audk/QuarkPlatformPkg/Platform/Pei/PlatformInit/MrcWrapper.c

1678 lines
55 KiB
C

/** @file
Framework PEIM to initialize memory on a Quark Memory Controller.
Copyright (c) 2013 - 2016, Intel Corporation.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CommonHeader.h"
#include "MrcWrapper.h"
#include <Ioh.h>
#include "Platform.h"
#include <Library/PlatformHelperLib.h>
//
// ------------------------ TSEG Base
//
// ------------------------ RESERVED_CPU_S3_SAVE_OFFSET
// CPU S3 data
// ------------------------ RESERVED_ACPI_S3_RANGE_OFFSET
// S3 Memory base structure
// ------------------------ TSEG + 1 page
#define RESERVED_CPU_S3_SAVE_OFFSET (RESERVED_ACPI_S3_RANGE_OFFSET - sizeof (SMM_S3_RESUME_STATE))
// Strap configuration register specifying DDR setup
#define QUARK_SCSS_REG_STPDDRCFG 0x00
// Macro counting array elements
#define COUNT(a) (sizeof(a)/sizeof(*a))
EFI_MEMORY_TYPE_INFORMATION mDefaultQncMemoryTypeInformation[] = {
{ EfiReservedMemoryType, EDKII_RESERVED_SIZE_PAGES }, // BIOS Reserved
{ EfiACPIMemoryNVS, ACPI_NVS_SIZE_PAGES }, // S3, SMM, etc
{ EfiRuntimeServicesData, RUNTIME_SERVICES_DATA_SIZE_PAGES },
{ EfiRuntimeServicesCode, RUNTIME_SERVICES_CODE_SIZE_PAGES },
{ EfiACPIReclaimMemory, ACPI_RECLAIM_SIZE_PAGES }, // ACPI ASL
{ EfiMaxMemoryType, 0 }
};
/**
Configure Uart mmio base for MRC serial log purpose
@param MrcData - MRC configuration data updated
**/
VOID
MrcUartConfig(
MRC_PARAMS *MrcData
)
{
UINT8 UartIdx;
UINT32 RegData32;
UINT8 IohUartBus;
UINT8 IohUartDev;
UartIdx = PcdGet8(PcdIohUartFunctionNumber);
IohUartBus = PcdGet8(PcdIohUartBusNumber);
IohUartDev = PcdGet8(PcdIohUartDevNumber);
RegData32 = PciRead32 (PCI_LIB_ADDRESS(IohUartBus, IohUartDev, UartIdx, PCI_BASE_ADDRESSREG_OFFSET));
MrcData->uart_mmio_base = RegData32 & 0xFFFFFFF0;
}
/**
Configure MRC from memory controller fuse settings.
@param MrcData - MRC configuration data to be updated.
@return EFI_SUCCESS MRC Config parameters updated from platform data.
**/
EFI_STATUS
MrcConfigureFromMcFuses (
OUT MRC_PARAMS *MrcData
)
{
UINT32 McFuseStat;
McFuseStat = QNCPortRead (
QUARK_NC_MEMORY_CONTROLLER_SB_PORT_ID,
QUARK_NC_MEMORY_CONTROLLER_REG_DFUSESTAT
);
DEBUG ((EFI_D_INFO, "MRC McFuseStat 0x%08x\n", McFuseStat));
if ((McFuseStat & B_DFUSESTAT_ECC_DIS) != 0) {
DEBUG ((EFI_D_INFO, "MRC Fuse : fus_dun_ecc_dis.\n"));
MrcData->ecc_enables = 0;
} else {
MrcData->ecc_enables = 1;
}
return EFI_SUCCESS;
}
/**
Configure MRC from platform info hob.
@param MrcData - MRC configuration data to be updated.
@return EFI_SUCCESS MRC Config parameters updated from hob.
@return EFI_NOT_FOUND Platform Info or MRC Config parameters not found.
@return EFI_INVALID_PARAMETER Wrong params in hob.
**/
EFI_STATUS
MrcConfigureFromInfoHob (
OUT MRC_PARAMS *MrcData
)
{
PDAT_MRC_ITEM *ItemData;
ItemData = (PDAT_MRC_ITEM *)PcdGetPtr (PcdMrcParameters);
MrcData->channel_enables = ItemData->ChanMask;
MrcData->channel_width = ItemData->ChanWidth;
MrcData->address_mode = ItemData->AddrMode;
// Enable scrambling if requested.
MrcData->scrambling_enables = (ItemData->Flags & PDAT_MRC_FLAG_SCRAMBLE_EN) != 0;
MrcData->ddr_type = ItemData->DramType;
MrcData->dram_width = ItemData->DramWidth;
MrcData->ddr_speed = ItemData->DramSpeed;
// Enable ECC if requested.
MrcData->rank_enables = ItemData->RankMask;
MrcData->params.DENSITY = ItemData->DramDensity;
MrcData->params.tCL = ItemData->tCL;
MrcData->params.tRAS = ItemData->tRAS;
MrcData->params.tWTR = ItemData->tWTR;
MrcData->params.tRRD = ItemData->tRRD;
MrcData->params.tFAW = ItemData->tFAW;
MrcData->refresh_rate = ItemData->SrInt;
MrcData->sr_temp_range = ItemData->SrTemp;
MrcData->ron_value = ItemData->DramRonVal;
MrcData->rtt_nom_value = ItemData->DramRttNomVal;
MrcData->rd_odt_value = ItemData->SocRdOdtVal;
DEBUG ((EFI_D_INFO, "MRC dram_width %d\n", MrcData->dram_width));
DEBUG ((EFI_D_INFO, "MRC rank_enables %d\n",MrcData->rank_enables));
DEBUG ((EFI_D_INFO, "MRC ddr_speed %d\n", MrcData->ddr_speed));
DEBUG ((EFI_D_INFO, "MRC flags: %s\n",
(MrcData->scrambling_enables) ? L"SCRAMBLE_EN" : L""
));
DEBUG ((EFI_D_INFO, "MRC density=%d tCL=%d tRAS=%d tWTR=%d tRRD=%d tFAW=%d\n",
MrcData->params.DENSITY,
MrcData->params.tCL,
MrcData->params.tRAS,
MrcData->params.tWTR,
MrcData->params.tRRD,
MrcData->params.tFAW
));
return EFI_SUCCESS;
}
/**
Configure ECC scrub
@param MrcData - MRC configuration
**/
VOID
EccScrubSetup(
const MRC_PARAMS *MrcData
)
{
UINT32 BgnAdr = 0;
UINT32 EndAdr = MrcData->mem_size;
UINT32 BlkSize = PcdGet8(PcdEccScrubBlkSize) & SCRUB_CFG_BLOCKSIZE_MASK;
UINT32 Interval = PcdGet8(PcdEccScrubInterval) & SCRUB_CFG_INTERVAL_MASK;
if( MrcData->ecc_enables == 0 || MrcData->boot_mode == bmS3 || Interval == 0) {
// No scrub configuration needed if ECC not enabled
// On S3 resume reconfiguration is done as part of resume
// script, see SNCS3Save.c ==> SaveRuntimeScriptTable()
// Also if PCD disables scrub, then we do nothing.
return;
}
QNCPortWrite (QUARK_NC_RMU_SB_PORT_ID, QUARK_NC_ECC_SCRUB_END_MEM_REG, EndAdr);
QNCPortWrite (QUARK_NC_RMU_SB_PORT_ID, QUARK_NC_ECC_SCRUB_START_MEM_REG, BgnAdr);
QNCPortWrite (QUARK_NC_RMU_SB_PORT_ID, QUARK_NC_ECC_SCRUB_NEXT_READ_REG, BgnAdr);
QNCPortWrite (QUARK_NC_RMU_SB_PORT_ID, QUARK_NC_ECC_SCRUB_CONFIG_REG,
Interval << SCRUB_CFG_INTERVAL_SHIFT |
BlkSize << SCRUB_CFG_BLOCKSIZE_SHIFT);
McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = SCRUB_RESUME_MSG();
}
/** Post InstallS3Memory / InstallEfiMemory tasks given MrcData context.
