mirror of https://github.com/acidanthera/audk.git
1010 lines
34 KiB
C
1010 lines
34 KiB
C
/** @file
|
|
The library instance provides security service of TPM measure boot.
|
|
|
|
Caution: This file requires additional review when modified.
|
|
This library will have external input - PE/COFF image and GPT partition.
|
|
This external input must be validated carefully to avoid security issue like
|
|
buffer overflow, integer overflow.
|
|
|
|
DxeTpmMeasureBootLibImageRead() function will make sure the PE/COFF image content
|
|
read is within the image buffer.
|
|
|
|
TcgMeasurePeImage() function will accept untrusted PE/COFF image and validate its
|
|
data structure within this image buffer before use.
|
|
|
|
TcgMeasureGptTable() function will receive untrusted GPT partition table, and parse
|
|
partition data carefully.
|
|
|
|
Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include <PiDxe.h>
|
|
|
|
#include <Protocol/TcgService.h>
|
|
#include <Protocol/BlockIo.h>
|
|
#include <Protocol/DiskIo.h>
|
|
#include <Protocol/FirmwareVolumeBlock.h>
|
|
|
|
#include <Guid/MeasuredFvHob.h>
|
|
#include <Guid/ZeroGuid.h>
|
|
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/DevicePathLib.h>
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
#include <Library/BaseCryptLib.h>
|
|
#include <Library/PeCoffLib.h>
|
|
#include <Library/SecurityManagementLib.h>
|
|
#include <Library/HobLib.h>
|
|
|
|
//
|
|
// Flag to check GPT partition. It only need be measured once.
|
|
//
|
|
BOOLEAN mMeasureGptTableFlag = FALSE;
|
|
UINTN mMeasureGptCount = 0;
|
|
VOID *mFileBuffer;
|
|
UINTN mTpmImageSize;
|
|
//
|
|
// Measured FV handle cache
|
|
//
|
|
EFI_HANDLE mCacheMeasuredHandle = NULL;
|
|
MEASURED_HOB_DATA *mMeasuredHobData = NULL;
|
|
|
|
/**
|
|
Reads contents of a PE/COFF image in memory buffer.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will make sure the PE/COFF image content
|
|
read is within the image buffer.
|
|
|
|
@param FileHandle Pointer to the file handle to read the PE/COFF image.
|
|
@param FileOffset Offset into the PE/COFF image to begin the read operation.
|
|
@param ReadSize On input, the size in bytes of the requested read operation.
|
|
On output, the number of bytes actually read.
|
|
@param Buffer Output buffer that contains the data read from the PE/COFF image.
|
|
|
|
@retval EFI_SUCCESS The specified portion of the PE/COFF image was read and the size
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeTpmMeasureBootLibImageRead (
|
|
IN VOID *FileHandle,
|
|
IN UINTN FileOffset,
|
|
IN OUT UINTN *ReadSize,
|
|
OUT VOID *Buffer
|
|
)
|
|
{
|
|
UINTN EndPosition;
|
|
|
|
if (FileHandle == NULL || ReadSize == NULL || Buffer == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (MAX_ADDRESS - FileOffset < *ReadSize) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
EndPosition = FileOffset + *ReadSize;
|
|
if (EndPosition > mTpmImageSize) {
|
|
*ReadSize = (UINT32)(mTpmImageSize - FileOffset);
|
|
}
|
|
|
|
if (FileOffset >= mTpmImageSize) {
|
|
*ReadSize = 0;
|
|
}
|
|
|
|
CopyMem (Buffer, (UINT8 *)((UINTN) FileHandle + FileOffset), *ReadSize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Measure GPT table data into TPM log.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
The GPT partition table is external input, so this function should parse partition data carefully.
|
|
|
|
@param TcgProtocol Pointer to the located TCG protocol instance.
|
|
@param GptHandle Handle that GPT partition was installed.
|
|
|
|
@retval EFI_SUCCESS Successfully measure GPT table.
|
|
@retval EFI_UNSUPPORTED Not support GPT table on the given handle.
|
|
@retval EFI_DEVICE_ERROR Can't get GPT table because device error.
|
|
@retval EFI_OUT_OF_RESOURCES No enough resource to measure GPT table.
