|
|
}
|
|
|
|
for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
|
|
FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
|
|
}
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
|
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
|
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
|
}
|
|
//
|
|
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
|
// asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
|
|
// remove urb from XHCI's asynchronous transfer list.
|
|
//
|
|
Xhc->UsbDevContext[SlotId].Enabled = FALSE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = 0;
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be configured.
|
|
@param DeviceSpeed The device's speed.
|
|
@param ConfigDesc The pointer to the usb device configuration descriptor.
|
|
|
|
@retval EFI_SUCCESS Successfully configure all the device endpoints.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcSetConfigCmd (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 DeviceSpeed,
|
|
IN USB_CONFIG_DESCRIPTOR *ConfigDesc
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
USB_INTERFACE_DESCRIPTOR *IfDesc;
|
|
USB_ENDPOINT_DESCRIPTOR *EpDesc;
|
|
UINT8 Index;
|
|
UINTN NumEp;
|
|
UINTN EpIndex;
|
|
UINT8 EpAddr;
|
|
UINT8 Direction;
|
|
UINT8 Dci;
|
|
UINT8 MaxDci;
|
|
UINT32 PhyAddr;
|
|
UINT8 Interval;
|
|
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
//
|
|
// 4.6.6 Configure Endpoint
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT));
|
|
|
|
ASSERT (ConfigDesc != NULL);
|
|
|
|
MaxDci = 0;
|
|
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
|
|
for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
|
|
while (IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) {
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
NumEp = IfDesc->NumEndpoints;
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)(IfDesc + 1);
|
|
for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
|
|
while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
|
}
|
|
|
|
EpAddr = (UINT8)(EpDesc->EndpointAddress & 0x0F);
|
|
Direction = (UINT8)((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
|
|
|
|
Dci = XhcEndpointToDci (EpAddr, Direction);
|
|
ASSERT (Dci < 32);
|
|
if (Dci > MaxDci) {
|
|
MaxDci = Dci;
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
|
|
InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
//
|
|
// 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
} else {
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
}
|
|
|
|
switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
|
|
case USB_ENDPOINT_BULK:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
|
|
}
|
|
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
|
|
break;
|
|
case USB_ENDPOINT_ISO:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
|
|
}
|
|
break;
|
|
case USB_ENDPOINT_INTERRUPT:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
|
|
}
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
|
|
//
|
|
// Get the bInterval from descriptor and init the the interval field of endpoint context
|
|
//
|
|
if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
|
|
Interval = EpDesc->Interval;
|
|
//
|
|
// Hard code the interval to MAX first, need calculate through the bInterval field of Endpoint descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].Interval = 6;
|
|
} else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
|
|
Interval = EpDesc->Interval;
|
|
ASSERT (Interval >= 1 && Interval <= 16);
|
|
//
|
|
// Refer to XHCI 1.0 spec section 6.2.3.6, table 61
|
|
//
|
|
InputContext->EP[Dci-1].Interval = Interval - 1;
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = 0x0002;
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
break;
|
|
|
|
case USB_ENDPOINT_CONTROL:
|
|
default:
|
|
ASSERT (0);
|
|
break;
|
|
}
|
|
|
|
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
|
PhyAddr &= ~(0x0F);
|
|
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
|
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
|
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
|
}
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
InputContext->Slot.ContextEntries = MaxDci;
|
|
//
|
|
// configure endpoint
|
|
//
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Endpoint\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR(Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be configured.
|
|
@param DeviceSpeed The device's speed.
|
|
@param ConfigDesc The pointer to the usb device configuration descriptor.