@param[in] MrcData MRC configuration.
@param[in] IsS3 TRUE if after InstallS3Memory.
**/
VOID
PostInstallMemory (
IN MRC_PARAMS *MrcData,
IN BOOLEAN IsS3
)
{
UINT32 RmuMainDestBaseAddress;
UINT32 *RmuMainSrcBaseAddress;
UINTN RmuMainSize;
EFI_STATUS Status;
//
// Setup ECC policy (All boot modes).
//
QNCPolicyDblEccBitErr (V_WDT_CONTROL_DBL_ECC_BIT_ERR_WARM);
//
// Find the 64KB of memory for Rmu Main at the top of available memory.
//
InfoPostInstallMemory (&RmuMainDestBaseAddress, NULL, NULL);
DEBUG ((EFI_D_INFO, "RmuMain Base Address : 0x%x\n", RmuMainDestBaseAddress));
//
// Relocate RmuMain.
//
if (IsS3) {
QNCSendOpcodeDramReady (RmuMainDestBaseAddress);
} else {
Status = PlatformFindFvFileRawDataSection (NULL, PcdGetPtr(PcdQuarkMicrocodeFile), (VOID **) &RmuMainSrcBaseAddress, &RmuMainSize);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
DEBUG ((EFI_D_INFO, "Found Microcode ADDR:SIZE 0x%08x:0x%04x\n", (UINTN) RmuMainSrcBaseAddress, RmuMainSize));
}
RmuMainRelocation (RmuMainDestBaseAddress, (UINT32) RmuMainSrcBaseAddress, RmuMainSize);
QNCSendOpcodeDramReady (RmuMainDestBaseAddress);
EccScrubSetup (MrcData);
}
}
/**
Do memory initialisation for QNC DDR3 SDRAM Controller
@param FfsHeader Not used.
@param PeiServices General purpose services available to every PEIM.
@return EFI_SUCCESS Memory initialisation completed successfully.
All other error conditions encountered result in an ASSERT.
**/
EFI_STATUS
MemoryInit (
IN EFI_PEI_SERVICES **PeiServices
)
{
MRC_PARAMS MrcData;
EFI_BOOT_MODE BootMode;
EFI_STATUS Status;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *VariableServices;
EFI_STATUS_CODE_VALUE ErrorCodeValue;
PEI_QNC_MEMORY_INIT_PPI *QncMemoryInitPpi;
UINT16 PmswAdr;
ErrorCodeValue = 0;
//
// It is critical that both of these data structures are initialized to 0.
// This PEIM knows the number of DIMMs in the system and works with that
// information. The MCH PEIM that consumes these data structures does not
// know the number of DIMMs so it expects the entire structure to be
// properly initialized. By initializing these to zero, all flags indicating
// that the SPD is present or the row should be configured are set to false.
//
ZeroMem (&MrcData, sizeof(MrcData));
//
// Get necessary PPI
//
Status = PeiServicesLocatePpi (
&gEfiPeiReadOnlyVariable2PpiGuid, // GUID
0, // INSTANCE
NULL, // EFI_PEI_PPI_DESCRIPTOR
(VOID **)&VariableServices // PPI
);
ASSERT_EFI_ERROR (Status);
//
// Determine boot mode
//
Status = PeiServicesGetBootMode (&BootMode);
ASSERT_EFI_ERROR (Status);
//
// Initialize Error type for reporting status code
//
switch (BootMode) {
case BOOT_ON_FLASH_UPDATE:
ErrorCodeValue = EFI_COMPUTING_UNIT_MEMORY + EFI_CU_MEMORY_EC_UPDATE_FAIL;
break;
case BOOT_ON_S3_RESUME:
ErrorCodeValue = EFI_COMPUTING_UNIT_MEMORY + EFI_CU_MEMORY_EC_S3_RESUME_FAIL;
break;
default:
ErrorCodeValue = EFI_COMPUTING_UNIT_MEMORY;
break;
}
//
// Specify MRC boot mode
//
switch (BootMode) {
case BOOT_ON_S3_RESUME:
case BOOT_ON_FLASH_UPDATE:
MrcData.boot_mode = bmS3;
break;
case BOOT_ASSUMING_NO_CONFIGURATION_CHANGES:
MrcData.boot_mode = bmFast;
break;
default:
MrcData.boot_mode = bmCold;
break;
}
//
// Configure MRC input parameters.
//
Status = MrcConfigureFromMcFuses (&MrcData);
ASSERT_EFI_ERROR (Status);
Status = MrcConfigureFromInfoHob (&MrcData);
ASSERT_EFI_ERROR (Status);
MrcUartConfig(&MrcData);
if (BootMode == BOOT_IN_RECOVERY_MODE) {
//
// Always do bmCold on recovery.