|
|
@retval other error value
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TcgMeasureGptTable (
|
|
IN EFI_TCG_PROTOCOL *TcgProtocol,
|
|
IN EFI_HANDLE GptHandle
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_BLOCK_IO_PROTOCOL *BlockIo;
|
|
EFI_DISK_IO_PROTOCOL *DiskIo;
|
|
EFI_PARTITION_TABLE_HEADER *PrimaryHeader;
|
|
EFI_PARTITION_ENTRY *PartitionEntry;
|
|
UINT8 *EntryPtr;
|
|
UINTN NumberOfPartition;
|
|
UINT32 Index;
|
|
TCG_PCR_EVENT *TcgEvent;
|
|
EFI_GPT_DATA *GptData;
|
|
UINT32 EventSize;
|
|
UINT32 EventNumber;
|
|
EFI_PHYSICAL_ADDRESS EventLogLastEntry;
|
|
|
|
if (mMeasureGptCount > 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
Status = gBS->HandleProtocol (GptHandle, &gEfiBlockIoProtocolGuid, (VOID**)&BlockIo);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
Status = gBS->HandleProtocol (GptHandle, &gEfiDiskIoProtocolGuid, (VOID**)&DiskIo);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Read the EFI Partition Table Header
|
|
//
|
|
PrimaryHeader = (EFI_PARTITION_TABLE_HEADER *) AllocatePool (BlockIo->Media->BlockSize);
|
|
if (PrimaryHeader == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
Status = DiskIo->ReadDisk (
|
|
DiskIo,
|
|
BlockIo->Media->MediaId,
|
|
1 * BlockIo->Media->BlockSize,
|
|
BlockIo->Media->BlockSize,
|
|
(UINT8 *)PrimaryHeader
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "Failed to Read Partition Table Header!\n"));
|
|
FreePool (PrimaryHeader);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Read the partition entry.
|
|
//
|
|
EntryPtr = (UINT8 *)AllocatePool (PrimaryHeader->NumberOfPartitionEntries * PrimaryHeader->SizeOfPartitionEntry);
|
|
if (EntryPtr == NULL) {
|
|
FreePool (PrimaryHeader);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
Status = DiskIo->ReadDisk (
|
|
DiskIo,
|
|
BlockIo->Media->MediaId,
|
|
MultU64x32(PrimaryHeader->PartitionEntryLBA, BlockIo->Media->BlockSize),
|
|
PrimaryHeader->NumberOfPartitionEntries * PrimaryHeader->SizeOfPartitionEntry,
|
|
EntryPtr
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
FreePool (PrimaryHeader);
|
|
FreePool (EntryPtr);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
//
|
|
// Count the valid partition
|
|
//
|
|
PartitionEntry = (EFI_PARTITION_ENTRY *)EntryPtr;
|
|
NumberOfPartition = 0;
|
|
for (Index = 0; Index < PrimaryHeader->NumberOfPartitionEntries; Index++) {
|
|
if (!CompareGuid (&PartitionEntry->PartitionTypeGUID, &gZeroGuid)) {
|
|
NumberOfPartition++;
|
|
}
|
|
PartitionEntry = (EFI_PARTITION_ENTRY *)((UINT8 *)PartitionEntry + PrimaryHeader->SizeOfPartitionEntry);
|
|
}
|
|
|
|
//
|
|
// Prepare Data for Measurement
|
|
//
|
|
EventSize = (UINT32)(sizeof (EFI_GPT_DATA) - sizeof (GptData->Partitions)
|
|
+ NumberOfPartition * PrimaryHeader->SizeOfPartitionEntry);
|
|
TcgEvent = (TCG_PCR_EVENT *) AllocateZeroPool (EventSize + sizeof (TCG_PCR_EVENT_HDR));
|
|
if (TcgEvent == NULL) {
|
|
FreePool (PrimaryHeader);
|
|
FreePool (EntryPtr);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
TcgEvent->PCRIndex = 5;
|
|
TcgEvent->EventType = EV_EFI_GPT_EVENT;
|
|
TcgEvent->EventSize = EventSize;
|
|
GptData = (EFI_GPT_DATA *) TcgEvent->Event;
|
|
|
|
//
|
|
// Copy the EFI_PARTITION_TABLE_HEADER and NumberOfPartition
|
|
//
|
|
CopyMem ((UINT8 *)GptData, (UINT8*)PrimaryHeader, sizeof (EFI_PARTITION_TABLE_HEADER));
|
|
GptData->NumberOfPartitions = NumberOfPartition;
|
|
//
|
|