|
|
|
|
@retval EFI_SUCCESS Successfully configure all the device endpoints.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcSetConfigCmd64 (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 DeviceSpeed,
|
|
IN USB_CONFIG_DESCRIPTOR *ConfigDesc
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
USB_INTERFACE_DESCRIPTOR *IfDesc;
|
|
USB_ENDPOINT_DESCRIPTOR *EpDesc;
|
|
UINT8 Index;
|
|
UINTN NumEp;
|
|
UINTN EpIndex;
|
|
UINT8 EpAddr;
|
|
UINT8 Direction;
|
|
UINT8 Dci;
|
|
UINT8 MaxDci;
|
|
UINT32 PhyAddr;
|
|
UINT8 Interval;
|
|
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
//
|
|
// 4.6.6 Configure Endpoint
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT_64));
|
|
|
|
ASSERT (ConfigDesc != NULL);
|
|
|
|
MaxDci = 0;
|
|
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
|
|
for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
|
|
while (IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) {
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
NumEp = IfDesc->NumEndpoints;
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)(IfDesc + 1);
|
|
for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
|
|
while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
|
}
|
|
|
|
EpAddr = (UINT8)(EpDesc->EndpointAddress & 0x0F);
|
|
Direction = (UINT8)((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
|
|
|
|
Dci = XhcEndpointToDci (EpAddr, Direction);
|
|
ASSERT (Dci < 32);
|
|
if (Dci > MaxDci) {
|
|
MaxDci = Dci;
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
|
|
InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
//
|
|
// 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
} else {
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
}
|
|
|
|
switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
|
|
case USB_ENDPOINT_BULK:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
|
|
}
|
|
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
|
|
break;
|
|
case USB_ENDPOINT_ISO:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
|
|
}
|
|
break;
|
|
case USB_ENDPOINT_INTERRUPT:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
|
|
}
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
|
|
//
|
|
// Get the bInterval from descriptor and init the the interval field of endpoint context
|
|
//
|
|
if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
|
|
Interval = EpDesc->Interval;
|
|
//
|
|
// Hard code the interval to MAX first, need calculate through the bInterval field of Endpoint descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].Interval = 6;
|
|
} else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
|
|
Interval = EpDesc->Interval;
|
|
ASSERT (Interval >= 1 && Interval <= 16);
|
|
//
|
|
// Refer to XHCI 1.0 spec section 6.2.3.6, table 61
|
|
//
|
|
InputContext->EP[Dci-1].Interval = Interval - 1;
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = 0x0002;
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
break;
|
|
|
|
case USB_ENDPOINT_CONTROL:
|
|
default:
|
|
ASSERT (0);
|
|
break;
|
|
}
|
|
|
|
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
|
PhyAddr &= ~(0x0F);
|
|
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
|
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
|
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
|
}
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
InputContext->Slot.ContextEntries = MaxDci;
|
|
//
|
|
// configure endpoint
|
|
//
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Endpoint\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT_EFI_ERROR(Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be evaluated.
|
|
@param MaxPacketSize The max packet size supported by the device control transfer.
|
|
|
|
@retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcEvaluateContext (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT32 MaxPacketSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT1;
|
|
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
|
|
|
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
|
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbEvalu.CycleBit = 1;
|
|
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
|
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Evaluate context\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be evaluated.
|
|
@param MaxPacketSize The max packet size supported by the device control transfer.
|
|
|
|
@retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
XhcEvaluateContext64 (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT32 MaxPacketSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT1;
|
|
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
|
|
|
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
|
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbEvalu.CycleBit = 1;
|
|
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
|
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Evaluate context\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be configured.
|
|
@param PortNum The total number of downstream port supported by the hub.
|
|
@param TTT The TT think time of the hub device.
|
|
@param MTT The multi-TT of the hub device.
|
|
|
|
@retval EFI_SUCCESS Successfully configure the hub device's slot context.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcConfigHubContext (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 PortNum,
|
|
IN UINT8 TTT,
|
|
IN UINT8 MTT
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
|
|
//
|
|
// Copy the slot context from OutputContext to Input context
|
|
//
|
|
CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT));
|
|
InputContext->Slot.Hub = 1;
|
|
InputContext->Slot.PortNum = PortNum;
|
|
InputContext->Slot.TTT = TTT;
|
|
InputContext->Slot.MTT = MTT;
|
|
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI Instance.
|
|
@param SlotId The slot id to be configured.
|
|
@param PortNum The total number of downstream port supported by the hub.
|
|
@param TTT The TT think time of the hub device.
|
|
@param MTT The multi-TT of the hub device.
|
|
|
|
@retval EFI_SUCCESS Successfully configure the hub device's slot context.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcConfigHubContext64 (
|
|
IN USB_XHCI_INSTANCE *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 PortNum,
|
|
IN UINT8 TTT,
|
|
IN UINT8 MTT
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
|
|
//
|
|
// Copy the slot context from OutputContext to Input context
|
|
//
|
|
CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT_64));
|
|
InputContext->Slot.Hub = 1;
|
|
InputContext->Slot.PortNum = PortNum;
|
|
InputContext->Slot.TTT = TTT;
|
|
InputContext->Slot.MTT = MTT;
|
|
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
|
|
Status = XhcCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
ASSERT (!EFI_ERROR(Status));
|
|
|
|
return Status;
|
|
}
|
|
|
|
|