//
DEBUG ((DEBUG_INFO, "MemoryInit:Force bmCold on Recovery\n"));
MrcData.boot_mode = bmCold;
} else {
//
// Load Memory configuration data saved in previous boot from variable
//
Status = LoadConfig (
PeiServices,
VariableServices,
&MrcData
);
if (EFI_ERROR (Status)) {
switch (BootMode) {
case BOOT_ON_S3_RESUME:
case BOOT_ON_FLASH_UPDATE:
REPORT_STATUS_CODE (
EFI_ERROR_CODE + EFI_ERROR_UNRECOVERED,
ErrorCodeValue
);
PeiServicesResetSystem ();
break;
default:
MrcData.boot_mode = bmCold;
break;
}
}
}
//
// Locate Memory Reference Code PPI
//
Status = PeiServicesLocatePpi (
&gQNCMemoryInitPpiGuid, // GUID
0, // INSTANCE
NULL, // EFI_PEI_PPI_DESCRIPTOR
(VOID **)&QncMemoryInitPpi // PPI
);
ASSERT_EFI_ERROR (Status);
PmswAdr = (UINT16)(LpcPciCfg32 (R_QNC_LPC_GPE0BLK) & 0xFFFF) + R_QNC_GPE0BLK_PMSW;
if( IoRead32 (PmswAdr) & B_QNC_GPE0BLK_PMSW_DRAM_INIT) {
// MRC did not complete last execution, force cold boot path
MrcData.boot_mode = bmCold;
}
// Mark MRC pending
IoOr32 (PmswAdr, (UINT32)B_QNC_GPE0BLK_PMSW_DRAM_INIT);
//
// Call Memory Reference Code's Routines
//
QncMemoryInitPpi->MrcStart (&MrcData);
// Mark MRC completed
IoAnd32 (PmswAdr, ~(UINT32)B_QNC_GPE0BLK_PMSW_DRAM_INIT);
//
// Note emulation platform has to read actual memory size
// MrcData.mem_size from PcdGet32 (PcdMemorySize);
if (BootMode == BOOT_ON_S3_RESUME) {
DEBUG ((EFI_D_INFO, "Following BOOT_ON_S3_RESUME boot path.\n"));
Status = InstallS3Memory (PeiServices, VariableServices, MrcData.mem_size);
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE + EFI_ERROR_UNRECOVERED,
ErrorCodeValue
);
PeiServicesResetSystem ();
}
PostInstallMemory (&MrcData, TRUE);
return EFI_SUCCESS;
}
//
// Assign physical memory to PEI and DXE
//
DEBUG ((EFI_D_INFO, "InstallEfiMemory.\n"));
Status = InstallEfiMemory (
PeiServices,
VariableServices,
BootMode,
MrcData.mem_size
);
ASSERT_EFI_ERROR (Status);
PostInstallMemory (&MrcData, FALSE);
//
// Save current configuration into Hob and will save into Variable later in DXE
//
DEBUG ((EFI_D_INFO, "SaveConfig.\n"));
Status = SaveConfig (
&MrcData
);
ASSERT_EFI_ERROR (Status);
DEBUG ((EFI_D_INFO, "MemoryInit Complete.\n"));
return EFI_SUCCESS;
}
/**
This function saves a config to a HOB.
@param RowInfo The MCH row configuration information.
@param TimingData Timing data to be saved.
@param RowConfArray Row configuration information for each row in the system.
@param SpdData SPD info read for each DIMM slot in the system.
@return EFI_SUCCESS: The function completed successfully.
**/
EFI_STATUS
SaveConfig (
IN MRC_PARAMS *MrcData
)
{
//
// Build HOB data for Memory Config
// HOB data size (stored in variable) is required to be multiple of 8 bytes
//
BuildGuidDataHob (
&gEfiMemoryConfigDataGuid,
(VOID *) &MrcData->timings,
((sizeof (MrcData->timings) + 0x7) & (~0x7))
);
DEBUG ((EFI_D_INFO, "IIO IoApicBase = %x IoApicLimit=%x\n", IOAPIC_BASE, (IOAPIC_BASE + IOAPIC_SIZE - 1)));
DEBUG ((EFI_D_INFO, "IIO RcbaAddress = %x\n", (UINT32)PcdGet64 (PcdRcbaMmioBaseAddress)));
return EFI_SUCCESS;
}
/**
Load a configuration stored in a variable.
@param TimingData Timing data to be loaded from NVRAM.
@param RowConfArray Row configuration information for each row in the system.
@return EFI_SUCCESS The function completed successfully.
Other Could not read variable.
**/
EFI_STATUS
LoadConfig (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_READ_ONLY_VARIABLE2_PPI *VariableServices,
IN OUT MRC_PARAMS *MrcData
)
{
EFI_STATUS Status;
UINTN BufferSize;
PLATFORM_VARIABLE_MEMORY_CONFIG_DATA VarData;
BufferSize = ((sizeof (VarData.timings) + 0x7) & (~0x7)); // HOB data size (stored in variable) is required to be multiple of 8bytes
Status = VariableServices->GetVariable (
VariableServices,
EFI_MEMORY_CONFIG_DATA_NAME,
&gEfiMemoryConfigDataGuid,
NULL,
&BufferSize,
&VarData.timings
);
if (!EFI_ERROR (Status)) {
CopyMem (&MrcData->timings, &VarData.timings, sizeof(MrcData->timings));
}
return Status;
}
/**
This function installs memory.
@param PeiServices PEI Services table.
@param BootMode The specific boot path that is being followed
@param Mch Pointer to the DualChannelDdrMemoryInit PPI
@param RowConfArray Row configuration information for each row in the system.
@return EFI_SUCCESS The function completed successfully.
EFI_INVALID_PARAMETER One of the input parameters was invalid.
EFI_ABORTED An error occurred.
**/
EFI_STATUS
InstallEfiMemory (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_READ_ONLY_VARIABLE2_PPI *VariableServices,
IN EFI_BOOT_MODE BootMode,
IN UINT32 TotalMemorySize
)
{
EFI_PHYSICAL_ADDRESS PeiMemoryBaseAddress;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *SmramHobDescriptorBlock;
EFI_STATUS Status;
EFI_PEI_HOB_POINTERS Hob;
PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE MemoryMap[MAX_RANGES];
UINT8 Index;
UINT8 NumRanges;
UINT8 SmramIndex;
UINT8 SmramRanges;
UINT64 PeiMemoryLength;
UINTN BufferSize;
UINTN PeiMemoryIndex;
UINTN RequiredMemSize;
EFI_RESOURCE_ATTRIBUTE_TYPE Attribute;
EFI_PHYSICAL_ADDRESS BadMemoryAddress;
EFI_SMRAM_DESCRIPTOR DescriptorAcpiVariable;
VOID *CapsuleBuffer;
UINTN CapsuleBufferLength;
PEI_CAPSULE_PPI *Capsule;
VOID *LargeMemRangeBuf;
UINTN LargeMemRangeBufLen;
UINT8 MorControl;
UINTN DataSize;
//
// Test the memory from 1M->TOM
//
if (BootMode != BOOT_ON_FLASH_UPDATE) {
Status = BaseMemoryTest (
PeiServices,
0x100000,
(TotalMemorySize - 0x100000),
Quick,
&BadMemoryAddress
);
ASSERT_EFI_ERROR (Status);
}
//
// Get the Memory Map
//
NumRanges = MAX_RANGES;
ZeroMem (MemoryMap, sizeof (PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE) * NumRanges);
Status = GetMemoryMap (
PeiServices,
TotalMemorySize,
(PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE *) MemoryMap,
&NumRanges
);
ASSERT_EFI_ERROR (Status);
//
// Find the highest memory range in processor native address space to give to
// PEI. Then take the top.
//
PeiMemoryBaseAddress = 0;
//
// Query the platform for the minimum memory size
//
Status = GetPlatformMemorySize (
PeiServices,
BootMode,
&PeiMemoryLength
);
ASSERT_EFI_ERROR (Status);
//
// Get required memory size for ACPI use. This helps to put ACPI memory on the topest
//
RequiredMemSize = 0;
RetriveRequiredMemorySize (PeiServices, &RequiredMemSize);
//
// Detect MOR request by the OS.