// Copy the valid partition entry
|
|
//
|
|
PartitionEntry = (EFI_PARTITION_ENTRY*)EntryPtr;
|
|
NumberOfPartition = 0;
|
|
for (Index = 0; Index < PrimaryHeader->NumberOfPartitionEntries; Index++) {
|
|
if (!CompareGuid (&PartitionEntry->PartitionTypeGUID, &gZeroGuid)) {
|
|
CopyMem (
|
|
(UINT8 *)&GptData->Partitions + NumberOfPartition * PrimaryHeader->SizeOfPartitionEntry,
|
|
(UINT8 *)PartitionEntry,
|
|
PrimaryHeader->SizeOfPartitionEntry
|
|
);
|
|
NumberOfPartition++;
|
|
}
|
|
PartitionEntry =(EFI_PARTITION_ENTRY *)((UINT8 *)PartitionEntry + PrimaryHeader->SizeOfPartitionEntry);
|
|
}
|
|
|
|
//
|
|
// Measure the GPT data
|
|
//
|
|
EventNumber = 1;
|
|
Status = TcgProtocol->HashLogExtendEvent (
|
|
TcgProtocol,
|
|
(EFI_PHYSICAL_ADDRESS) (UINTN) (VOID *) GptData,
|
|
(UINT64) TcgEvent->EventSize,
|
|
TPM_ALG_SHA,
|
|
TcgEvent,
|
|
&EventNumber,
|
|
&EventLogLastEntry
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
mMeasureGptCount++;
|
|
}
|
|
|
|
FreePool (PrimaryHeader);
|
|
FreePool (EntryPtr);
|
|
FreePool (TcgEvent);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Measure PE image into TPM log based on the authenticode image hashing in
|
|
PE/COFF Specification 8.0 Appendix A.
|
|
|
|
Caution: This function may receive untrusted input.
|
|
PE/COFF image is external input, so this function will validate its data structure
|
|
within this image buffer before use.
|
|
|
|
@param[in] TcgProtocol Pointer to the located TCG protocol instance.
|
|
@param[in] ImageAddress Start address of image buffer.
|
|
@param[in] ImageSize Image size
|
|
@param[in] LinkTimeBase Address that the image is loaded into memory.
|
|
@param[in] ImageType Image subsystem type.
|
|
@param[in] FilePath File path is corresponding to the input image.
|
|
|
|
@retval EFI_SUCCESS Successfully measure image.
|
|
@retval EFI_OUT_OF_RESOURCES No enough resource to measure image.
|
|
@retval EFI_UNSUPPORTED ImageType is unsupported or PE image is mal-format.
|
|
@retval other error value
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TcgMeasurePeImage (
|
|
IN EFI_TCG_PROTOCOL *TcgProtocol,
|
|
IN EFI_PHYSICAL_ADDRESS ImageAddress,
|
|
IN UINTN ImageSize,
|
|
IN UINTN LinkTimeBase,
|
|
IN UINT16 ImageType,
|
|
IN EFI_DEVICE_PATH_PROTOCOL *FilePath
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TCG_PCR_EVENT *TcgEvent;
|
|
EFI_IMAGE_LOAD_EVENT *ImageLoad;
|
|
UINT32 FilePathSize;
|
|
VOID *Sha1Ctx;
|
|
UINTN CtxSize;
|
|
EFI_IMAGE_DOS_HEADER *DosHdr;
|
|
UINT32 PeCoffHeaderOffset;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
UINT8 *HashBase;
|
|
UINTN HashSize;
|
|
UINTN SumOfBytesHashed;
|
|
EFI_IMAGE_SECTION_HEADER *SectionHeader;
|
|
UINTN Index;
|
|
UINTN Pos;
|
|
UINT16 Magic;
|
|
UINT32 EventSize;
|
|
UINT32 EventNumber;
|
|
EFI_PHYSICAL_ADDRESS EventLogLastEntry;
|
|
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
|
|
UINT32 NumberOfRvaAndSizes;
|
|
BOOLEAN HashStatus;
|
|
UINT32 CertSize;
|
|
|
|
Status = EFI_UNSUPPORTED;
|
|
ImageLoad = NULL;
|
|
SectionHeader = NULL;
|
|
Sha1Ctx = NULL;
|
|
FilePathSize = (UINT32) GetDevicePathSize (FilePath);
|
|
|
|
//
|
|
// Determine destination PCR by BootPolicy
|
|
//
|
|
EventSize = sizeof (*ImageLoad) - sizeof (ImageLoad->DevicePath) + FilePathSize;
|
|
TcgEvent = AllocateZeroPool (EventSize + sizeof (TCG_PCR_EVENT));
|
|
if (TcgEvent == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
TcgEvent->EventSize = EventSize;