//
MorControl = 0;
DataSize = sizeof (MorControl);
Status = VariableServices->GetVariable (
VariableServices,
MEMORY_OVERWRITE_REQUEST_VARIABLE_NAME,
&gEfiMemoryOverwriteControlDataGuid,
NULL,
&DataSize,
&MorControl
);
PeiMemoryIndex = 0;
for (Index = 0; Index < NumRanges; Index++)
{
DEBUG ((EFI_D_INFO, "Found 0x%x bytes at ", MemoryMap[Index].RangeLength));
DEBUG ((EFI_D_INFO, "0x%x.\n", MemoryMap[Index].PhysicalAddress));
//
// If OS requested a memory overwrite perform it now. Only do it for memory
// used by the OS.
//
if (MOR_CLEAR_MEMORY_VALUE (MorControl) && MemoryMap[Index].Type == DualChannelDdrMainMemory) {
DEBUG ((EFI_D_INFO, "Clear memory per MOR request.\n"));
if ((UINTN)MemoryMap[Index].RangeLength > 0) {
if ((UINTN)MemoryMap[Index].PhysicalAddress == 0) {
//
// ZeroMem() generates an ASSERT() if Buffer parameter is NULL.
// Clear byte at 0 and start clear operation at address 1.
//
*(UINT8 *)(0) = 0;
ZeroMem ((VOID *)1, (UINTN)MemoryMap[Index].RangeLength - 1);
} else {
ZeroMem (
(VOID *)(UINTN)MemoryMap[Index].PhysicalAddress,
(UINTN)MemoryMap[Index].RangeLength
);
}
}
}
if ((MemoryMap[Index].Type == DualChannelDdrMainMemory) &&
(MemoryMap[Index].PhysicalAddress + MemoryMap[Index].RangeLength < MAX_ADDRESS) &&
(MemoryMap[Index].PhysicalAddress >= PeiMemoryBaseAddress) &&
(MemoryMap[Index].RangeLength >= PeiMemoryLength)) {
PeiMemoryBaseAddress = MemoryMap[Index].PhysicalAddress +
MemoryMap[Index].RangeLength -
PeiMemoryLength;
PeiMemoryIndex = Index;
}
}
//
// Find the largest memory range excluding that given to PEI.
//
LargeMemRangeBuf = NULL;
LargeMemRangeBufLen = 0;
for (Index = 0; Index < NumRanges; Index++) {
if ((MemoryMap[Index].Type == DualChannelDdrMainMemory) &&
(MemoryMap[Index].PhysicalAddress + MemoryMap[Index].RangeLength < MAX_ADDRESS)) {
if (Index != PeiMemoryIndex) {
if (MemoryMap[Index].RangeLength > LargeMemRangeBufLen) {
LargeMemRangeBuf = (VOID *) ((UINTN) MemoryMap[Index].PhysicalAddress);
LargeMemRangeBufLen = (UINTN) MemoryMap[Index].RangeLength;
}
} else {
if ((MemoryMap[Index].RangeLength - PeiMemoryLength) >= LargeMemRangeBufLen) {
LargeMemRangeBuf = (VOID *) ((UINTN) MemoryMap[Index].PhysicalAddress);
LargeMemRangeBufLen = (UINTN) (MemoryMap[Index].RangeLength - PeiMemoryLength);
}
}
}
}
Capsule = NULL;
CapsuleBuffer = NULL;
CapsuleBufferLength = 0;
if (BootMode == BOOT_ON_FLASH_UPDATE) {
Status = PeiServicesLocatePpi (
&gPeiCapsulePpiGuid, // GUID
0, // INSTANCE
NULL, // EFI_PEI_PPI_DESCRIPTOR
(VOID **)&Capsule // PPI
);
ASSERT_EFI_ERROR (Status);
if (Status == EFI_SUCCESS) {
CapsuleBuffer = LargeMemRangeBuf;
CapsuleBufferLength = LargeMemRangeBufLen;
//
// Call the Capsule PPI Coalesce function to coalesce the capsule data.
//
Status = Capsule->Coalesce (
PeiServices,
&CapsuleBuffer,
&CapsuleBufferLength
);
//
// If it failed, then NULL out our capsule PPI pointer so that the capsule
// HOB does not get created below.
//
if (Status != EFI_SUCCESS) {
Capsule = NULL;
}
}
}
//
// Set up the IMR policy required for this platform
//
Status = SetPlatformImrPolicy (
PeiMemoryBaseAddress,
PeiMemoryLength,
RequiredMemSize
);
ASSERT_EFI_ERROR (Status);
//
// Carve out the top memory reserved for ACPI
//
Status = PeiServicesInstallPeiMemory (PeiMemoryBaseAddress, (PeiMemoryLength - RequiredMemSize));
ASSERT_EFI_ERROR (Status);
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY, // MemoryType,
(
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
),
PeiMemoryBaseAddress, // MemoryBegin
PeiMemoryLength // MemoryLength
);
//
// Install physical memory descriptor hobs for each memory range.
//
SmramRanges = 0;
for (Index = 0; Index < NumRanges; Index++) {
Attribute = 0;
if (MemoryMap[Index].Type == DualChannelDdrMainMemory)
{
if (Index == PeiMemoryIndex) {
//
// This is a partially tested Main Memory range, give it to EFI
//
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
(
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
),
MemoryMap[Index].PhysicalAddress,
MemoryMap[Index].RangeLength - PeiMemoryLength
);
} else {
//
// This is an untested Main Memory range, give it to EFI
//
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY, // MemoryType,
(
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
),
MemoryMap[Index].PhysicalAddress, // MemoryBegin
MemoryMap[Index].RangeLength // MemoryLength
);
}
} else {
if ((MemoryMap[Index].Type == DualChannelDdrSmramCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrSmramNonCacheable)) {
SmramRanges++;
}
if ((MemoryMap[Index].Type == DualChannelDdrSmramNonCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrGraphicsMemoryNonCacheable)) {
Attribute |= EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE;
}
if ((MemoryMap[Index].Type == DualChannelDdrSmramCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrGraphicsMemoryCacheable)) {
//
// TSEG and HSEG can be used with a write-back(WB) cache policy; however,
// the specification requires that the TSEG and HSEG space be cached only
// inside of the SMI handler. when using HSEG or TSEG an IA-32 processor
// does not automatically write back and invalidate its cache before entering
// SMM or before existing SMM therefore any MTRR defined for the active TSEG
// or HSEG must be set to un-cacheable(UC) outside of SMM.
//
Attribute |= EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE;
}
if (MemoryMap[Index].Type == DualChannelDdrReservedMemory) {
Attribute |= EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE;
}
//
// Make sure non-system memory is marked as reserved
//
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_RESERVED, // MemoryType,
Attribute, // MemoryAttribute
MemoryMap[Index].PhysicalAddress, // MemoryBegin
MemoryMap[Index].RangeLength // MemoryLength
);
}
}
//
// Allocate one extra EFI_SMRAM_DESCRIPTOR to describe a page of SMRAM memory that contains a pointer
// to the SMM Services Table that is required on the S3 resume path
//
ASSERT (SmramRanges > 0);
BufferSize = sizeof (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK);
BufferSize += ((SmramRanges - 1) * sizeof (EFI_SMRAM_DESCRIPTOR));
Hob.Raw = BuildGuidHob (
&gEfiSmmPeiSmramMemoryReserveGuid,
BufferSize
);
ASSERT (Hob.Raw);
SmramHobDescriptorBlock = (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *) (Hob.Raw);
SmramHobDescriptorBlock->NumberOfSmmReservedRegions = SmramRanges;
SmramIndex = 0;
for (Index = 0; Index < NumRanges; Index++) {
if ((MemoryMap[Index].Type == DualChannelDdrSmramCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrSmramNonCacheable)
) {
//
// This is an SMRAM range, create an SMRAM descriptor
//
SmramHobDescriptorBlock->Descriptor[SmramIndex].PhysicalStart = MemoryMap[Index].PhysicalAddress;
SmramHobDescriptorBlock->Descriptor[SmramIndex].CpuStart = MemoryMap[Index].CpuAddress;
SmramHobDescriptorBlock->Descriptor[SmramIndex].PhysicalSize = MemoryMap[Index].RangeLength;
if (MemoryMap[Index].Type == DualChannelDdrSmramCacheable) {
SmramHobDescriptorBlock->Descriptor[SmramIndex].RegionState = EFI_SMRAM_CLOSED | EFI_CACHEABLE;
} else {
SmramHobDescriptorBlock->Descriptor[SmramIndex].RegionState = EFI_SMRAM_CLOSED;
}
SmramIndex++;
}
}
//
// Build a HOB with the location of the reserved memory range.
//
CopyMem(&DescriptorAcpiVariable, &SmramHobDescriptorBlock->Descriptor[SmramRanges-1], sizeof(EFI_SMRAM_DESCRIPTOR));
DescriptorAcpiVariable.CpuStart += RESERVED_CPU_S3_SAVE_OFFSET;
BuildGuidDataHob (
&gEfiAcpiVariableGuid,
&DescriptorAcpiVariable,
sizeof (EFI_SMRAM_DESCRIPTOR)
);
//
// If we found the capsule PPI (and we didn't have errors), then
// call the capsule PEIM to allocate memory for the capsule.
//
if (Capsule != NULL) {
Status = Capsule->CreateState (PeiServices, CapsuleBuffer, CapsuleBufferLength);
}
return EFI_SUCCESS;
}
/**
Find memory that is reserved so PEI has some to use.
@param PeiServices PEI Services table.
@param VariableSevices Variable PPI instance.
@return EFI_SUCCESS The function completed successfully.
Error value from LocatePpi()
Error Value from VariableServices->GetVariable()
**/
EFI_STATUS
InstallS3Memory (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_READ_ONLY_VARIABLE2_PPI *VariableServices,
IN UINT32 TotalMemorySize
)
{
EFI_STATUS Status;
UINTN S3MemoryBase;
UINTN S3MemorySize;
UINT8 SmramRanges;
UINT8 NumRanges;
UINT8 Index;
UINT8 SmramIndex;
UINTN BufferSize;
EFI_PEI_HOB_POINTERS Hob;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *SmramHobDescriptorBlock;
PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE MemoryMap[MAX_RANGES];
RESERVED_ACPI_S3_RANGE *S3MemoryRangeData;
EFI_SMRAM_DESCRIPTOR DescriptorAcpiVariable;
//
// Get the Memory Map
//
NumRanges = MAX_RANGES;
ZeroMem (MemoryMap, sizeof (PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE) * NumRanges);
Status = GetMemoryMap (
PeiServices,
TotalMemorySize,
(PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE *) MemoryMap,
&NumRanges
);
ASSERT_EFI_ERROR (Status);
//
// Install physical memory descriptor hobs for each memory range.
//
SmramRanges = 0;
for (Index = 0; Index < NumRanges; Index++) {
if ((MemoryMap[Index].Type == DualChannelDdrSmramCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrSmramNonCacheable)) {
SmramRanges++;
}
}
ASSERT (SmramRanges > 0);
//
// Allocate one extra EFI_SMRAM_DESCRIPTOR to describe a page of SMRAM memory that contains a pointer
// to the SMM Services Table that is required on the S3 resume path
//
BufferSize = sizeof (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK);
if (SmramRanges > 0) {
BufferSize += ((SmramRanges - 1) * sizeof (EFI_SMRAM_DESCRIPTOR));
}
Hob.Raw = BuildGuidHob (
&gEfiSmmPeiSmramMemoryReserveGuid,
BufferSize
);
ASSERT (Hob.Raw);
SmramHobDescriptorBlock = (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *) (Hob.Raw);
SmramHobDescriptorBlock->NumberOfSmmReservedRegions = SmramRanges;
SmramIndex = 0;
for (Index = 0; Index < NumRanges; Index++) {
if ((MemoryMap[Index].Type == DualChannelDdrSmramCacheable) ||
(MemoryMap[Index].Type == DualChannelDdrSmramNonCacheable)
) {
//
// This is an SMRAM range, create an SMRAM descriptor
//
SmramHobDescriptorBlock->Descriptor[SmramIndex].PhysicalStart = MemoryMap[Index].PhysicalAddress;
SmramHobDescriptorBlock->Descriptor[SmramIndex].CpuStart = MemoryMap[Index].CpuAddress;
SmramHobDescriptorBlock->Descriptor[SmramIndex].PhysicalSize = MemoryMap[Index].RangeLength;
if (MemoryMap[Index].Type == DualChannelDdrSmramCacheable) {
SmramHobDescriptorBlock->Descriptor[SmramIndex].RegionState = EFI_SMRAM_CLOSED | EFI_CACHEABLE;
} else {
SmramHobDescriptorBlock->Descriptor[SmramIndex].RegionState = EFI_SMRAM_CLOSED;
}
SmramIndex++;
}
}
//
// Build a HOB with the location of the reserved memory range.
//
CopyMem(&DescriptorAcpiVariable, &SmramHobDescriptorBlock->Descriptor[SmramRanges-1], sizeof(EFI_SMRAM_DESCRIPTOR));
DescriptorAcpiVariable.CpuStart += RESERVED_CPU_S3_SAVE_OFFSET;
BuildGuidDataHob (
&gEfiAcpiVariableGuid,
&DescriptorAcpiVariable,
sizeof (EFI_SMRAM_DESCRIPTOR)
);
//
// Get the location and size of the S3 memory range in the reserved page and
// install it as PEI Memory.
//
DEBUG ((EFI_D_INFO, "TSEG Base = 0x%08x\n", SmramHobDescriptorBlock->Descriptor[SmramRanges-1].PhysicalStart));
S3MemoryRangeData = (RESERVED_ACPI_S3_RANGE*)(UINTN)
(SmramHobDescriptorBlock->Descriptor[SmramRanges-1].PhysicalStart + RESERVED_ACPI_S3_RANGE_OFFSET);
S3MemoryBase = (UINTN) (S3MemoryRangeData->AcpiReservedMemoryBase);
DEBUG ((EFI_D_INFO, "S3MemoryBase = 0x%08x\n", S3MemoryBase));
S3MemorySize = (UINTN) (S3MemoryRangeData->AcpiReservedMemorySize);
DEBUG ((EFI_D_INFO, "S3MemorySize = 0x%08x\n", S3MemorySize));
Status = PeiServicesInstallPeiMemory (S3MemoryBase, S3MemorySize);
ASSERT_EFI_ERROR (Status);
//
// Retrieve the system memory length and build memory hob for the system
// memory above 1MB. So Memory Callback can set cache for the system memory
// correctly on S3 boot path, just like it does on Normal boot path.