|
|
ImageLoad = (EFI_IMAGE_LOAD_EVENT *) TcgEvent->Event;
|
|
|
|
switch (ImageType) {
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION:
|
|
TcgEvent->EventType = EV_EFI_BOOT_SERVICES_APPLICATION;
|
|
TcgEvent->PCRIndex = 4;
|
|
break;
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
|
|
TcgEvent->EventType = EV_EFI_BOOT_SERVICES_DRIVER;
|
|
TcgEvent->PCRIndex = 2;
|
|
break;
|
|
case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
|
|
TcgEvent->EventType = EV_EFI_RUNTIME_SERVICES_DRIVER;
|
|
TcgEvent->PCRIndex = 2;
|
|
break;
|
|
default:
|
|
DEBUG ((
|
|
EFI_D_ERROR,
|
|
"TcgMeasurePeImage: Unknown subsystem type %d",
|
|
ImageType
|
|
));
|
|
goto Finish;
|
|
}
|
|
|
|
ImageLoad->ImageLocationInMemory = ImageAddress;
|
|
ImageLoad->ImageLengthInMemory = ImageSize;
|
|
ImageLoad->ImageLinkTimeAddress = LinkTimeBase;
|
|
ImageLoad->LengthOfDevicePath = FilePathSize;
|
|
if ((FilePath != NULL) && (FilePathSize != 0)) {
|
|
CopyMem (ImageLoad->DevicePath, FilePath, FilePathSize);
|
|
}
|
|
|
|
//
|
|
// Check PE/COFF image
|
|
//
|
|
DosHdr = (EFI_IMAGE_DOS_HEADER *) (UINTN) ImageAddress;
|
|
PeCoffHeaderOffset = 0;
|
|
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
|
|
PeCoffHeaderOffset = DosHdr->e_lfanew;
|
|
}
|
|
|
|
Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINT8 *) (UINTN) ImageAddress + PeCoffHeaderOffset);
|
|
if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// PE/COFF Image Measurement
|
|
//
|
|
// NOTE: The following codes/steps are based upon the authenticode image hashing in
|
|
// PE/COFF Specification 8.0 Appendix A.
|
|
//
|
|
//
|
|
|
|
// 1. Load the image header into memory.
|
|
|
|
// 2. Initialize a SHA hash context.
|
|
CtxSize = Sha1GetContextSize ();
|
|
Sha1Ctx = AllocatePool (CtxSize);
|
|
if (Sha1Ctx == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Finish;
|
|
}
|
|
|
|
HashStatus = Sha1Init (Sha1Ctx);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// Measuring PE/COFF Image Header;
|
|
// But CheckSum field and SECURITY data directory (certificate) are excluded
|
|
//
|
|
if (Hdr.Pe32->FileHeader.Machine == IMAGE_FILE_MACHINE_IA64 && Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// NOTE: Some versions of Linux ELILO for Itanium have an incorrect magic value
|
|
// in the PE/COFF Header. If the MachineType is Itanium(IA64) and the
|
|
// Magic value in the OptionalHeader is EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC
|
|
// then override the magic value to EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC
|
|
//
|
|
Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
|
|
} else {
|
|
//
|
|
// Get the magic value from the PE/COFF Optional Header
|
|
//
|
|
Magic = Hdr.Pe32->OptionalHeader.Magic;
|
|
}
|
|
|
|
//
|
|
// 3. Calculate the distance from the base of the image header to the image checksum address.
|
|
// 4. Hash the image header from its base to beginning of the image checksum.
|
|
//
|
|
HashBase = (UINT8 *) (UINTN) ImageAddress;
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes;
|
|
HashSize = (UINTN) ((UINT8 *)(&Hdr.Pe32->OptionalHeader.CheckSum) - HashBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes;
|
|
HashSize = (UINTN) ((UINT8 *)(&Hdr.Pe32Plus->OptionalHeader.CheckSum) - HashBase);
|
|
}
|
|
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// 5. Skip over the image checksum (it occupies a single ULONG).