//
ASSERT_EFI_ERROR ((S3MemoryRangeData->SystemMemoryLength - 0x100000) > 0);
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
(
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
),
0x100000,
S3MemoryRangeData->SystemMemoryLength - 0x100000
);
for (Index = 0; Index < NumRanges; Index++) {
if ((MemoryMap[Index].Type == DualChannelDdrMainMemory) &&
(MemoryMap[Index].PhysicalAddress + MemoryMap[Index].RangeLength < 0x100000)) {
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
(
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
),
MemoryMap[Index].PhysicalAddress,
MemoryMap[Index].RangeLength
);
DEBUG ((EFI_D_INFO, "Build resource HOB for Legacy Region on S3 patch :"));
DEBUG ((EFI_D_INFO, " Memory Base:0x%lX Length:0x%lX\n", MemoryMap[Index].PhysicalAddress, MemoryMap[Index].RangeLength));
}
}
return EFI_SUCCESS;
}
/**
This function returns the size, in bytes, required for the DXE phase.
@param PeiServices PEI Services table.
@param Size Pointer to the size, in bytes, required for the DXE phase.
@return None
**/
VOID
RetriveRequiredMemorySize (
IN EFI_PEI_SERVICES **PeiServices,
OUT UINTN *Size
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_MEMORY_TYPE_INFORMATION *MemoryData;
UINT8 Index;
UINTN TempPageNum;
MemoryData = NULL;
TempPageNum = 0;
Index = 0;
PeiServicesGetHobList ((VOID **)&Hob.Raw);
while (!END_OF_HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_GUID_EXTENSION &&
CompareGuid (&Hob.Guid->Name, &gEfiMemoryTypeInformationGuid)
) {
MemoryData = (EFI_MEMORY_TYPE_INFORMATION *) (Hob.Raw + sizeof (EFI_HOB_GENERIC_HEADER) + sizeof (EFI_GUID));
break;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
//
// Platform PEIM should supply such a information. Generic PEIM doesn't assume any default value
//
if (!MemoryData) {
return ;
}
while (MemoryData[Index].Type != EfiMaxMemoryType) {
//
// Accumulate default memory size requirements
//
TempPageNum += MemoryData[Index].NumberOfPages;
Index++;
}
if (TempPageNum == 0) {
return ;
}
//
// Add additional pages used by DXE memory manager
//
(*Size) = (TempPageNum + EDKII_DXE_MEM_SIZE_PAGES) * EFI_PAGE_SIZE;
return ;
}
/**
This function returns the memory ranges to be enabled, along with information
describing how the range should be used.
@param PeiServices PEI Services Table.
@param TimingData Detected DDR timing parameters for installed memory.
@param RowConfArray Pointer to an array of EFI_DUAL_CHANNEL_DDR_ROW_CONFIG structures. The number
of items in the array must match MaxRows returned by the McGetRowInfo() function.
@param MemoryMap Buffer to record details of the memory ranges tobe enabled.
@param NumRanges On input, this contains the maximum number of memory ranges that can be described
in the MemoryMap buffer.
@return MemoryMap The buffer will be filled in
NumRanges will contain the actual number of memory ranges that are to be anabled.
EFI_SUCCESS The function completed successfully.
**/
EFI_STATUS
GetMemoryMap (
IN EFI_PEI_SERVICES **PeiServices,
IN UINT32 TotalMemorySize,
IN OUT PEI_DUAL_CHANNEL_DDR_MEMORY_MAP_RANGE *MemoryMap,
IN OUT UINT8 *NumRanges
)
{
EFI_PHYSICAL_ADDRESS MemorySize;
EFI_PHYSICAL_ADDRESS RowLength;
EFI_STATUS Status;
PEI_MEMORY_RANGE_PCI_MEMORY PciMemoryMask;
PEI_MEMORY_RANGE_OPTION_ROM OptionRomMask;
PEI_MEMORY_RANGE_SMRAM SmramMask;
PEI_MEMORY_RANGE_SMRAM TsegMask;
UINT32 BlockNum;
UINT8 ExtendedMemoryIndex;
UINT32 Register;
if ((*NumRanges) < MAX_RANGES) {
return EFI_BUFFER_TOO_SMALL;
}
*NumRanges = 0;
//
// Find out which memory ranges to reserve on this platform
//
Status = ChooseRanges (
&OptionRomMask,
&SmramMask,
&PciMemoryMask
);
ASSERT_EFI_ERROR (Status);
//
// Generate Memory ranges for the memory map.
//
MemorySize = 0;
RowLength = TotalMemorySize;
//
// Add memory below 640KB to the memory map. Make sure memory between
// 640KB and 1MB are reserved, even if not used for SMRAM
//
MemoryMap[*NumRanges].PhysicalAddress = MemorySize;
MemoryMap[*NumRanges].CpuAddress = MemorySize;
MemoryMap[*NumRanges].RangeLength = 0xA0000;
MemoryMap[*NumRanges].Type = DualChannelDdrMainMemory;
(*NumRanges)++;
//
// Just mark this range reserved
//
MemoryMap[*NumRanges].PhysicalAddress = 0xA0000;
MemoryMap[*NumRanges].CpuAddress = 0xA0000;
MemoryMap[*NumRanges].RangeLength = 0x60000;
MemoryMap[*NumRanges].Type = DualChannelDdrReservedMemory;
(*NumRanges)++;
RowLength -= (0x100000 - MemorySize);
MemorySize = 0x100000;
//
// Add remaining memory to the memory map
//
MemoryMap[*NumRanges].PhysicalAddress = MemorySize;
MemoryMap[*NumRanges].CpuAddress = MemorySize;
MemoryMap[*NumRanges].RangeLength = RowLength;
MemoryMap[*NumRanges].Type = DualChannelDdrMainMemory;
(*NumRanges)++;
MemorySize += RowLength;
ExtendedMemoryIndex = (UINT8) (*NumRanges - 1);
// See if we need to trim TSEG out of the highest memory range
//
if (SmramMask & PEI_MR_SMRAM_TSEG_MASK) {//pcd
//
// Create the new range for TSEG and remove that range from the previous SdrDdrMainMemory range
//
TsegMask = (SmramMask & PEI_MR_SMRAM_SIZE_MASK);
BlockNum = 1;
while (TsegMask) {
TsegMask >>= 1;
BlockNum <<= 1;
}
BlockNum >>= 1;
if (BlockNum) {
MemoryMap[*NumRanges].RangeLength = (BlockNum * 128 * 1024);
Register = (UINT32)((MemorySize - 1) & SMM_END_MASK);