|
|
//
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
//
|
|
// 6. Since there is no Cert Directory in optional header, hash everything
|
|
// from the end of the checksum to the end of image header.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = Hdr.Pe32->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - ImageAddress);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - ImageAddress);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// 7. Hash everything from the end of the checksum to the start of the Cert Directory.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN) ((UINT8 *)(&Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - HashBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN) ((UINT8 *)(&Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - HashBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 8. Skip over the Cert Directory. (It is sizeof(IMAGE_DATA_DIRECTORY) bytes.)
|
|
// 9. Hash everything from the end of the Cert Directory to the end of image header.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = Hdr.Pe32->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - ImageAddress);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
HashBase = (UINT8 *) &Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - ImageAddress);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 10. Set the SUM_OF_BYTES_HASHED to the size of the header
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
SumOfBytesHashed = Hdr.Pe32->OptionalHeader.SizeOfHeaders;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
SumOfBytesHashed = Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders;
|
|
}
|
|
|
|
//
|
|
// 11. Build a temporary table of pointers to all the IMAGE_SECTION_HEADER
|
|
// structures in the image. The 'NumberOfSections' field of the image
|
|
// header indicates how big the table should be. Do not include any
|
|
// IMAGE_SECTION_HEADERs in the table whose 'SizeOfRawData' field is zero.
|
|
//
|
|
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) AllocateZeroPool (sizeof (EFI_IMAGE_SECTION_HEADER) * Hdr.Pe32->FileHeader.NumberOfSections);
|
|
if (SectionHeader == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// 12. Using the 'PointerToRawData' in the referenced section headers as
|
|
// a key, arrange the elements in the table in ascending order. In other
|
|
// words, sort the section headers according to the disk-file offset of
|
|
// the section.
|
|
//
|
|
Section = (EFI_IMAGE_SECTION_HEADER *) (
|
|
(UINT8 *) (UINTN) ImageAddress +
|
|
PeCoffHeaderOffset +
|
|
sizeof(UINT32) +
|
|
sizeof(EFI_IMAGE_FILE_HEADER) +
|
|
Hdr.Pe32->FileHeader.SizeOfOptionalHeader
|
|
);
|
|
for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Pos = Index;
|
|
while ((Pos > 0) && (Section->PointerToRawData < SectionHeader[Pos - 1].PointerToRawData)) {
|
|
CopyMem (&SectionHeader[Pos], &SectionHeader[Pos - 1], sizeof(EFI_IMAGE_SECTION_HEADER));
|
|
Pos--;
|
|
}
|
|
CopyMem (&SectionHeader[Pos], Section, sizeof(EFI_IMAGE_SECTION_HEADER));
|
|
Section += 1;
|
|
}
|
|
|
|
//
|
|
// 13. Walk through the sorted table, bring the corresponding section
|
|
// into memory, and hash the entire section (using the 'SizeOfRawData'
|
|
// field in the section header to determine the amount of data to hash).
|
|
// 14. Add the section's 'SizeOfRawData' to SUM_OF_BYTES_HASHED .
|
|
// 15. Repeat steps 13 and 14 for all the sections in the sorted table.
|
|
//
|
|
for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Section = (EFI_IMAGE_SECTION_HEADER *) &SectionHeader[Index];
|
|
if (Section->SizeOfRawData == 0) {
|
|
continue;
|
|
}
|
|
HashBase = (UINT8 *) (UINTN) ImageAddress + Section->PointerToRawData;
|
|
HashSize = (UINTN) Section->SizeOfRawData;
|
|
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
|
|
SumOfBytesHashed += HashSize;
|
|
}
|
|
|
|
//
|
|
// 16. If the file size is greater than SUM_OF_BYTES_HASHED, there is extra
|
|
// data in the file that needs to be added to the hash. This data begins
|
|
// at file offset SUM_OF_BYTES_HASHED and its length is:
|
|
// FileSize - (CertDirectory->Size)
|
|
//
|
|
if (ImageSize > SumOfBytesHashed) {
|
|
HashBase = (UINT8 *) (UINTN) ImageAddress + SumOfBytesHashed;
|
|
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
CertSize = 0;
|
|
} else {
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
CertSize = Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
CertSize = Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
}
|
|
}
|
|
|
|
if (ImageSize > CertSize + SumOfBytesHashed) {
|
|
HashSize = (UINTN) (ImageSize - CertSize - SumOfBytesHashed);
|
|
|
|
HashStatus = Sha1Update (Sha1Ctx, HashBase, HashSize);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
} else if (ImageSize < CertSize + SumOfBytesHashed) {
|
|
goto Finish;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 17. Finalize the SHA hash.
|
|
//
|
|
HashStatus = Sha1Final (Sha1Ctx, (UINT8 *) &TcgEvent->Digest);
|
|
if (!HashStatus) {
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// Log the PE data
|
|
//
|
|
EventNumber = 1;
|
|
Status = TcgProtocol->HashLogExtendEvent (
|
|
TcgProtocol,
|
|
(EFI_PHYSICAL_ADDRESS) (UINTN) (VOID *) NULL,
|
|
0,
|
|
TPM_ALG_SHA,
|
|
TcgEvent,
|
|
&EventNumber,
|
|
&EventLogLastEntry
|
|
);
|
|
if (Status == EFI_OUT_OF_RESOURCES) {
|
|
//
|
|
// Out of resource here means the image is hashed and its result is extended to PCR.
|
|
// But the event log cann't be saved since log area is full.
|
|
// Just return EFI_SUCCESS in order not to block the image load.
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
|
|
Finish:
|
|
FreePool (TcgEvent);
|
|
|
|
if (SectionHeader != NULL) {
|
|
FreePool (SectionHeader);
|
|
}
|
|
|
|
if (Sha1Ctx != NULL ) {
|
|
FreePool (Sha1Ctx);
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
The security handler is used to abstract platform-specific policy
|
|
from the DXE core response to an attempt to use a file that returns a
|
|
given status for the authentication check from the section extraction protocol.
|
|
|
|
The possible responses in a given SAP implementation may include locking
|
|
flash upon failure to authenticate, attestation logging for all signed drivers,
|
|
and other exception operations. The File parameter allows for possible logging
|
|
within the SAP of the driver.
|
|
|
|
If File is NULL, then EFI_INVALID_PARAMETER is returned.
|
|
|
|
If the file specified by File with an authentication status specified by
|
|
AuthenticationStatus is safe for the DXE Core to use, then EFI_SUCCESS is returned.
|
|
|
|
If the file specified by File with an authentication status specified by
|
|
AuthenticationStatus is not safe for the DXE Core to use under any circumstances,
|
|
then EFI_ACCESS_DENIED is returned.
|
|
|
|
If the file specified by File with an authentication status specified by
|
|
AuthenticationStatus is not safe for the DXE Core to use right now, but it
|
|
might be possible to use it at a future time, then EFI_SECURITY_VIOLATION is
|
|
returned.
|
|
|
|
@param[in] AuthenticationStatus This is the authentication status returned
|
|
from the securitymeasurement services for the
|
|
input file.
|
|
@param[in] File This is a pointer to the device path of the file that is
|
|
being dispatched. This will optionally be used for logging.
|
|
@param[in] FileBuffer File buffer matches the input file device path.
|
|
@param[in] FileSize Size of File buffer matches the input file device path.
|
|
@param[in] BootPolicy A boot policy that was used to call LoadImage() UEFI service.
|
|
|
|
@retval EFI_SUCCESS The file specified by DevicePath and non-NULL
|
|
FileBuffer did authenticate, and the platform policy dictates
|
|
that the DXE Foundation may use the file.
|
|
@retval other error value
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeTpmMeasureBootHandler (
|
|
IN UINT32 AuthenticationStatus,
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *File,
|
|
IN VOID *FileBuffer,
|
|
IN UINTN FileSize,
|
|
IN BOOLEAN BootPolicy
|
|
)
|
|
{
|
|
EFI_TCG_PROTOCOL *TcgProtocol;
|
|
EFI_STATUS Status;
|
|
TCG_EFI_BOOT_SERVICE_CAPABILITY ProtocolCapability;
|
|
UINT32 TCGFeatureFlags;
|
|
EFI_PHYSICAL_ADDRESS EventLogLocation;
|
|
EFI_PHYSICAL_ADDRESS EventLogLastEntry;
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePathNode;
|
|
EFI_DEVICE_PATH_PROTOCOL *OrigDevicePathNode;
|
|
EFI_HANDLE Handle;
|
|
EFI_HANDLE TempHandle;
|
|
BOOLEAN ApplicationRequired;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol;
|
|
EFI_PHYSICAL_ADDRESS FvAddress;
|
|
UINT32 Index;
|
|
|
|
Status = gBS->LocateProtocol (&gEfiTcgProtocolGuid, NULL, (VOID **) &TcgProtocol);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// TCG protocol is not installed. So, TPM is not present.
|
|
// Don't do any measurement, and directly return EFI_SUCCESS.