MemorySize -= MemoryMap[*NumRanges].RangeLength;
MemoryMap[*NumRanges].PhysicalAddress = MemorySize;
MemoryMap[*NumRanges].CpuAddress = MemorySize;
MemoryMap[ExtendedMemoryIndex].RangeLength -= MemoryMap[*NumRanges].RangeLength;
//
// Update QuarkNcSoc HSMMCTL register
//
Register |= (UINT32)(((RShiftU64(MemorySize, 16)) & SMM_START_MASK) + (SMM_WRITE_OPEN | SMM_READ_OPEN | SMM_CODE_RD_OPEN));
QncHsmmcWrite (Register);
}
//
// Chipset only supports cacheable SMRAM
//
MemoryMap[*NumRanges].Type = DualChannelDdrSmramCacheable;
(*NumRanges)++;
}
//
// trim 64K memory from highest memory range for Rmu Main binary shadow
//
MemoryMap[*NumRanges].RangeLength = 0x10000;
MemorySize -= MemoryMap[*NumRanges].RangeLength;
MemoryMap[*NumRanges].PhysicalAddress = MemorySize;
MemoryMap[*NumRanges].CpuAddress = MemorySize;
MemoryMap[ExtendedMemoryIndex].RangeLength -= MemoryMap[*NumRanges].RangeLength;
MemoryMap[*NumRanges].Type = DualChannelDdrReservedMemory;
(*NumRanges)++;
return EFI_SUCCESS;
}
/**
Routine Description:
Fill in bit masks to specify reserved memory ranges on the Lakeport platform
Arguments:
Returns:
OptionRomMask - Bit mask specifying memory regions reserved for Legacy option
ROM use (if any)
SmramMask - Bit mask specifying memory regions reserved for SMM use (if any)
**/
EFI_STATUS
ChooseRanges (
IN OUT PEI_MEMORY_RANGE_OPTION_ROM *OptionRomMask,
IN OUT PEI_MEMORY_RANGE_SMRAM *SmramMask,
IN OUT PEI_MEMORY_RANGE_PCI_MEMORY *PciMemoryMask
)
{
//
// Choose regions to reserve for Option ROM use
//
*OptionRomMask = PEI_MR_OPTION_ROM_NONE;
//
// Choose regions to reserve for SMM use (AB/H SEG and TSEG). Size is in 128K blocks
//
*SmramMask = PEI_MR_SMRAM_CACHEABLE_MASK | PEI_MR_SMRAM_TSEG_MASK | ((PcdGet32(PcdTSegSize)) >> 17);
*PciMemoryMask = 0;
return EFI_SUCCESS;
}
EFI_STATUS
GetPlatformMemorySize (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_BOOT_MODE BootMode,
IN OUT UINT64 *MemorySize
)
{
EFI_STATUS Status;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
UINTN DataSize;
EFI_MEMORY_TYPE_INFORMATION MemoryData [EfiMaxMemoryType + 1];
UINTN Index;
DataSize = sizeof (MemoryData);
if (BootMode == BOOT_IN_RECOVERY_MODE) {
//
// // Treat recovery as if variable not found (eg 1st boot).
//
Status = EFI_NOT_FOUND;
} else {
Status = PeiServicesLocatePpi (
&gEfiPeiReadOnlyVariable2PpiGuid,
0,
NULL,
(VOID **)&Variable
);
ASSERT_EFI_ERROR (Status);
DataSize = sizeof (MemoryData);
Status = Variable->GetVariable (
Variable,
EFI_MEMORY_TYPE_INFORMATION_VARIABLE_NAME,
&gEfiMemoryTypeInformationGuid,
NULL,
&DataSize,
&MemoryData
);
}
//
// Accumulate maximum amount of memory needed
//
if (EFI_ERROR (Status)) {
//
// Start with minimum memory
//
*MemorySize = PEI_MIN_MEMORY_SIZE;
for (Index = 0; Index < sizeof(mDefaultQncMemoryTypeInformation) / sizeof (EFI_MEMORY_TYPE_INFORMATION); Index++) {
*MemorySize += mDefaultQncMemoryTypeInformation[Index].NumberOfPages * EFI_PAGE_SIZE;
}
//
// Build the GUID'd HOB for DXE
//
BuildGuidDataHob (
&gEfiMemoryTypeInformationGuid,
mDefaultQncMemoryTypeInformation,
sizeof(mDefaultQncMemoryTypeInformation)
);
} else {
//
// Start with at least PEI_MIN_MEMORY_SIZE pages of memory for the DXE Core and the DXE Stack
//
*MemorySize = PEI_MIN_MEMORY_SIZE;
for (Index = 0; Index < DataSize / sizeof (EFI_MEMORY_TYPE_INFORMATION); Index++) {
DEBUG ((EFI_D_INFO, "Index %d, Page: %d\n", Index, MemoryData[Index].NumberOfPages));
*MemorySize += MemoryData[Index].NumberOfPages * EFI_PAGE_SIZE;
}
//
// Build the GUID'd HOB for DXE
//
BuildGuidDataHob (
&gEfiMemoryTypeInformationGuid,
MemoryData,
DataSize
);
}
return EFI_SUCCESS;
}
EFI_STATUS
BaseMemoryTest (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PHYSICAL_ADDRESS BeginAddress,
IN UINT64 MemoryLength,
IN PEI_MEMORY_TEST_OP Operation,
OUT EFI_PHYSICAL_ADDRESS *ErrorAddress
)
{
UINT32 TestPattern;
EFI_PHYSICAL_ADDRESS TempAddress;
UINT32 SpanSize;
TestPattern = 0x5A5A5A5A;
SpanSize = 0;
//
// Make sure we don't try and test anything above the max physical address range
//
ASSERT (BeginAddress + MemoryLength < MAX_ADDRESS);
switch (Operation) {
case Extensive:
SpanSize = 0x4;
break;
case Sparse:
case Quick:
SpanSize = 0x40000;
break;
case Ignore:
goto Done;
break;
}
//
// Write the test pattern into memory range
//
TempAddress = BeginAddress;
while (TempAddress < BeginAddress + MemoryLength) {
(*(UINT32 *) (UINTN) TempAddress) = TestPattern;
TempAddress += SpanSize;
}
//
// Read pattern from memory and compare it
//
TempAddress = BeginAddress;
while (TempAddress < BeginAddress + MemoryLength) {
if ((*(UINT32 *) (UINTN) TempAddress) != TestPattern) {
*ErrorAddress = TempAddress;
DEBUG ((EFI_D_ERROR, "Memory test failed at 0x%x.\n", TempAddress));
return EFI_DEVICE_ERROR;
}
TempAddress += SpanSize;
}
Done:
return EFI_SUCCESS;
}
/**
This function sets up the platform specific IMR protection for the various
memory regions.
@param PeiMemoryBaseAddress Base address of memory allocated for PEI.
@param PeiMemoryLength Length in bytes of the PEI memory (includes ACPI memory).
@param RequiredMemSize Size in bytes of the ACPI/Runtime memory
@return EFI_SUCCESS The function completed successfully.
EFI_ACCESS_DENIED Access to IMRs failed.