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
ProtocolCapability.Size = (UINT8) sizeof (ProtocolCapability);
|
|
Status = TcgProtocol->StatusCheck (
|
|
TcgProtocol,
|
|
&ProtocolCapability,
|
|
&TCGFeatureFlags,
|
|
&EventLogLocation,
|
|
&EventLogLastEntry
|
|
);
|
|
if (EFI_ERROR (Status) || ProtocolCapability.TPMDeactivatedFlag || (!ProtocolCapability.TPMPresentFlag)) {
|
|
//
|
|
// TPM device doesn't work or activate.
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Copy File Device Path
|
|
//
|
|
OrigDevicePathNode = DuplicateDevicePath (File);
|
|
|
|
//
|
|
// 1. Check whether this device path support BlockIo protocol.
|
|
// Is so, this device path may be a GPT device path.
|
|
//
|
|
DevicePathNode = OrigDevicePathNode;
|
|
Status = gBS->LocateDevicePath (&gEfiBlockIoProtocolGuid, &DevicePathNode, &Handle);
|
|
if (!EFI_ERROR (Status) && !mMeasureGptTableFlag) {
|
|
//
|
|
// Find the gpt partion on the given devicepath
|
|
//
|
|
DevicePathNode = OrigDevicePathNode;
|
|
ASSERT (DevicePathNode != NULL);
|
|
while (!IsDevicePathEnd (DevicePathNode)) {
|
|
//
|
|
// Find the Gpt partition
|
|
//
|
|
if (DevicePathType (DevicePathNode) == MEDIA_DEVICE_PATH &&
|
|
DevicePathSubType (DevicePathNode) == MEDIA_HARDDRIVE_DP) {
|
|
//
|
|
// Check whether it is a gpt partition or not
|
|
//
|
|
if (((HARDDRIVE_DEVICE_PATH *) DevicePathNode)->MBRType == MBR_TYPE_EFI_PARTITION_TABLE_HEADER &&
|
|
((HARDDRIVE_DEVICE_PATH *) DevicePathNode)->SignatureType == SIGNATURE_TYPE_GUID) {
|
|
|
|
//
|
|
// Change the partition device path to its parent device path (disk) and get the handle.
|
|
//
|
|
DevicePathNode->Type = END_DEVICE_PATH_TYPE;
|
|
DevicePathNode->SubType = END_ENTIRE_DEVICE_PATH_SUBTYPE;
|
|
DevicePathNode = OrigDevicePathNode;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiDiskIoProtocolGuid,
|
|
&DevicePathNode,
|
|
&Handle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Measure GPT disk.
|
|
//
|
|
Status = TcgMeasureGptTable (TcgProtocol, Handle);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// GPT disk check done.
|
|
//
|
|
mMeasureGptTableFlag = TRUE;
|
|
}
|
|
}
|
|
FreePool (OrigDevicePathNode);
|
|
OrigDevicePathNode = DuplicateDevicePath (File);
|
|
ASSERT (OrigDevicePathNode != NULL);
|
|
break;
|
|
}
|
|
}
|
|
DevicePathNode = NextDevicePathNode (DevicePathNode);
|
|
}
|
|
}
|
|
|
|
//
|
|
// 2. Measure PE image.
|
|
//
|
|
ApplicationRequired = FALSE;
|
|
|
|
//
|
|
// Check whether this device path support FVB protocol.
|
|
//
|
|
DevicePathNode = OrigDevicePathNode;
|
|
Status = gBS->LocateDevicePath (&gEfiFirmwareVolumeBlockProtocolGuid, &DevicePathNode, &Handle);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Don't check FV image, and directly return EFI_SUCCESS.
|
|
// It can be extended to the specific FV authentication according to the different requirement.
|
|
//
|
|
if (IsDevicePathEnd (DevicePathNode)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
//
|
|
// The PE image from unmeasured Firmware volume need be measured
|
|
// The PE image from measured Firmware volume will be mearsured according to policy below.
|
|
// If it is driver, do not measure
|
|
// If it is application, still measure.
|
|
//
|
|
ApplicationRequired = TRUE;
|
|
|
|
if (mCacheMeasuredHandle != Handle && mMeasuredHobData != NULL) {
|
|
//
|
|
// Search for Root FV of this PE image
|
|
//
|
|
TempHandle = Handle;
|
|
do {
|
|
Status = gBS->HandleProtocol(
|
|
TempHandle,
|
|
&gEfiFirmwareVolumeBlockProtocolGuid,
|
|
(VOID**)&FvbProtocol
|
|
);
|
|
TempHandle = FvbProtocol->ParentHandle;
|
|
} while (!EFI_ERROR(Status) && FvbProtocol->ParentHandle != NULL);
|
|
|
|
//
|
|
// Search in measured FV Hob
|
|
//
|
|
Status = FvbProtocol->GetPhysicalAddress(FvbProtocol, &FvAddress);
|
|
if (EFI_ERROR(Status)){
|
|
return Status;
|
|
}
|
|
|
|
ApplicationRequired = FALSE;
|
|
|
|
for (Index = 0; Index < mMeasuredHobData->Num; Index++) {
|
|
if(mMeasuredHobData->MeasuredFvBuf[Index].BlobBase == FvAddress) {
|
|
//
|
|
// Cache measured FV for next measurement
|
|
//
|
|
mCacheMeasuredHandle = Handle;
|
|
ApplicationRequired = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// File is not found.
|
|
//
|
|
if (FileBuffer == NULL) {
|
|
Status = EFI_SECURITY_VIOLATION;
|
|
goto Finish;
|
|
}
|
|
|
|
mTpmImageSize = FileSize;
|
|
mFileBuffer = FileBuffer;
|
|
|
|
//
|
|
// Measure PE Image
|
|
//
|
|
DevicePathNode = OrigDevicePathNode;
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = (VOID *) FileBuffer;
|
|
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) DxeTpmMeasureBootLibImageRead;
|
|
|
|
//
|
|
// Get information about the image being loaded
|
|
//
|
|
Status = PeCoffLoaderGetImageInfo (&ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// The information can't be got from the invalid PeImage
|
|
//
|
|
goto Finish;
|
|
}
|
|
|
|
//
|
|
// Measure only application if Application flag is set
|
|
// Measure drivers and applications if Application flag is not set
|
|
//
|
|
if ((!ApplicationRequired) ||
|
|
(ApplicationRequired && ImageContext.ImageType == EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION)) {
|
|
//
|
|
// Print the image path to be measured.
|
|
//
|
|
DEBUG_CODE_BEGIN ();
|
|
CHAR16 *ToText;
|
|
ToText = ConvertDevicePathToText (
|
|
DevicePathNode,
|
|
FALSE,
|
|
TRUE
|
|
);
|
|
if (ToText != NULL) {
|
|
DEBUG ((DEBUG_INFO, "The measured image path is %s.\n", ToText));
|
|
FreePool (ToText);
|
|
}
|
|
DEBUG_CODE_END ();
|
|
|
|
//
|
|
// Measure PE image into TPM log.
|
|
//
|
|
Status = TcgMeasurePeImage (
|
|
TcgProtocol,
|
|
(EFI_PHYSICAL_ADDRESS) (UINTN) FileBuffer,
|
|
FileSize,
|
|
(UINTN) ImageContext.ImageAddress,
|
|
ImageContext.ImageType,
|
|
DevicePathNode
|
|
);
|
|
}
|
|
|
|
//
|
|
// Done, free the allocated resource.
|
|
//
|
|
Finish:
|
|
if (OrigDevicePathNode != NULL) {
|
|
FreePool (OrigDevicePathNode);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Register the security handler to provide TPM measure boot service.
|
|
|
|
@param ImageHandle ImageHandle of the loaded driver.
|
|
@param SystemTable Pointer to the EFI System Table.
|
|
|
|
@retval EFI_SUCCESS Register successfully.
|
|
@retval EFI_OUT_OF_RESOURCES No enough memory to register this handler.
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeTpmMeasureBootLibConstructor (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
{
|
|
EFI_HOB_GUID_TYPE *GuidHob;
|
|
|
|
GuidHob = NULL;
|
|
|
|
GuidHob = GetFirstGuidHob (&gMeasuredFvHobGuid);
|
|
|
|
if (GuidHob != NULL) {
|
|
mMeasuredHobData = GET_GUID_HOB_DATA (GuidHob);
|
|
}
|
|
|
|
return RegisterSecurity2Handler (
|
|
DxeTpmMeasureBootHandler,
|
|
EFI_AUTH_OPERATION_MEASURE_IMAGE | EFI_AUTH_OPERATION_IMAGE_REQUIRED
|
|
);
|
|
}
|