**/
EFI_STATUS
SetPlatformImrPolicy (
IN EFI_PHYSICAL_ADDRESS PeiMemoryBaseAddress,
IN UINT64 PeiMemoryLength,
IN UINTN RequiredMemSize
)
{
UINT8 Index;
UINT32 Register;
UINT16 DeviceId;
//
// Check what Soc we are running on (read Host bridge DeviceId)
//
DeviceId = QNCMmPci16(0, MC_BUS, MC_DEV, MC_FUN, PCI_DEVICE_ID_OFFSET);
//
// If any IMR register is locked then we cannot proceed
//
for (Index = (QUARK_NC_MEMORY_MANAGER_IMR0+QUARK_NC_MEMORY_MANAGER_IMRXL); Index <=(QUARK_NC_MEMORY_MANAGER_IMR7+QUARK_NC_MEMORY_MANAGER_IMRXL); Index=Index+4)
{
Register = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, Index);
if (Register & IMR_LOCK) {
return EFI_ACCESS_DENIED;
}
}
//
// Add IMR0 protection for the 'PeiMemory'
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR0,
(UINT32)(((RShiftU64(PeiMemoryBaseAddress, 8)) & IMRL_MASK) | IMR_EN),
(UINT32)((RShiftU64((PeiMemoryBaseAddress+PeiMemoryLength-RequiredMemSize + EFI_PAGES_TO_SIZE(EDKII_DXE_MEM_SIZE_PAGES-1) - 1), 8)) & IMRL_MASK),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM)
);
//
// Add IMR2 protection for shadowed RMU binary.
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR2,
(UINT32)(((RShiftU64((PeiMemoryBaseAddress+PeiMemoryLength), 8)) & IMRH_MASK) | IMR_EN),
(UINT32)((RShiftU64((PeiMemoryBaseAddress+PeiMemoryLength+PcdGet32(PcdFlashQNCMicrocodeSize)-1), 8)) & IMRH_MASK),
(UINT32)(CPU_SNOOP + RMU + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + RMU + CPU0_NON_SMM)
);
//
// Add IMR3 protection for the default SMRAM.
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR3,
(UINT32)(((RShiftU64((SMM_DEFAULT_SMBASE), 8)) & IMRL_MASK) | IMR_EN),
(UINT32)((RShiftU64((SMM_DEFAULT_SMBASE+SMM_DEFAULT_SMBASE_SIZE_BYTES-1), 8)) & IMRH_MASK),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM)
);
//
// Add IMR5 protection for the legacy S3 and AP Startup Vector region (below 1MB).
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR5,
(UINT32)(((RShiftU64(AP_STARTUP_VECTOR, 8)) & IMRL_MASK) | IMR_EN),
(UINT32)((RShiftU64((AP_STARTUP_VECTOR + EFI_PAGE_SIZE - 1), 8)) & IMRH_MASK),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM)
);
//
// Add IMR6 protection for the ACPI Reclaim/ACPI/Runtime Services.
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR6,
(UINT32)(((RShiftU64((PeiMemoryBaseAddress+PeiMemoryLength-RequiredMemSize+EFI_PAGES_TO_SIZE(EDKII_DXE_MEM_SIZE_PAGES-1)), 8)) & IMRL_MASK) | IMR_EN),
(UINT32)((RShiftU64((PeiMemoryBaseAddress+PeiMemoryLength-EFI_PAGE_SIZE-1), 8)) & IMRH_MASK),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM)
);
//
// Enable IMR4 protection of eSRAM.
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR4,
(UINT32)(((RShiftU64((UINTN)PcdGet32 (PcdEsramStage1Base), 8)) & IMRL_MASK) | IMR_EN),
(UINT32)((RShiftU64(((UINTN)PcdGet32 (PcdEsramStage1Base) + (UINTN)PcdGet32 (PcdESramMemorySize) - 1), 8)) & IMRH_MASK),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM),
(UINT32)(CPU_SNOOP + CPU0_NON_SMM)
);
//
// Enable Interrupt on IMR/SMM Violation
//
QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_BIMRVCTL, (UINT32)(EnableIMRInt));
if (DeviceId == QUARK2_MC_DEVICE_ID) {
QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_BSMMVCTL, (UINT32)(EnableSMMInt));
}
//
// Disable IMR7 memory protection (eSRAM + DDR3 memory) since our policies
// are now setup.
//
QncImrWrite (
QUARK_NC_MEMORY_MANAGER_IMR7,
(UINT32)(IMRL_RESET & ~IMR_EN),
(UINT32)IMRH_RESET,
(UINT32)IMRX_ALL_ACCESS,
(UINT32)IMRX_ALL_ACCESS
);
return EFI_SUCCESS;
}
/** Return info derived from Installing Memory by MemoryInit.
@param[out] RmuMainBaseAddressPtr Return RmuMainBaseAddress to this location.
@param[out] SmramDescriptorPtr Return start of Smram descriptor list to this location.
@param[out] NumSmramRegionsPtr Return numbers of Smram regions to this location.
@return Address of RMU shadow region at the top of available memory.
@return List of Smram descriptors for each Smram region.
@return Numbers of Smram regions.
**/
VOID
EFIAPI
InfoPostInstallMemory (
OUT UINT32 *RmuMainBaseAddressPtr OPTIONAL,
OUT EFI_SMRAM_DESCRIPTOR **SmramDescriptorPtr OPTIONAL,
OUT UINTN *NumSmramRegionsPtr OPTIONAL
)
{
EFI_STATUS Status;
EFI_PEI_HOB_POINTERS Hob;
UINT64 CalcLength;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *SmramHobDescriptorBlock;
if ((RmuMainBaseAddressPtr == NULL) && (SmramDescriptorPtr == NULL) && (NumSmramRegionsPtr == NULL)) {
return;
}
SmramHobDescriptorBlock = NULL;
if (SmramDescriptorPtr != NULL) {
*SmramDescriptorPtr = NULL;
}
if (NumSmramRegionsPtr != NULL) {
*NumSmramRegionsPtr = 0;
}
//
// Calculate RMU shadow region base address.
// Set to 1 MB. Since 1MB cacheability will always be set
// until override by CSM.
//
CalcLength = 0x100000;
Status = PeiServicesGetHobList ((VOID **) &Hob.Raw);
ASSERT_EFI_ERROR (Status);
while (!END_OF_HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
if (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
//
// Skip the memory region below 1MB
//
if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000) {
CalcLength += (UINT64) (Hob.ResourceDescriptor->ResourceLength);
}
}
} else if (Hob.Header->HobType == EFI_HOB_TYPE_GUID_EXTENSION) {
if (CompareGuid (&(Hob.Guid->Name), &gEfiSmmPeiSmramMemoryReserveGuid)) {
SmramHobDescriptorBlock = (VOID*) (Hob.Raw + sizeof (EFI_HOB_GUID_TYPE));
if (SmramDescriptorPtr != NULL) {
*SmramDescriptorPtr = SmramHobDescriptorBlock->Descriptor;
}
if (NumSmramRegionsPtr != NULL) {
*NumSmramRegionsPtr = SmramHobDescriptorBlock->NumberOfSmmReservedRegions;
}
}
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
if (RmuMainBaseAddressPtr != NULL) {
*RmuMainBaseAddressPtr = (UINT32) CalcLength;
}
}